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B a r r e l l e d n e s s  c o n d i t i o n s  on  Co (E) 

By 

A. 5~ARQUINA and J. M. SAZ~Z SERNA 

Abstract. Some conditions of barrelledness are considered and studied on the space 
Co (E), defined as follows: I f  E is a real or complex Hausdorff  locally convex space 
and ~ is a saturated family of seminorms, defining the original topology of E, 
then the vector space of all the sequences f : {f(n) : n ~ ~} in E, convergent to 
zero, provided with the locally convex topology 

p(f)=sup{p(.f(n)):nE~} p ~ :  

is defined as the space Co(E). The main result of the paper  is the following char- 
aeterization : Co (E) is quasibarrelled (see [3], p. 367) if and only if, E is quasibarrelled 
and the strong dual of E has property (B) (see [5], p. 30, for definition). We obtain, 
as a consequence, commuta t iv i ty  properties of the operator Co, acting on certain 
inductive limits (3.3 Theorem). We also prove that  Co does not commute with un- 
countably strict inductive limits. In particular, there are ultrabornological spaces E 
for which Co(E) is not quasibarrelled. 3.1. Example  provides a complete e-tensor 
product  of two complete ultrabornological spaces which is not quasibarrelled. 

1..Notation and introduction. The vector spaces used here will be defined over the 
field of the real or complex numbers. With the expression "locally convex space" 
we shall mean a Hausdorff topological vector space with a zero neighbourhood basis 
consisting of convex sets. I f  <E, E'> is a dual pair (see [3]), we shall denote by 
(r(E, E') ,  kt(E, E ')  and fl(E, E'), the weak, the Mackey and the strong topology 
on E. I f  E is a locally convex space, then E '  will denote the topological dual of E. 
I f  U is an absolutely convex set in E, then pu will represent the Minkowski func- 
tional of U defined on the linear hull of U, Eu. 

1.1, Definition. I f  E is a locally convex space and ~E is a saturated family of 
seminorms defining the original topology of E, then Co (E) is defined as the space 
of  all null sequences in E, provided with the locally convex topology generated by 
the system of seminorms 

p(f)  = sup {p(f(~)) :n ~ ~} ,  p E~E 

for f = {f(n):n e •}, convergent to zero in E. 
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The space Co(E) has been studied in various situations. In  [6], the topological 
dual of C0(E), was characterized improving a result given in [1]. Perhaps one of the 
major problems about the space Co(E) is to know whether Co(E) is a barrelled, 
quasibarrelled . . . . .  space provided E satisfies the same property. This problem is 
closely related with the question of commutat iv i ty  of the topological operator Co 
acting on certain inductive limits and it was treated in [2]. In  this paper, we give 
a complete characterization of the spaces Co(E) tha t  are quasibarrelled, giving a 
partial answer to the above question. As consequence, the barrellednes.~ on Co(E) 
is characterized in a very general situation. 3.3. Theorem includes, as a particular 
case, the result of [2] and 3.1. Example provides an example of a complete ultra- 
bornological space E such that  Co(E) is not quasibarrclled. 

1.2. Definition. Let E be a locally convex space. Let  1l be a saturated family (in 
the sense of  [3], w 21) of closed bounded absolutely convex subsets of E. Let  
{In :n e ~} be a sequence in E. We say that  {/n: n e ~} is a tl totally summable 
sequence, if there is an element A e tl, such tha t  

< + oo 

i.e., {PA(/n) : n e ~ J } e / L  
I f  ~ ( E )  is the family of all closed bounded absolutely convex subsets of E, then 

the above definition gives the concept of a totally summable sequence (see [5], 
p. 29). 

1.3. Definition. Following Pietsch ([5], p. 23), a sequence {un : n e N} of E' ,  the 
topological dual of a locally convex space E, is a (E', E)-summable if for every / e E, 
the condition 

I t, un) l  < + oo 

is satisfied. We shall denote by 9~(E') the vector space of all sequences in E '  which 
are a(E', E)-summable and generate finite-dimensional subspaces of E ' .  

Let E be a locally convex space. Let  1l be a saturated family of closed bounded 
absolutely convex subsets of E. We shall denote b y / 1 ( [ 1 )  the set of all l l-totally 
summable sequences of E, which is a vector space with the pointwise operations. 
The vector space of all totally summable sequences of E will be denoted b y / 1  (E}. 
The family of all q(E' ,  E) closed absolutely convex and equicontinuous subsets of 
E '  will be denoted in the sequel by ~/(E'). 

The following result was given in [6] and ([9], p. 463/'464, 18a) and b)) : 

1.4. Proposition. Let E be a locally convex .space. Then the topological dual o] Co(E) 
is algebraically isomorphic to fl  ( ~]! ( E') }. 

1.5. R e m a r k .  The equicontinuous sets on Co(E) are characterized as follows: 
A subset H c Co(E)' (the topological dual of Co(E)) is equicontinuous if and only 
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if there is an equicontinuous set U e r and a constant M > 0, such that  

~pv(ft(n)) < M 

for all z7 e H. This remark was settled in [6]. 
Following Pietsch, we shall denote by ll{E} the locally convex space of all ab- 

:olutely summable sequences of the locally convex space E, provided with the 
~-topology. 

1.6. Proposition. Let E be a locally convex space. The topological dual o~ Co (E) is 
algebraically isomorphic to a sequentially dense subspace o / ~  {E'[f l(E' ,  E)]}. 

P roo f .  I f  {un:n e ~} e E~{E'[fl(', E)]}, then for every positive integer k, we de- 
fine the sequence {u~): n e ~} as follows: u~ ) = un if 1 ~< n --< k, and u~ ) = 0 if 
n > k. Thus, for k > 1, {u~): n e N} ~ q~(E'}. On the other hand, if W is a closed 
absolutely convex neighbourhood of zero in E'[fl(E', E)], we have tha t  

~pw(u~) < + oo. 

Let us take e > 0 arbitrary,  then there is a positive integer no such that  

~pw(un) < e 
n >~ no  

and hence 

~[{u~: n ~ ~ }  - { ~ ) :  n ~ ~ } ]  = y p~(u.) < ~ fo r  a n  k > no ,  
n > k  

(using the notation of [5] for the seminorms of the ~-topology). Thus, 

z t - -  lim {u(nk):ne~} = {un : n e e d } .  
k - - *  § oo  

E' I t  follows tha t  ~ (E'> will be sequentially dense in L~ {E' [fl( , E)]}. Since 

qJ <E'> c tq (~! (E')} c/~ {E' [fl (E', E)]} 

we have the result by 1.4. Proposition. Q.e.d. 

2. The Main Result. 

2.1. Proposition. Let E be a locally convex space. Then, the topology induced by the 
zt-topology o[ f~ {E'[fl(E', E)]} on Co(E'), coincides with fl[Co(E)', C0(E)]. 

P roo f .  I f  B is a closed bounded absolutely convex subset of E, then it is easy 
to see tha t  

sup{ I(f ,  ~ 2 > l : f =  {f(n):n~ ~} ~Co(E) and f (n)~ B, Vn} = 

= ~ sup{ I (g, fi(n)> I : g e B} 

where ~ = {g(n) :n  ~ ~} ~ C0(E)', (see Proposition 1 of [7]). From this remark and 
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the fact that  the family of subsets of C0(E}: 

B* = {f:feCo(E) and f (n)eB,  Vn}, 

B running through the family of all closed bounded absolutely convex subsets of E, 
is a fundamental system of bounded subsets in the locally convex space Co(E), we 
obtain: The family of seminorms on Co(E)', 

(2.1.1) f~-~ ~,pl~o(f~(n)) 

where B ~ 1 4 9  ~ 1 ,  for all / � 9  and B runs through the family 
~ ( E )  of all bounded closed absolutely convex subsets of E, defines the topology 
•[Co(E)', C0(E)]. On the other hand, the seminorms (2.1.1) define exactly the 
z-topology on fl(E'[fl(E', E)]}. Q.e.d. 

2.2. Remark. The normed spaces are examples of locally convex spaces E, for 
which the equality 

E '  C 0 ( E ) ' = : ' { E ' [ f l (  , E)]} 

is satisfied. Tile following remark shows tha t  the inclusion 

(2.2.1) Co(E)' cEI{E'[fl(E ', E)]} 

may  be strict. On the one hand, for every locally convex space E one has: 

Co(E[(~(E, E')]) '  = ~v(E'>. 

Let E be a locally convex space such that  E [a (E ,  E')] is not quasibarrelled. Then 
there exists an infinite-dimensional bounded sequence {un:n �9 ~} in E'[fl(E', E)], 
whence {2 -nun  : n �9 [~} �9 E 1 <E' [fl(E', E)]> ~ T<E'>. Thus, for the locally convex 
space F = E [a (E ,  E')]  the above inclusion is strict. 

2.3. Example. The following example is stronger than the one discussed in 
2.2. Remark  in the sense tha t  it shows tha t  the inclusion (2.2.1) may  be strict, for 
locally convex spaces E, such that  the original topology of E coincides with tile 
Mackey topology/x (E, E')  (the so called Mackey spaces). 

In  Kbthe 's  book ([3], w 27, p. 369) an example is given of a vector subspace F0 
of f,1, dense and different from El, such tha t  with the induced norm of ~I is a bar- 
relled space. The strong dual (or conjugate) of F0 will be ~ (i.e. the space of all 
the bounded sequences of scalars with the supremum norm topology). We set E =- 
~ [ ~ t ( ~  ~~ F0)]. Since F0 =[= fl ,  then there is an element ] � 9  1 ~ Fo. Since [1 is the 
completion of the subspace F0, there exists a sequence {/~ : n e ~ } in F0, which 
is absolutely summable in 11, i.e. ~ li]nlll < + o o  (where il'ill, is the El-norm) 
and 

/ - - ~ , / n ,  in t ' l  
N 

(for a proof of this fact see for instance [5], p. 55, 3.2.2. Lemma). We set 
k 

Sk = ~ , / n ,  k ~ 1.  
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Let ~ = {/n : n ~ ~}. Since F0 is barrelled, the strong topology fl(F0, ~ )  coincides 
with the induced topology by the norm of ~1, and therefore ~ e fl{Fo[fl(Fo,/~)]},  
since g is ii .Jll-summable. On the other hand, ~q~El<~ Indeed, let us sup- 
pose that ~ e[;<~?[(E')}, then, for a suitable U ~ ~ we have that 

i = ~pv(]n)  < + ~ .  

Thus, for every k ~ ~, 

( k )  ' pu(sx) = Pu n <= ~pu( /n )  < M.  

We set I ' = { u : u - - - M . v ;  v e U } .  Then, V e ~ / ( E ' )  and ~keV,  for all k e N .  
Since V is a(E', E)-compact and absolutely convex, it follows that  {sk:k  e N} 
has a ~(E', E)-adherent point [0 e V c E ' =  F0. On the other hand, { s k : k e  N} 
converges to / in (/q, [] "!11), hence in f l [a( tq,  #~)]; since /o is in particular an ad- 
herent point of {sx:k e ~} in the space /'l[a({1,#~)], one obtains / = / 0 ,  and, 
therefinv, / lies in F0, and this is a contradiction. 

2.4. Remark. The result of 2.3. Example is valid for any normed barrelled space 
X and any barrelled dense subspaee Fo c X, and different from X. (Use the same 
proof!) 

2.5. Definition. Let  E be a locally convex space. Following A. Pietsch ([5], p. 30), 
E has property (B), if for every bounded subset H of [~ {E}, there is a closed bounded 
absolutely convex set B in E such that  

~.ps([n) < l ,  fo ra l l  ( [ n : n ~ } e H .  

Now, we can give our main result: 

2.6. Theorem. Let E be a locally convex space. The /ollowing properties are equi- 
valent: 

(2.6.1) E is quasibarrelled and E'[fl(E', E)] has property (B). 

(2.6.2) Co(E) is quasibarrelled. 

I /Co  (E) is quasibarrelled, then, 

Co(E)' = {i{W'[fl(W', E)]}. 

P r oo f .  (2.6.1) -+ (2.6.2): I f  E is quasibarrelled, then, every fl(E', E)-bounded 
subset of E'  is equicontinuous, and therefore we have that  

[a <0]! (E')> ---- f l  <E' [fl (E', E)]>. 

Since E'  [fl(E', E)] has property (B) by hypothesis, applying 1.5.6. Proposition from 
([5], p. 30), we obtain that 

f l (E'[ f l (E' ,  E)]> ---- {i {E'[fl(E',  E)]}, 

Archiv der Mathcmatik 31 38  
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and therefore Co(E)'----II(E'[fl(E ', E)]j ~. Let us see now that  Co(E) is quasibar- 
felled. Let H be a bounded subset of the strong dual of Co(E). From 2.1. Proposition 
it results tha t  H is z-bounded. Since the strong dual of E has property (B), there 
is a strongly bounded subset B of E', which can be chosen absolutely convex and 
(~(E', E)-closed (since the ~(E' ,  E)-closure of a fl(E', E)-bounded subset of E'  is 
fl(E', E)-bounded), and such that  for all fi ~ H, the inequality 

~,pB(fe(n)) <= 1 

is satisfied. 
E being quasibarrelled, B is equicontinuous, therefore B ~ ~/(E'), since B is 

a ( E ' ,  E)-closed. By an appeal to 1.5. Remark it results that  H is an equicontinuous 
subset of Co(E)'. 

(2.6.2)-> (2.6.1): Let us suppose that  Co(E) is quasibarrelled. We define the 
linear mapping pl  from Co(E) onto E, as follows: if f ~  Co(E), then Pl(])----- f(1), 
the first component of the sequence f. Pl is clearly continuous. On the other hand, 
if W is a neighbourhood of zero in Co(E), there is a continuous seminorm p such 
that  for a certain s > 0, 

Vp* ~-- {j~e C0(E); p(f )  ---- sup{p(f(n))  : n e ~}  < s} 

is a subset of W. Then, Up.= { / : / e E ; p ( / ) <  s} is a neighbourhood of zero in 
E, such tha t  

p l (W) ~pl(Vp*) D Up 

because if / e Up, we define f---- (f(n) : n ~ [~), such that  f(1) ---- [ and f(n) .= 0 
if n > 1, and we have tha t  f e  V* and p i ( ] )  : / .  Thus, Pl is open, and therefore 
it is a quotient mapping. Thus, E as a quotient of Co(E), will be quasibarrelled. 
Combining 1.6. Proposition, 2.1. Proposition and the fact that  Co(E)' is quasi- 
complete for the topology t~[Co(E)', Co(E)] ([3], w 23), we can deduce that  

Co(E)'----/l(E'[fl(E', E)]}. 

To show tha t  E'[fl(E', E)] has property (B) the following argument works: I f  
H c f l  (E '  [fl (E', E)] } is ~-bounded, Co (E) being quasibarrelled, 2.1. Proposition yields 
that  H is equieontinuous; from 1.5. Remark there is an equicontinuous subset U 
of E', U ~ ~ and a constant M > 0 such that  for all ~ e H, 

~pu(~(n) )  < M .  

We set B ~- (v : v ~ M-  u with u E U}. Therefore, from the Banach-Mackey theo- 
rem ([3], w 20), B will be fl(E', E)-bounded and such tha t  

~,pB(~(n)) ~ 1, for all ~2eH. 

Thus, E'[fl(E', E)] has property (B). Q.e.d. 

2.7. Remark. From 2.6. Theorem it follows that  if E is a quasibarrelled DF- 
space, then Co(E) is a quasibarrelled ])F-space, since E'[fl(E', E)] is metric and 
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every metric locally convex space has property (B) by ([5], 1.5.8., p. 31). In par- 
ticular, if E is an LB-space, then, C0(E) is quasibarrelled. 

3. Concluding Remarks. 

3.1. Example. Let I be an uncountable index set. Let E = ~(I) be the locally 
convex direct sum of spaces E~ ----- E (being ~ the field of scalars), i e I .  In  ([5], 
1.5.7. Example) it is proved that  E'[fl(E', E)] does not satisfy property (B). Since 
E is the inductive limit of finite-dimensional subspaces, it follows that  E will be 
barreled (even, "ultrabornological", i.e. inductive limit of Banach spaces). I f  we 
apply our 2.6. Theorem, we obtain that  Co(E) is not quasibarrelled, and, therefore, 
it is not, the inductive limit of the corresponding subspaces Co (F), F running through 
the finite-dimensional subspaees of E. Thus, Co does not commute with the strict 
uncountable inductive limits. The space Co(E) can be interpreted as a complete 
C-tensor product (see [5], p. 108) of two complete ultrabornological spaces, such that  
it is not quasibarrelled. 

Recall tha t  a locally convex space E is locally complete if for every closed bounded 
absolutely convex set in E, B, then, the normed space EB is Banach. A Mackey- 
Cauchy (resp. Maekey-convergent) sequence in E, is a Cauehy (resp. convergent) 
sequence in certain EB, B being a closed bounded absolutely convex set in E. 

3.2. Corollary. Let E be a locally complete locally convex space. Then the/ollowing 
conditions are equivalent: 

(3.2.1) E is barrelled a~ut E'[fl(E', E)] has property (B). 

(3.2.2) Co(E) is barrelled. 

P r o o f .  I f  {(/~'): n ~ ~ ) : m  ~ ~} L~ a Maekey-Cauchy sequence in Co(E), then 
{](n"0 : m E f~ } is a Mackey-Cauchy sequence in E, hence convergent to some /n  ~ E, 
(n E N); it follows easily that  {/n : n ~ ~}  ~ Co(E) and tha t  {(/0,o : n 6 ~ ) :  m 6 1~} 
converges to {[n : n ~ N}. Thus, Co (E) is locally complete if (and only if) E is locally 
complete. Applying 2.6. Theorem we have the result. Q.e.d. 

3.3. Theorem. Let E be a locally complete locally convex space. Let {En : n e ~}  be 
an increasing sequence o[ locally complete subspaces o/ E such that 

I / C o  (E) is barrelled, then, 

(3.3.1) Co(E) = U { C o ( E n ) : n ~ N } .  

(3.3.2) Co(E) is the inductive limit o/ the sequence {Co(En) : n ~ ~ }. 

P r o o f .  (3.3,1): IffE Co(E), then, { f ( n ) : n  ~ ~} is a null sequence in E;  since E 
is locally complete, the closed absolutely convex hull B of the sequence is compact. 
Since EB is Banach and En is locally complete, we have tha t  EB ~ En is closed 
in ER, for every n, since every sequence converging in EB is a Mackey-Cat~chy 
sequence in E. Since 

EB =- U {(Eu n E,,): n ~ ~} 

38* 



596 A. MARQUINA and J. M. SANZ SERNA ARCH. MATH. 

we have  tha t ,  b y  using Bai re ' s  Ca tegory  Theorem,  there  is a pos i t ive  in teger  no e 
such t h a t  EB n E,o �9 EB, and,  therefore,  B c E,0. Tha t  implies  f e  Co(E~o). 

(3.3.2) follows from the barrel ledness,  (3.3.1) and  the  following resul t  of  Vald iv ia  
([8]): I f  a barre l led  space is the  union of  an increasing sequence of  subspaces,  then  
such space is the  induct ive  l imi t  of t h a t  sequence. Q.e .d .  

3.4. R e m a r k .  The condi t ion  "locally complete" for the  space E in 3.3. Theorem 
can not  be e l iminated ,  since if  E is the  non-comple te  LB-space  cons t ruc ted  b y  KSthe  
in ([3], p. 434), and  i f  En, n = 1, 2 . . . .  is the  increasing sequence of  subspaces  of  E, 
such t ha t  there  is a topo logy  Tn, finer t h a n  the  induced  topo logy  b y  the  one of  E,  
with E ,  [T~,] topologica l ly  isomorphic  to  Co, n ---- 1, 2 . . . . .  then  

Co(E) =4= ~,J { C 0 ( E n ) : h e  N} 

since there  is a null sequence /n in E,  such t h a t / n  ~ En. 

3.5. N o t e .  Condi t ions under  which a local ly  convex space E,  which is the  union 
of an increasing sequence of subspaces,  is local ly complete,  are  given in Corol lary  2.4 
of [4]. concerning the  hypothes i s  of 3.3. Theorem.  

3.6. R e m a r k .  I f  E is a locally convex space, then  there  is a topological  iso- 
morphism between Co(E) and  Co(E)x E. This i somorph ism can be cons t ruc ted  
f rom the  topological  i somorphism tha t  exists  between Co and  Co x IE. I n  pa r t i cu la r ,  
E is a quo t i en t  space of  Co(E), as i t  was ob ta ined  in the  p roof  of  2.6. Theorem.  

A c k n o w l e d g e m e n t s .  I a m  grateful  to the  referee for suggest ing a n u m b e r  of  
improvements ,  special ly  in the  th i rd  sect ion of  the  exposi t ion,  and  for the  refer- 
ence [9]. 
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