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Summary. A trajectory problem is an initial value problem dy/dt=f(y), y(0) 
= ~/where the interest lies in obtaining the curve traced by the solution (the 
trajectory), rather than in finding the actual correspondance between values 
of the parameter t and points on that curve. We prove the convergence of 
the Lambert-McLeod scheme for the numerical integration of trajectory 
problems. We also study the CELF method, an explicit procedure for the 
integration in time of semidiscretizations of PDEs which has some useful 
conservation properties. The proofs rely on the concept of restricted stabili- 
ty introduced by Stetter. In order to show the convergence of the methods, 
an idea of Strang is also employed, whereby the numerical solution is 
compared with a suitable perturbation of the theoretical solution, rather 
than with the theoretical solution itself. 

Subject Classifications Primary 65L05, Secondary 65M10, CR: G1.7. 

1. Introduction 

We consider the initial value problem 

Yt = f(y), O_<t_< T, y(O) =~/, (1.1) 

where y takes values in Ra. Following [8] we say that (1.1) is a trajectory 
problem if the interest lies in obtaining the curve traced by the solution y( .)  
(the trajectory), rather than in finding the actual correspondance between 
values of the parameter t and points on that curve. Trajectory problems arise 
in the computation of trajectories in mechanical problems, in the plotting of 
phase-planes of second order autonomous differential equations, etc... [8]. 

The Lambert-McLeod explicit method [-6] 

Y0, Yx given, (1.2) 

y , + z - y  = 2 [ ( y , + I - y , ) T F , + I ] F , + ,  n=O, 1 . . . .  

F.+ 1 = (1/[If(y.+ t)II) f(Yn+ 1), 
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was specifically introduced for the numerical integration of trajectory problems 
and possesses some remarkable properties, which will now be outlined. (In this 
paper [1 - n  denotes the Euclidean norm in ]R~.) 

i) Equispacing: Ily,+ 1 - y ,  ll = ][Yx -y0ll,  n=O, 1 . . . .  

This was first noted by Laurie [7]. The proof is elementary. Observe that no 
step-length appears explicitly in the scheme (1.2). The equispacing property 
entails that the method carries implicitly a 'step-length', namely the Euclidean 
distance between any two consecutively computed points. The existence of this 
'hidden' step-length enables us to derive a convergence result for the Lambert- 
McLeod method: Under suitable hypotheses, we prove in Sect. 3 that if we 
denote by h the length I]Yl-Yo[[ then I]Y,-Y,I[ =O(h2), where Y, is the point on 
the trajectory whose distance from g = y(0) along the curve y( . )  equals nh. 

ii) Circular exactness: Lambert and McLeod [6] proved that if the trajec- 
tory of (1.1) is a circle in N d and Yo, Yl lie on it, then all the computed points 
Y,+2, n=0,  1 .. . .  also lie on the trajectory. More generally it is shown in [6], 
[8] how, at least in principle, one can construct schemes which are exact 
whenever the trajectory belongs to any given family of curves. 

In i) and ii) we have assumed that no round-off error is present. We refer to 
[8] for additional material on trajectory problems. 

The formula (1.2) can also be applied to the integration of conventional 
initial value problems, i.e. problems where the correspondance t~y( t )  is of 
interest. In order to recover this correspondance, which is not given by (1.2), an 
additional formula must be employed to generate a sequence t,, n=0 ,  1 .... in 
such a way that y, approximates y(t,). An instance is provided by the method 

Y,+2 - y ,  = 2z.+ 1 f(y,+ 1), (1.3 a) 

%+1 =(Y,+ 1 _ y,)Tf(y,+ 1)/ltf(Y,+ 1)112 (1.3b) 

tn+ 2 --t =2Z.+l, (1.3c) 

which has been suggested and tested numerically in [10], [11]. Clearly (1.3a), 
(1.3b) are equivalent to the Lambert-McLeod formula. The scheme (1.3) can be 
viewed as a variable step leap-frog (mid-point) method, where the choice of 
step-length z,+ I is determined by the previous computed points Y,+I, Y, ac- 
cording to (1.3b). Hence the name CELF (circularly exact leap-frog) method 
employed to refer to (1.3). Note that in (1.3b) Llf[I-2 f is the so-called Samelson 
inverse of f [15]. Samelson inverses have been used by Wambeck [15] in his 
rational Runge-Kutta methods. (More recent references to these methods can 
be seen in [1].) Of course the Lambert-McLeod formula can be regarded as a 
rational two-step method. 

A useful property of the CELF method will now be described. Assume that 
f satisfies 

vTf(v) = O, VvE~ a" (1.4) 

leading to the first integral [[y(t)n =constant.  The property (1.4) is often found 
[10] in situations where the system (1.1) is a semidiscretization of an evolu- 
tionary PDE which conserves the L2-norm. (Examples include Galerkin and 
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finite-difference semidiscretizations of many nonlinear wave systems.) When 
(1.4) holds, the explicit CELF scheme possesses the conservation property 
Iby,+zll---Ily, ll, n=0,1  .. . .  a potentially useful feature ensuring that the com- 
puted points will not blow up, as it is sometimes the case if conventional 
explicit methods (such as the standard leap-frog) are employed [9], [10]. An 
account of the benefits to be gained by using schemes with conservation 
properties is given by Morton in [9]. Recently, Dekker an Verwer [2] have 
pursued the idea behind the CELF method and constructed rational explicit 
Runge-Kutta methods with conservation properties. We also mention that the 
CELF method can be modified [11] in order to cater for conservation laws 
more general than I[y(t)]l = constant. 

We prove in Sect. 4 that the CELF method is convergent of the second 
order. (The proof does not require that (1.4) holds.) It should be pointed out 
that our analysis is complicated by the fact that the Lambert-McLeod formula 
is not stable (in the sense of [13, Chapter 1]). In order to see this, assume that 
(1.1) is one-dimensional (d=l) .  Then (1.2) reads simply y ,+z=2y ,+ l -y , ,  an 
unstable recursion. Note however that in the absence of round-off the points y, 
generated by the recursion are identical to the 'exact'  points Y,=nh, in agree- 
ment with our convergence claim. 

It turns out that the appropriate stability concept associated with (1.2) is 
similar to that of restricted stability introduced by Stetter [12] (and inde- 
pendently by Kuo Pen-Yu, see the references in [3]) (cf. also [4], [13, p. 79]). 
We recall that a restricted stable scheme is convergent provided that its order 
of consistency is higher than the so-called stability index. (The convergence is 
still preserved in the absence of round-off, provided that the latter is suitably 
small.) Unfortunately the method (1.2) possesses an order of consistency lower 
than its stability index, and in order to prove convergence one must resort to 
the construction of an asymptotic expansion of the global error, thus follow- 
ing an idea of Strang [4]. This point is explained in detail later. 

2. A Stability Result 

We begin by presenting the hypotheses on the IVP (1.1) that are required for 
our analysis to hold. We assume 

(H 1) The function f takes values in ~.~ and is defined in an open set 
[20 c ~d. 

(H2) The problem (1.1) has a unique solution y(.). Furthermore this so- 
lution belongs to C4([0, T]). 

(H3) An open set Y2 and a positive constant # can be found so that: i) 
{y(t): t~[0, T]} c O c ( 2  o. ii) Ilf(v)H > #  if v~O. iii) f has continuous, bounded first 
and second derivatives in O. 

Note that condition ii) in (H 3) is essentially equivalent to the requirement 
that constant (equilibrium) solutions of the system in (1.1) should not be 
considered. Observe in this connection the denominator in (1.2). 

In the Lambert-McLeod method, the function f appears only in the com- 
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bination [Ifll-lf. This suggests the introduct ion of the function F: f 2 ~ N  d 
defined by F =  fill- i f  and of the initial value problem 

dY 
d-~-= F(Y), O_-<s<7, Y(0)=~/, (2.1) 

where 7 is the length of the curve in ~,d defined by y(t), 0 < t <  T. Note  that 
I lF l l -1  and therefore solutions of (2.1) are parameterized by arclength. The 
following properties are consequences of (H 1)-(H 3). 

(P1) F has continuous, bounded first and second derivatives in I2. This fol- 
lows easily from (H3) ii)-iii). In particular F is Lipschitz continuous in f2. 

(P2) The problem (2.1) has a unique solution Y(.) ;  furthermore 
Y(.)eC4([0,~]) .  In fact if y( . )  is the unique solution to (1.1), then the function 
s(t) defined by s(0)=0,  ds /d t= [Idy(t)/dtll is a C4-diffeomorphism (i.e. a C 4 
function with C 4 inverse) of [0, T]  onto [0,7]. Upon  denoting by t= t ( s )  the 
inverse diffeomorphism and introducing the composi t ion Y(s)=y(t(s))  we can 
write 

dY dt dy 1 
ds - d s  dt - I[f(y(t(s)))LI f(y(t(s))= F(Y(s)), 

so that Y(s), 0 < s < 7  is a solution of (2.1). We emphasize that Y(s), 0 < s < 7  is 
the parameter izat ion in terms of arclength of the curve described by y(t), 
0_< t < T (i.e. the sought trajectory). 

(P3) The identity 

IIF(v)ll = 1, v~f2 (2.2) 

implies, after differentiation, 

(F(v) ) r J (v )=0  r, vef2 (2.3) 

(Y(s))TJ(Y(s)) Y(s) = (~'(s)) T Y(s) -- 0, 0 _< s < 7, (2.4) 

In this paper a dot  represents d/ds and J(v) denotes the Jacobian matrix of F 
evaluated at v. In order  to shorten the notation, we set, if a, b, e are in f2 

~P(a,  b,  e )  = a - c - 2 [ ( b  - e )  T F ( b ) ]  F ( b ) ,  

so that the formula (1.2) now reads ~(Yn+2, Yn+l, Yn) = 0. 
We are now in a posit ion to investigate the stability properties of the 

scheme (1.2). Let  h be a parameter  taking values in (0, ho) and assume that for 
each value of h, uh, v h, n=O, 1, ..., [7/h] are sequences in f2. Set, for n 
= O, 1 . . . . .  [7~hi - 2 

h h h h (2.5a) hPn+2 --- tJ~(lln+ 2, Hn+ I ,  an), 

h _ h h Vh). (2.5b) h~ Vn+ 1, 

Our aim is to bound  h h " ' U.--V., n=O, 1 . . . . .  [7/h] in terms of the 'perturbations 
h h h h h h pn, On, Ho--Vo~ I11 - -V 1. 
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Theorem 1. Let (H1)-(H3)  hold. Assume that for h~(O, ho) the sequences uh., Vh., n 
=0, 1 . . . . .  [7/hi are such that 

i) uh., rhea2, 0 < h < ho, n = 0, 1 . . . . .  [?/h]. 
ii) I f  p.h+z,a.h+2 are defined in (2.5), then there exist positive constants 

C1, C2, independent of h, such that, for n=0 ,  1 . . . . .  [7~hi-2  

]lp2+zl[<Clh 3, Ilah+zll<Czh 3. 

iii) There exists a positive constant C3, independent of h such that 

Ilu~ - v~ I[ + Itu~ - v  h II f[ < c3  h3 

iv) There exist positive constants C4, C5, independent of h such that, for 
0 < h  <ho,  n=0 ,  1 . . . .  , [7/h] - 1 

I llu".+ ~ -u211 - h i  __< C4h 4, 

I[[v,h+ 1 -v.h]t - h i  < Csh". 

v) There exists a positive constant C6, independent of h, such that, for 
0 < h < h o ,  n = 0 , 1  . . . . .  [ y / h ] - I  

l ib- l(uh.+ 1 -uh.)  - f(uh.+ 011 < C6h. 

Then there exist positive constants CT, C 8 depending only on Ci, i= 1, ...,6, on y 
and on the Lipschitz constant L of F, such that for 0 < h < C7, n = 0, 1 . . . . .  [7/hi 

h h [lu.-v.II < C8 h3. (2.6) 

Remarks. The hypothesis i) ensures that F(uh), F(v, h) are defined. Hypotheses ii) 
and iii) are basically equivalent to the requirement that the perturbat ions 
pn, an ,h  h Uho__u U h --u should be small for the stability analysis to hold. In fact, 
in the framework of [13, Chapt. 1], they impose an  O(h 3) stability threshold. In 
this sense the method  is 3-restricted stable at uh,, [12]. The hypothesis iv) is 
related to the equispacing property considered in the introduction. It basically 

h refer to the same 'steplength'  h. Finally note that v) is means that uh,,v, 
satisfied if u, h = Y(nh) (the ' theoretical  solution'). 

Proof. Set e , = u . - v , ,  n = 0 , 1  . . . . .  [y/h]. (The superscript h is dropped for sim- 
plicity.) Upon  substracting in (2.5) and rearranging, we can write 

e.+2=e.+ hP.+ z - h a . +  2 

+ 2((u.+ 1 - u . )  - ( v . +  1 - v.))r F(u.+ 1) F(u.+ 1) 

+ 2(v.+ 1 -v . ) r (F (u .+  1) - F(v.+ 1)) F(u.+ a) 

+ 2(v.+ 1 - v . ) r F ( v . +  0(F(u.+ 1) - F ( v . +  1)), 

whence, according to (2.2), hypotheses ii) and iv) and the Schwartz inequality 

l ie.+ ell < lie.l[ 4- Clh4+ Czh 4 

+ 2 [((Un + 1 --U.)--(V.+ 1 -- V.))TF(u. + 1)1 
+ 4 ( h +  Csh4)Lfle.+lll. (2.7) 
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We now bound the inner product  in (2.7) as follows 

((n.+ 1 - u . )  - ( v . +  1 - v.))rF(n.+ 0 = (e.+ 1 - e . ) rF(u.+ 1) 

= h -  a(e.+ 1 - e.)T(u. + 1 --u.) 

- ( e . +  1 - e.)T( h -  l(u.+ 1 - n . )  - F(u,,+ 0)- 

The second inner product  in the righ-hand side is clearly less than C6h(llen+ t I] 
+ IIe.ll). Turning now to the first inner product  we square both sides of the 
identity 

v.+ 1 --v,, = (u.+ 1 - u . )  - ( e . +  1 - e . )  

to obtain 

Therefore 

IIv.+ ~ - v . [ l  2 = l iu.+ 1 - u . i ]  2 _ 2 ( u . +  x _ u . )T(e .+  1 - - e . )  

+ I{e.+ x --e.{I 2 

2(u.+ 1 - u.)~(e. + 1 - e . ) =  lie.+ a - e .  II 2 

+ ( l lu .+ ~ - u . l l  - I I v . +  1 - v . l l ) ( l l u . +  1 -u.RI + IIv.+ ~ - v. l l)  
and 

21(n.+ ~ - n . ) T ( e . +  t - e . ) l  < ( l i e .+  ~ II + lie.N) 2 

+ (C4 + C 5) h4(2h + C4h4+ C 5 h4). 

Upon using these bounds in (2.7) the inequality 

E.+ 1 <=E. + ChE.  + C h -  1 E2 + Ch 4 

is obtained, where E .=l te .+ l l l+ l te . l [  and C is a positive constant which de- 
pends on C i, i =  1,2,4, 5, 6 and on L. The result is now a consequence of the 
generalized discrete Gronwal l  Lemma [5, lemma].  

3. Convergence of the Lambert-McLeod Method 

In order  to prove the convergence of the Lamber t -McLeod  method  one would 
like to apply Theorem i to the sequences uh=y(nh)  (the ' theoretical  solution'), 
v.h=y.h (the computed solution), with h:=IlYl-Y0H (the n-independent Eu- 
clidean distance between consecutive computed points, cf. w 1, i)). Unfortunately, 
uh=y(nh)  does not  satisfy the hypotheses in Theorem 1. On the one hand, a 
Taylor  expansion reveals that  the truncation error 

ph+ 2: = h-1  t~(y((n + 2) h), Y((n + 1) h), Y(nh)) 

is only O(h 2) and therefore hypothesis ii), requiring O(h 3) is not  fulfilled (i.e. the 
order  of  consistency is smaller than the index of generalized stability [3]). Also 

IIY((n + 1) h) - Y(nh)II = h + O(h 3) 

so that iv) is vulnerated. 
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Strang [14] observed that difficulties of this sort could be circumvented by 
comparing the numerical solution not with the theoretical solution, but rather 
with a sequence which is close to the theoretical solution and satifies the 
discrete equations up to perturbation terms of order O(hJ), with j large enough 
for those terms to come within the stability threshold. This technique yields an 
asymptotic expansion of the global error of the method. 

We shall apply Theorem 1 to the sequence 

uh.: = Y(n h) + h z W(n h), (3.1) 

h verifies the where W(. )e C2([0, 7]) must be chosen in such a way that u, 
hypotheses of the theorem. 

Lemma. a) Let W(. ) be an IRa-valued function, twice continuously differentiable 
in [0, y]. Define u~ according to (3.1), n=0,1 . . . . .  [y/h]. Then, there exists h0>0, 
such that for 0 < h < h o ,  uh,~f2 and v) in Theorem 1 holds. 

b) With the notations of a), uh,, 0 < h < h o ,  n=0,1 . . . . .  [7/hi, satifies the 
requirement in ii) Theorem 1, if and only if W(.) satisfies 

'de - (W r ~-) ~- = j (y )  W - (1/6) Y + (1/6)(~r y) y. (3.2) 

c) With the notations as above, the requirement in iv) Theorem 1 is satisfied 
if and only if 

WrY = -(l/S)I1 ~2 I1: -(1/6) y r S .  (3.3) 

d) The initial value problem 

W(0)=0, 

W=J(Y)W-(1/6)g]-(1/8)HYIIZY,  0_<s<7, (3.4) 

has a unique solution. This solution is C 2 and satisifies (3.2) and (3.3). 
h Proof a) is trivial and b), c) are obtained upon Taylor expanding ~(u,h+ z, u,+ 1, 

. ~ ) ,  h NU.+x-Uh, l[ 2, respectively. (Properties (P1)-(P3) in the previous section are 
essential when carrying out the expansions.) To prove d), we note that (3.4) is a 
linear IVP whose matrix J(Y(s)) and forcing term are continuously differenti- 
able, after (P1), (P2). Therefore (3.4) has a unique solution with C 2 continuity. 
tn order to see that (3.4) implies (3.3), it is enough to take the inner product of 
(3.4) with Y and use (2.4). Finally, substraction from (3.4) of the product of (3.3) 
with ~' yields the equality (3.2). 

We are now ready to prove the convergence of (1.2). In order to cater for 
the presence of round-off errors, we assume that the computed solution is 
obtained as follows 

h h Yo,Yl given with I[y~-y~l[ =h  (3.5) 
_ ~ h y~.), 

~.+ 2 -  ~(Y,+ 2, Yn+ 1, 

where n,+zh is the round-off error perpetrated in the computation of y,+h 2. It is 
assumed that 
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h I (H4) maxtls,+2h=O(h4), n=0 ,1  . . . . .  [ y / h i - 2 ,  and Ily~+l--yh, I]=h+O(h4), n 
tt 

- - 0 ,  1 . . . . .  [ y / h i  - 1. 

(Recall from the introduction that in the absence of round-off Ilyhn+l--yhnl ] 
= tlY~-y~H. It is easy to prove that (H4) is in particular verified if max il~h,+2]] 

n 

=O(h5). Of course a hypothesis like (H4) cannot hold in practice if a given 
computing tool is used for all values of h: it demands a sequence of incresingly 
accurate computing machines.) 

Theorem2. Let (H1)-(H4) hold and assume that the points yh n a r e  computed 
according to (3.5) with Ny~-Y(0)II-O(h3), Nyh-y(h)IP =O(h3), then for h small 
yh is well defined (i.e. yh,6t?=dom(F)) for n=0,  1 . . . . .  [y/h] and 

max LlYh _ Y(nh) - h 2 W(nh) H = O(h3), (3.6) 
n 

where W(.) is the solution of (3.4). 

Proof I f  for h small, y~e~ for n<[y/h], then, setting v,--y,,h-- h and taking u.h 
from (3.1), all the hypotheses in Theorem 1 are fulfilled and therefore 

Ily h , -V(nh)-h2W(nh)r l  N Ch a 

for 0 < h < h  o, n--0, 1 . . . . .  [y/h], with h o, C suitable positive constants. Now 
reduce h if necessary to ensure that h h Y0, Yl are both in ~ and that Ch a is less 
than the distance from the complement of f2 to the compact set {Y(s)-h2W(s): 
O<__s<=y, O<__h<=ho/2 }. For such values of h, induction with respect to n shows, 
in a standard way, that yhsf2. The proof is now complete. 

Remark. It was noted in the introduction that for one-dimensional problems 
( d = l )  the scheme (1.2) is identical with the unstable recursion y , + z = 2 y , + t  
- y , .  This shows that (H4) cannot be weakened if (3.6) is to hold. It could be 

concluded at first that the Lamber t -McLeod method behaves badly with regard 
to round-off. However the following consideration should be taken into ac- 
count. Let Y.,Y.+x,Y.+2 satisfy (1.2) and suppose that Y.,Y,+I are perturbed 
and become y, + g,, y. + 1 + ~, + 1 with ~,, ~, + 1 orthogonal to f(y, + 1), i.e. approxi- 
mately orthogonal to the trajectory; then Y,+2 becomes, according to (1.2) Y,+2 
+g. .  Thus errors orthogonal to the trajectory propagate in a stable manner, 
and, by definition, it is only those errors we are interested in when integrating 
a trajectory problem. Round-off may cause the computed points to glide 
parallel to the trajectory, without affecting seriously the distance of those 
points to the trajectory. 

A procedure to generate the missing starting point Yl is now presented. We 
consider a standard, second order one-step method with step size k 

z,+ 1 = z, + k~(z, ,  z,+ 1, k; g) (3.7) 

for the discretization of systems z ' =  g(z). Then, ignoring for simplicity round- 
off errors, we have 
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Theorem 3. Assume that (H1)-(H3)  hold, y o = q ,  Yx = t / + k ~ ( t / ,  Yl, k; F), with 
as above. Then for k small enough the recursion (1.2) is well defined (i.e. y,e(2 
=dora(F))  for n = 0 ,  1 . . . . .  [7/k] and 

max I[ Y, - Y(n k)]l = O(k2)  �9 
n 

Proof. It  is enough to observe that, upon setting h. '= JlYl -Yo11, we can write 

h =  [ly, -V(k)l[ + II V(k) -  Y(0)ll + IlY0 -Y(0)II : k"}- O(k3) 

and apply T h e o r e m  2. Note  that  (3.7) must  be of the second order  in order  to 
satisfy the condit ion ]IY~-Y(h)l[ : O ( h  3) in the hypotheses of Theorem 2. 

Remark. The trapezoidal rule is a good  canditate for starting procedure,  as it 
preserves the circular exactness [8]. Techniques similar to the ones in this 
paragraph can be employed to demonstra te  that  the starting me thod  can be 
taken to be Euler's rule without  damaging the order  of  convergence. 

4. The CELF Method 

A convergence result for the C E L F  scheme will now be presented. Round-of f  
errors are not considered here, as their p ropaga t ion  has been discussed and 
tested in [10]. 

Theorem 4. Assume that (H1)- (H3)  hold. I f  Yo, Yl are as in Theorem 3, t o = 0  , t 1 
=kllf(q)[1-1, then for k small enough the recurrence (1.3) is well defined (i.e. 
y,e(2 = dom(F)) for n = 0, 1 . . . . .  [7/k] and 

max [[y, -y(t ,) l l  = O(kZ). (4.1) 
n 

Proof F r o m  Theo rem 3 we know that  I ly,-Y(nk)l l  =O(kZ). Therefore we must  
establish an est imate IlY(nk)-y(t,)ll=O(k2). With the nota t ion  of Section 2, 
one has Y(nk)=  y(t(nk)) and thus it is enough to prove I t , -  t(nk)l = O(kZ). When 
n = 0, 1 we can write 

t o - t(0) = 0 

t a - t ( k )  = k II f(,l)II - x _ (k  II f ( ~ ) I I -  1 + O ( k 2 ) )  = O ( k 2 ) ,  

because t( .)  satisfies 

t(O) =0, dt/ds= IIf(Y(s))l1-1 (4.2) 

Set h:= [lYo-Yl [I. As in the proof  of  Theorem 3, h=k+O(k3) ,  while according 
to Theorem 2, y,=Y(nh)+h2W(nh)+O(hS) .  This implies, after Taylor  expan- 
sion, that  if ~.+~ is given by (1.3b), then z,+~ =h IIf(Y(nh))ll -~ +O(h3). Therefore 
(1.3 c) reads 

t. + 2 - t. = 2 h II f(Y(n h)[I - 1 + O (h a), 
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i.e. the  va lues  t ,  arise f rom the m i d p o i n t  rule app l i ed  to the  q u a d r a t u r e  
p r o b l e m  (4.2), except  for O(h z) p e r t u r b a t i o n s  in  the in tegrand .  Acco rd ing ly  t, 
= t(nh) + O(h 2) = t(nk) + O(k2), as required.  

Remark. N o t e  tha t  the C E L F  m e t h o d  p roduces  a n  equ i spac ing  IlYn+l-Ynll 
= c o n s t a n t ,  n = 0 , 1 , . . ,  of  the d e p e n d i n g  va r i ab le  a n d  adjus ts  the inc rements  
tn§ 1 - t ,  of  the i n d e p e n d e n t  var iable .  This  b e h a v i o u r  shou ld  be c o m p a r e d  with 
tha t  of  s t a n d a r d  O D E  solvers, which  in fixed step i m p l e m e n t a t i o n s  entai l  
c o n s t a n t  i n c r e m e n t s  t ,  + ~ - t n a n d  va r i ab le  d is tances  flY, + 1 - Y, It. 

Aga in ,  it can  be  s h o w n  tha t  Euler's rule can  be used to genera te  Yl wi thou t  
i m p a i r i n g  the  o rder  of  convergence .  

Final remark. Prof. M.N.  Spi jker  has recent ly  let us k n o w  tha t  he had  devel- 
oped  cons ide rab ly  [16]  the  idea  of S t r ang  used in  this paper .  
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