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We present a practical appraisal of the functional analysis ideas involved in some
recent equivalence theorems. We also derive some new results which may be of
independent interest.

1. Introduction

THE CELEBRATED Lax Equivalence Theorem (Lax & Richtmyer, 1956) provided,
together with Dahlquist’s (1956) theory on linear multistep methods, one of the first
cornerstones of the analysis of numerical methods. The results of Lax & Richtmyer
have been generalized in several directions (cf. Ansorge, 1977, 1978; Palencia &
Sanz-Serna, 1983). In particular, and not surprisingly, much effort has been
expended in extending the theory so as to cover non-linear problems (Ansorge, 1977,
1978; Rosinger, 1980, 1982). Unfortunately, the definitions employed in the most
recent of these general theories rely heavily on functional analysis ideas, thus making
it difficult for the average numerical analyst to appreciate their scope.

The aim of this note is to help the interested reader in grasping the significance of
these recent contributions. We also present some new results and compare some
existing equivalence theorems, as applied to linear problems. (Clearly, a self-
respecting non-linear theory must be able to cope with linear problems.) One of our
conclusions will be that much of the material in Rosinger, 1980, 1982, although
useful in the treatment of non-linear ordinary differential or integral equations,
suffers from serious drawbacks when dealing with partial differential equations.

In the interest of clarity, we have postponed the proofs to an appendix.

2. Linear Cauchy Problems
We consider linear Cauchy problems

dufdt = Au, 0<t<T<o
u(O) = uo‘

Here A is a linear operator mapping a subspace D(A) of a normed space X into X,
and u, an element in X. In applications to initial-value problems in partial
differential equations, X is a space consisting of scalar or vector valued functions of
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one or several independent variables x, x,, ... These are called space variables to
distinguish them from the “temporal” variable t. The norm in X is typically one of
the familiar I” norms or, at least, is related to the I” norms. The operator A is a
linear differential operator involving the derivatives 0/0x,, 8/0x,, ... Usually Au is
not defined for every function u in X, as it is required that u be smooth enough to
guarantee that, after performing the differentiations involved in A, the result Au lies
in X. Therefore, the domain D(A) is often much smaller than X. However, in
practice, D(A) is dense in X, i.e. every element in X is the limit of a sequence of
elements in A. Hereafter, we always assume that D(A) is dense in X.

In this paper X is not necessarily a complete or Banach space. Frequently, in
practice, X is an IF space and therefore complete. Now, functions in I may include
(i) “smooth” functions, (ii) some non-smooth functions with a physical meaning
(such as step-functions), (iii) garbage without any conceivable physical significance
which is there just in order to make the space complete and therefore easier to
handle mathematically. Thus we have preferred to include the possibility of an
incomplete X, which would arise if the attention were restricted to smooth functions.
Nevertheless, every normed space X can be embedded in a complete normed space
X, whose elements are limits of sequences in X. In practice X is usually an I? space.

We have not assumed that A is bounded. In fact in applications to PDEs, A is
never bounded. We recall that if A were bounded and X a Banach space, then (1)
would have a unique solution for every initial datum u, in D(A4), given by the
formula u(t) = exp (At)uy, with exp (At) = I+ At+1A%t*+ ... (see Aubin, 1979,
p- 333). However, for unbounded A, the well-posedness of (1) is not guaranteed. We
assume that (1) has a unique solution u(t) for each u, in D(A). (For a precise
definition of the term solution, see Richtmyer & Morton, 1967, p. 40.) As a
consequence of the linearity of the problem the operator Ey(t) which maps the initial
datum u, into the value u(t) of the corresponding solution is linear. We next assume
that, for 0 < ¢ < T, the operator E(t) is bounded, i.e. small changes of u, induce
small changes in u(t) and, furthermore, we suppose that the family of operators
{Eo(t): 0 <t < T} is equicontinuous, i.e. there exists a positive constant C, so that
IEo(t)ll < C, uniformly in ¢. The last hypothesis is identical with the requirement that
changes in the solution u(f) at time ¢ can be bounded, uniformly in t, in terms of the
corresponding changes in the initial datum u,,.

So far we have been dealing with initial data in D(4). Often u, does not lie in
D(A). (In practical applications u, may fail to fulfil the smoothness requirements for
Aug to be defined or to lie in X.) It is obvious that if u, does not belong to D(A),
then (1) has no (genuine) solution. Nevertheless, each u, is the limit of a sequence u$’
in D(A). If the corresponding sequence of solutions u™(t) has a limit u(t) in X, then it
is natural to refer to u(t) as a generalized solution to (1). Had X been assumed
complete, then the existence of the limit u(z) (i.e. of the generalized solution to (1)),
would have been guaranteed (Richtmyer & Morton, 1967, p. 41). Here X is not in
general complete and we make the final hypothesis that (1) has a unique generalized
solution u(t) for each u, in X. It is then possible to show that if we denote by E(t) the
operator which maps the initial datum u, into the corresponding (generalized)
solution u(z), then the family {E(t): 0 < t < T} is also equicontinuous. We emphasize
that for u, in X, E(t)u, denotes the value at time ¢ of the generalized solution to (1).
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When u, is smooth enough to lie in D(A4), then E(t)u, = E(t)u, is a genuine solution
of (1). Finally, it should be pomted out that under the hypotheses above, (1) has also
a generalized solution u(t) in X for each u, in the completion X.

3. Difference Methods

A discretization of (1) replaces the function u(f) by a sequence of points u°, u,
where " is supposed to approximate u(nh), h = At being a small increment. The
points u" are recursively computed from the finite-difference equations

u"tl = Chu". ?)

Here C(h) is, for each h in an appropriate interval 0 < h < h < T, a bounded
linear operator in X. It is assumed that the following (mild) requirement holds

sup {ICh)||:0 < h < h} <+ 0. (3)

The formulation (2) includes both explicit and implicit methods, provided that the
latter are formally written as if the equations for u"*! had been solved. However, for
simplicity, we shall only be concerned with one-step methods such as (2).

The extension theorem (Richtmyer & Morton, 1967) guarantees that the finite-
difference scheme C(h) may also be applied to elements u in the completion X, i.e. to
non-smooth, functions. We now write down, for future reference, the familiar
definitions of consistency, stability and convergence (Richtmyer & Morton, 1967).

The method (2) is said to be consistent if there exists a dense subset Y of D(A4) such
that for each uyin Y, and eacht,0 <t < T

lim h™ Y| E(t + h)ug — C(h)E(t)u,|| = O. “4)
h=0

Note that the expression in the norm is the difference between the theoretical
solution E(t + hju, at time ¢+ h and the result of one step of the numerical procedure
taken from the theoretical solution at the previous time-level, ie. the local
truncation error. We stress that (4) is only supposed to hold in a subset Y of D(A).
Typically, consistency is investigated by a Taylor expansion of the truncation error
and this requires u, to be rather smooth; then Y is the set of functions which satisfy
the appropriate smoothness requirements. In fact, it is easy to see that in practical
situations (4) does not hold if u, is, say, a step-function.

The method is stable if the set of operators C(h)", 0 <h<h, 0<nh<T is
uniformly bounded. Rosinger (1980) uses the following alternative definition.

Definition 3.1. The difference scheme (2) is stable if for any compact set K = X, there
exists L(K) such that for0 <h<h, 0<nh<T,ue K
IC(hY"ull < L(K)|ul|.

This definition is equivalent to the usual one. (See the Appendix.)
The method is convergent if for each t, 0 <t < T, each t-admissible pair of
SEqUENCes ny, Ny, ..., Ny ... by, hy, .., by, ... and each uy in X

lim ||C(h))"uo — E(t)u, || = 0. )
jo o
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In this paper a pair of sequences (n;), (h;) is said to be t-admissible if
0<h;<h 0<nh;<Tlimnh; =t
j

and each n; is an integer.

We emphasize that convergence, unlike consistency, refers to all u, in X. If X is an
I? space this means that convergent methods can cope even with pathological initial
data.

4. Equivalence Theorems

We begin with the classical Lax theorem.

THEOREM 4.1 (Lax). Let X be a Banach space (ie. X = X), and the method (2)
consistent. Then (2) is convergent if and only if it is stable.

We remark (Richtmyer & Morton, 1967) that the proof of the implication
stable = convergent is rather elementary and does not require the completeness of
X. On the other hand, the implication convergent = stable invokes the principle of
uniform boundedness, a deep result needing the completeness of X. Then it is fair to
say that in Lax’s theory, stability is necessary for convergence only because the latter
is demanded for every u, in X, ie. even for pathological initial data. We shall
address later the study of equivalence theorems that do not require the completeness
of X.

We now note that, upon using some functional analysis (Schaefer, 1971,
Chapter 3, Section 4), if a method is stable and convergent, then the limit (5) is
uniform for u, ranging in a compact K = X. We then have the following result,
which appears to be new.

THEOREM 4.2 Let X be a Banach space (ie. X = X) and the method (2) consistent.
Then (2) is convergent uniformly in compact sets if and only if it is stable.

Compact sets in functional spaces are rather elusive creatures. In particular, balls
are never compact. Thus Theorem 4.2, as it stands, is not too useful in practice.
However, (5) holds uniformly in compact sets if and only if the following property
holds: for each ¢, 0 <t < T, each t-admissible pair of sequences (n;), (h;), each u, in

X and each sequence u§) converging to u,,

lim ||C(h))"uf — E(t)u,|| = 0. 6)
j— o
Property (6) has been called L-convergence by Ansorge (1977). Whilst it is
equivalent to uniform convergence in compact sets (this equivalence is proved in the
Appendix), it has a richer numerical meaning. It demands that numerical solutions
approach the theoretical solutions even if the former start from perturbed initial
data. Clearly, a convergent method may fail to have interest if it were not
L-convergent.
We then rephrase Theorem 4.2 as follows.

THEOREM 4.2 Let X be a Banach space (i.e. X = X) and the method (2) consistent.
Then (2) is L-convergent if and only if it is stable.

This theorem is proved in Richtmyer & Morton (1967, ch. 7).
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We now turn to the question of whether the theorems above hold when X is not
complete. Lax’s theorem does not: a counter-example is provided in Thomee (1969,
Theorem 3.1). This means that if attention is restricted to suitably smooth initial
data one may have convergence without stability. In fact, the literature (Thomee,
1969; Richtmyer & Morton, 1967) contains several relaxations of the concept of
stability which still lead to convergence for smooth functions. Instances of
convergence without stability are sometimes regarded as deprived of practical
interest. Such a view is often backed by considering the effect of round-off errors.
However, we shall see next that convergence without stability implies convergence
without L-convergence. In fact, Theorems 4.2, 4.2' hold for incomplete X, as in the
following.

THEOREM 4.3 Let X be a normed space. Then for a consistent method, stability,
L-convergence, and uniform convergence in compact sets are equivalent.

The proof of this result is analogous to that of Theorem 4.2'. (See the Appendix.)
The equivalence between stability and L-convergence was first noted by Spijker
(1968). Rosinger (1980, 1982) has investigated the possibility of deriving equivalence
theorems without the assumption of completeness. Although his results hold even
for non-linear problems, it is useful to investigate their scope as applied to linear
situations, where his best theorem (Rosinger, 1982, ch. 3) reads as follows.

THEOREM 4.4 (Rosinger). Let X be a normed space and suppose that the method (2) is
consistent uniformly in compact sets (i.e. the limit (4) is uniform for u, in a compact
subset of Y). Then (2) is convergent uniformly in compact sets if and only if it is stable.

While the conclusions in Theorem 4.4 are the same as those in Theorem 4.3, the
hypotheses in Theorem 4.4 are much stronger than those in Theorem 4.3. In fact, we
prove in the Appendix that:

(1) Uniform consistency in compact sets implies stability. Therefore, Theorem 4.4
applying only to methods consistent uniformly in compact sets does not deserve the
title of “equivalence” theorem: one of its implications is tautological.

(ii) Uniform consistency in compact sets implies that (4) holds for every u, in the
completion X. Thus, none of the usual discretizations of PDEs can satisfy the
hypotheses of Theorem 4.4

An equivalence theorem similar to Theorem 4.3 has been given by Hass (Ansorge,
1978).

All the results quoted in this section can be extended to cover the case where the
theoretical solution u(t) and the numerical approximation u" lie in different spaces
(for instance, if u" is a grid function) (see Palencia & Sanz-Serna, 1983).
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Appendix: Some Proofs

(1) We first prove the equivalence between the usual definition of stability and
that given in Definition 3.1. Clearly, a Lax-stable method is stable in the sense of
Definition 3.1. If a method is not Lax-stable, there exist sequences n;, h; and u; with
|lu;l| < 1 such that n;h; < T and

dj = ”C(hj)"j“j” — 00"

Then the elements d; *u; together with the zero constitute a compact set for which
the bound in Definition 3.1 cannot hold.

(2) It is easy to prove that uniform convergence in compact sets implies
L-convergence since a convergent sequence together with its limit is a compact set.
The proof of the converse uses reductio ad absurdum.

(3) Turning now to Theorem 4.3, the implication stability = L-convergence is
proved as in Richtmyer & Morton (1967), Section 7.3. If the method is not stable,
then there exist sequences n;, hj, u; as in (1) above. Then d; *u; approaches zero and
one concludes that L-convergence cannot take place just as in Richtmyer & Morton
(1967, Section 7.3).

(4) If (4) holds wuniformly in compacts of Y, then the operators
S(h) = h~*(C(h)— E(h)) are convergent to zero uniformly in compacts of Y, and
therefore an equicontinuous family. Then S(h) — 0 uniformly in compact sets of X
(Schaefer, 1971, ch. 3, Section 4) and, in particular, (5) holds for every u, in X.
Furthermore, let C be a uniform bound for the norms ||[E(t)||, 0<t< T and B a
uniform bound for the norms ||S(h)||, 0 < h < h. We also introduce the notation

a,(h) = max {|C(h)¥||: k=0,1,...,n}.

Consideration of the identity

Jl

C(h)y" = E(nh) +:i: C(h*[C(h)— E(R)]E((n— 1 —k)h)

leads to
IC()"|| < C+na,(h)BhC
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which, in turn, implies (,(h) is monotonic with respect to n)
an(h) < C+ na,(h)BhC.
Thus, for n, h fulfilling the condition nh < 1/(2BC)
a.(h) < 2C,

or, in other words, the method is stable for 0 <t < 1 /2BC). The interval 0 <t < T
can be covered by a finite number of intervals of length 1/(2BC), and therefore the
method is stable. We note that the semigroup property E(t+s) = E(t)E(s) has been
used. This property follows easily from the assumption that (1) has a unique solution
for each u, in D(A).



