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Summary. We give a rigorous proof of the validity of the Lax equivalence 
theorem when the true solution at time t and its approximation lie in 
different spaces, thus modelling the practical situation where the former is a 
function of the space variables and the latter is only defined at grid points. 
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1. Introduction 

The celebrated Lax-Richtmyer theory [4, 7] investigates the discretization of 
properly posed Cauchy problems 

du/dt=Au O < t < T  
(1) 

u (0) = Uo 

by means of a stepping procedure 

u"+~= C(At)u", 

where the elements u(t), 0<  t_< T and the approximations u", n=0,  1 . . . . .  IT/At], 
lie in the same Banach space X, and A, C(At) are linear operators mapping X 
into X. This set-up is, in a sense, only an idealization [5, p. 68] of the 
procedures followed in practice, where the element u(t) is a function of the 
space variables, while u" is only defined as a grid function. Attemps to fill this 
gap, without altering the framework of the Lax-Richtmyer theory, are usually 
made either by interpolating u" or by pretending that the difference equations 
hold for all values of the space variables [7, p. 30]. The applicability of the 
second device is very restricted, while the first one suffers from the arbitrariness 
of the interpolation procedure [10, p. 7]. On the other hand, general frame- 
works for the study of discretizations have appeared in the literature (see [10] 
among many others). Those frameworks, while catering for problems more 
general than (1), typically restrict their scope to the implication "stability and 
consistency =:, convergence", i.e. the part of the Lax equivalence theorem which 
can be dealt with by elementary means. 
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The purpose of this article is to provide a rigorous proof of the validity of 
the Lax-Richtmyer Theory when the approximations u" are allowed to lie in 
normed spaces Xnt that vary with A t (cf. Sect. 3). 

Section 2 is devoted to an abstract exposition of our results. The practical 
implications are considered in Sect. 3 

The reader is referred to [ l ]  for other extensions of the Lax-Richtmyer 
theory, and to [6] for a discussion of the practical relevance of the functional 
analysis ideas involved in the theory and its extensions. 

For simplicity we shall use the notation h rather than A t. 

2. The Main Result 

We consider the initial value problem (1), where A is a linear operator 
A: D ( A ) c X - - * X ,  (X a Banach space with norm II. LI). It is assumed that the 
problem is properly posed [5, 7], so that in particular there is a uniformly 
bounded family of linear operators E(t), O < t < T  such that, for uo~X  the 
mapping t ~ E ( t ) u  o is the unique (generalized) solution of (1). 

Definition 1. A difference scheme is a family of pairs (X h, C(h))hdt, where: 
i) The set H of indices h is a subset of the set of positive real numbers and 

0 is an accumulation point of H. 
ii) X h are normed spaces with norms II. 41h- 

iii) C(h) are continuous linear operators in X n. 
iv) For  each compact subset K of H there exists a positive constant C such 

that I1C(h)[Ih_ -< C for h in K. (Here I]-tlh denotes the operator norm in Xh). 

Definition 2. A difference scheme is said to be stable (in [0, T]), if there exists a 
positive constant C, such that for any h in H and any positive integer n with 
n h < T ,  the bound 

II Cn(h)llh < C (2) 

holds. 
Note that neither the notion of difference scheme nor that of stability relate 

to the problem (1). 

Definition 3. A consistent difference method for the initial value problem (1) is 
a family of triplets (X  h, C(h), rh)h~ H, where (X  h, C(h))h~ H is a difference scheme 
and 

i) r h are continuous linear operators mapping X onto X h, such that 

sups [I rh 11L(x, x~) < oo, (3) 

and a constant R can be found such that for each v ~ X  h, with IJvllh<l, there 
exists w e X  satisfying Ilwll < R, v = r h w. 

ii) There exists a dense subset Y ~ X ,  such that for u0eY, and uniformly in 
0 < t < T ,  

lim I[h- 1 (r h E(t  + h) u o - C(h) r h E(t) uo)llh = O. 
h~O 
hel l  

The norm in (3) is of course the operator norm derived from the norms in 
X and X n. 
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Definition 4. A consistent difference method for (1) is convergent if for each 
uoEX and each t, O<t<_T 

lira I1% E(t) u o - C (hi)"~ rhj U o Ilh~ = 0, (4) 
j ~  

where (hi) is an arbitrary sequence with h j e l l ,  lim h j = 0  and (n j) is an arbitrary 
sequence of integers with 0 < nj hj < T, lim n i h~ = t. 

Theorem. A consistent difference method for (1) is convergent if  and only if its 
difference scheme is stable in [0, T]. 

Proof The implication stable~convergent is proved exactly as in the Lax- 
Richtmyer theory [7]. In order to prove that stability is necessary for con- 
vergence, we need the following extension of the uniform boundedness prin- 
ciple. 

Lemma. Let  X be a Banach space, (Xh)h~ n a family of  normed spaces, Th: X ~ X h  
linear operators. I f  for  each x e  X ,  sup [I Th xll h < 0% then sup II Th tt Ltx, xh) < oo. 

This lemma, to our best knowledge, is not available in the literature. 
However it is readily proved by means of an adaptation of any of the usual 
proofs of the standard Banach-Steinhaus theorem. In particular the proof of 
Theorem 1 of [3] applies (almost) verbatim. 

We are now ready to study the necessity of the stability. First, we note that 
if the method is convergent then, for each u o e X  

sup 11C(h)"rhuotth< 

where the supremun is taken for heH,  n integer, O < n h < T ,  (see [-7, p. 46]). 
From the lemma, we conclude that 

sup [I C(h)" r h I[z~x, xh) = A < c~. 

Now if v6Xh,  Ilvllh<l, then by hypothesis, v=rhw with IIwPI < R  and there- 
fore 

[I C(h)" v [I h = 1[ C(h)nrh w 11 h < A [1 w I[ < A R  

so that the scheme is stable. 

3. Discussion 

In practical applications X is a space of functions of one or several "space" 
variables. It is assumed that the parameters which govern the space discreti- 
zation [9] (mesh size, element diameter etc.) have been expressed as functions 
of h = A t. In finite differences the spaces X h consist of grid functions. We have 
not assumed that the X h are finite dimensional, thus catering for the possibility 
of grids with an infinite number of points. (These may arise in pure initial 
value problems in PDEs.) When the discretization in space is performed by 
means of finite elements, the X h are subspaces of X. Note that by taking X 
--X h we recover the Lax-Richtmyer theory. 

We have chosen to make a distinction between a difference scheme and a 
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difference method. Only the former is required in order to produce the numeri- 
cal solution. The scheme does not refer to any specific initial value problem. 
Stability is a property of the scheme. On the other hand a method is, in 
agreement with the etymology of the word, a way of (approximately) solving a 
given problem. A method consists of a scheme (Xh, X(h)) and a family of 
mappings r h which make it possible to compare the true solution u(t) with the 
numerical solution provided by the scheme. In fact, one scheme may give rise 
to different methods, as studied in [2]. 

In order to measure the global error, i.e. to compare an element u(t) in X 
with an element u" in Xh, one can adopt one of the two following procedures 
[1o]: 

i) To map  X into X h by a "restriction" operator r h as in Sect. 2. In a finite 
difference setting this means to compare the numerical solution with a suitable 
restriction to the grid of the true solution. For finite elements r h would be a 
least-squares or Galerkin projection of X onto the subspace X h. 

ii) To map  X h into X by a prolongation operator Ph" For  finite differences 
this would mean interpolation of the grid values. 

For  finite differences i) seems far more natural, as ii) contains a large 
amount  of arbitrariness. For  finite elements X h ~ X ,  and the identity (or in- 
jection) appears as an obvious, natural candidate for prolongation. However, in 
this case we can write u(t)--phu"=u(t)--u"=(u(t) - -rhu(t) )+(rhu(t)- -un) .  Thus, 
the error u ( t ) - p h  un associated with alternative ii) equals the error r h u ( t ) - u "  in 
alternative i), plus a term u( t ) - rhu ( t  ) which merely reflects the approximation 
properties of X n and does not depend on the scheme [9]. 

We conclude that alternative i), as used in Sect. 2, is more natural than 
alternative ii) (see [10]). 

We also believe that the definitions of consistency, stability and con- 
vergence employed here are those one would expect. In fact, they have been 
used in the text [5], where the implication stabili ty-,convergence is proved. 
Furthermore our definitions fit the general framework of [10]. 

The hypotheses made on r h in Definition 3 hold in all practical appli- 
cations: for instance if X is a Hilbert space and r n an orthogonal projection, or 
if X is a space of continuous functions with the sup norm and r n is a point 
restriction to a grid, etc. In the case of L p spaces, whose elements are only 
defined almost everywhere, point restrictions do not make mathematically 
sense and must be replaced by averages of cell values. (Note that from a 
practical point of view [2] and in cases of steep spatial gradients, it is not 
advisable to considerer the numbers produced by the scheme as approxi- 
mations to point values of the true solution.) 

We also emphasize that if X were an L p space and if it were wanted to use 
point restrictions for the role of r h in (4), then, in Definition 4, the requirement 
"for each u o ~ X "  would have to be weakened into "for each u 0 in a dense 
subset of X" ,  since point restrictions are only densely defined (namely, they are 
only defined for continuous functions). Now the implication 
"convergence =~stability" does not hold after such modification of the defini- 
tion of convergence. (See [6] for a detailed discussion of this point.) 
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In order  to deal  with poin t  restr ic t ions and s imilar  s i tuat ions the following 
propos i t ion  may  be useful. (The p roo f  is obvious,  using the b o u n d  (2).) 

Proposition. Let (X  h, C(h), rh)h~ H a consistent, convergent difference method for  (1) 
and let (Ph)h~n be a family  of  linear operators from a common domain Z ~ X into 
X h. Assume that for  each v in Z 

l im IlrhV--~hV[Ih=O, (5) 
h~O 

Then, if uoeZ,  t~[0,  T],  E(t )uo~Z , it follows that 

l im [1 fhj E (t) u o -- C(hj) nj rh~ UO II h~ = 0 (6) 
j~oo 

for each sequence (hi) with h j sH ,  l i m h ~ = 0  and each sequence of  integers (nj) 
with 0 < nj hj < T, lira nj hj = t. 

An  example  of the app l ica t ion  of the p ropos i t ion  will now be given. Let  X 
=LP(O, 1), l < p < o o .  The interval  (0,1) is par t i t ioned  by a uniform grid 0 
= X o < X I ~ . . . < X N ( h ) = I  with d iameter  h. We take X h = R  N(h)+l with the dis- 
crete L" n o r m  and chose for r h (respectively ~h) the restr ic t ions based on element  
averages (respectively noda l  values). Then (5) holds for Z = C [ 0 ,  1]. The 
proposi t ion  shows that  (6) holds  for each choice of  (C(h)) leading to a con- 
vergent me thod  and for each u o and t such that  u o, E(t)u o are  cont inuous  (i.e. 
for each u0, t such that  fhUo, fhE(t)u o make  sense). 
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