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A General Equivalence Theorem in the Theory

of Discretization Methods

By J. M. Sanz-Serna and C. Palencia

Abstract. The Lax-Richtmyer theorem is extended to work in the framework of Stetter's

theory of discretizations. The new result applies to both initial and boundary value problems

discretized by finite elements, finite differences, etc. Several examples are given, together with

a comparison with other available equivalence theorems. The proof relies on a generalized

Banach-Steinhaus theorem.

1. Introduction. In this paper we extend the classical Lax-Richtmyer equivalence

theorem [6], so as to cover in a simple way not only initial value problems, but also

boundary value problems, mixed problems, etc. Our theory relies on a generalized

Banach-Steinhaus theorem [9] and works (essentially) in the framework of Stetter

[13]. This set-up employs restriction operators to compare the true and discretized

solutions, as distinct to those theories which use prolongation operators. (One of the

oldest prolongation theories is probably that of Aubin, summarized in [16].) Our

main result is given in Section 2. Sections 3 and 4 are devoted to examples and

counterexamples. The former are meant to show the scope of our result and include

the Galerkin method for boundary value elliptic problems and semidiscrete and fully

discrete schemes for initial value problems. The counterexamples prove that the

present hypotheses cannot be dispensed with. In particular, we show that a method

which is consistent and convergent for all data in a Banach space may be unstable.

The final section contains a comparison with other available equivalence theorems.

2. An Equivalence Theorem.

2.1. The True Problem. Let X (the space of solutions) and Y (the space of data) be

normed spaces, both real or both complex. We consider a linear operator A with

domain D c X and range R c Y. The problems to be solved are of the form

(2.1) Au=f,       feY.

Here A is not assumed to be bounded, so that unbounded differential operators are

included. We suppose that problem (2.1) is well-posed in the following sense: The

range R of A is dense in Y, and there exists a bounded linear operator E e B(Y, X)

such that the composition EA is the identity in D. Note that this implies that, for

f e R, Eq. (2.1) has the unique solution u = Ef and that solutions depend continu-

ously on the data. When fe Y, f £ R, Eq. (2.1) has no solution, and Ef can be
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144 J. M. SANZ-SERNA AND C. PALENCIA

regarded as a generalized solution, since E is the unique bounded extension to Y of

A'1: R -* D (see [8] for a discussion).

2.2 The Approximate Problems. Let H be a set of positive numbers such that 0 is

the unique limit point of H. For each A e H, let Xh, Yh be normed spaces and

consider the approximate or discretized problem

(2.2) Ahuh=fh,      fheYh,

where Ah is a linear operator Ah: Xh -* Yh. We assume that for each A e H. problem

(2.2) is well-posed in the sense of the previous paragraph, with solution operator

Eh = Ahl. In practice Xh, Yh are subspaces of X, Y or spaces of grid functions, etc.

(see [9] for a discussion of the various possibilities). In order to relate the true

solutions u and data/, which lie in X, Y, with the approximate solutions uh and data

fh, which lie in Xh, Yh, we introduce restriction operators rh, sh as follows [9]. For

each h e H, rh (resp. sh) is a bounded, linear operator from X (resp. Y) into Xh

(resp. Yh). We assume that the operator norms can be bounded

(2-3) IkNQ,     lkl|<c2,

with C,, C2 independent of A. We shall compare the true solution u = £/with the

discrete solution uh = Ehshf corresponding to the discretized datum/. This compari-

son is achieved by measuring the distance in Xh between uh and the restriction rhu.

(Some authors prefer to measure in X the distance between u and some sort of

prolongation of uh [9].)

The family (Xh, Yh, Ah, rh, sh) defines a method for the solution of (2.1).

2.3. Convergence, Stability, Consistency. Let/be a given element in Y. We say that

the method ( Xh, Yh, Ah, rh, sh) is convergent for the problem (2.1) if

(2-4) \im\\rhEf - EhsJ\\Xi¡ = 0.
h

We say that the method is convergent if it is convergent for each problem (2.1) as/

ranges in Y.

Let « be a given element in D. We say that the method is consistent at u if

(2.5) Xim\Ahrhu-shAu\Yh = 0.
h

A method is consistent if it is consistent at each « in a set D0 such that the image

A(D0) is dense in Y. (We recall that it is not appropriate to demand consistency at

each u in the domain of A ; cf. [8].)

Finally, the method is stable if a constant K exists such that

(2-6) l|£jß<A,,.n, < K.

Note that stability depends only on Xh, Yh, Ah and does not relate to (2.1) or to rh,

The quantities within the norms in (2.4), (2.5) are, respectively, the global and

local discretization errors.
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2.4. The Equivalence Theorem.

Theorem 1. Let X, Y, A, Xh, Yh, Ah, rh, sh be as above.

(i) If the method is consistent and stable, then it is convergent.

(ii) // the method is convergent, then it is stable provided that Y is a Banach space

and that the following condition holds:

(P) There exists a constant L such that, for each A G H and each g g Yh with

||g|| < 1, there exists an element f G Y such that ||/ || < L and shf = g.

Proof, (i) Let / g A(D0). The convergence for the problem Au = / follows upon

using (2.5) in the bound

\hEf- Ehshf\\ = \\Eh(Ahrhu- shAu)\\^ K\\Ahrhu - shAu\\.

If/g Y, /Í A(D0), we can choose a sequence (/,), with/, g A(D0), lim/, =/.

Then

\\r„Ef - Ehshf\\ < \\rhEf - rhEf„\\ + \\rhEf„ - Ehshfn\\ + \\Ehshfn - Ehshf\\.

Since E, Eh, rh, sh can be bounded independently of A, the first and third terms of

the right-hand side can be made arbitrarily small, uniformly in A, by taking n large,

while the second term tends to zero with A.

(ii) Let / G Y. The norms \\rhEf || are bounded as A -» 0, because (2.3) holds.

From (2.4) we conclude that the norms \\Ehshf || are also bounded, since H has no

limit points other than 0. The generalized Banach-Steinhaus lemma of [9] then shows

that there exists a constant Kx such that ||£A5A|| < Kx. If g g Yh, with ||g|| < 1, we

can write (cf. condition (P))

\\Ehg\\ = \\Ehshß^KxL,

whence ||£A|| < KXL.

Remark 2.1. It has been shown in [9] that condition (P) holds in most practical

applications.

Remark 2.2. We emphasize that while implication (i) has been proved by elemen-

tary means, implication (ii) requires the use of a deep result from functional analysis.

In this regard we note that while the convergence or otherwise of a method depends

on the norms in Xh, but not on the norms in Yh, the concept of stability depends on

the norms of Xh and Yh. Therefore, one may argue that by changing the norms in Yh

one could turn a stable method into an unstable one without altering the conver-

gence. From this line of thought one may be led to believe that implication (ii)

cannot hold in general (cf. [13, p. 14]). This paradox is explained as follows. The

equiboundedness of sh together with property (P) establish a link between the norms

in Yh and the norm in Y. (If a. finer norm were introduced in Yh, the equibounded-

ness would be likely to disappear. The introduction of a coarser norm in Yh would

threaten the validity of (P).) Thus, in our framework the norms in Yh cannot be

significantly altered without altering the norm in Y. But, as a consequence of the

closed graph theorem, the norm of the Banach space Y cannot be weakened or

strengthened.

Remark 2.3. The considerations above suggest that the completeness of Y and

condition (P) are essential if (ii) is to hold. The necessity of these conditions is shown

in Section 4 by means of counterexamples.
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Remark 2.4. It is obvious from the above proof that (P) can be relaxed to read

(P') There exists a constant L and subspaces Sh c Yh such that, for A g //,

suo{\\Ehg\\:g g S„, ||gN 1} = sup{||£Ag||: g e Yh, \\g\\ < l},

and to each g g Sh, with ||g|| < 1, there corresponds an element / g Y, with

\\f\\^L,shf=g.
In other words, it suffices to check (P) for g ranging in a subspace Sh such that Eh

"attains its norm" in Sh.

Remark 2.5. The hypotheses that H has no limit point other than 0 is not essential.

The theorem holds for general H such that inf H = 0, provided that ||£J| is bounded

for A bounded away from zero. This supplementary condition is invariably verified

in the applications.

3. Examples. In this section we present four examples of applications of the

previous theory. These examples show the way to further generality.

3.1. The Classical Lax-Richtmyer Theory [6], We considered a well-posed Cauchy

problem [10, p. 39]

(3.1) du/dt = s4u,   0 < t < T,       u(0) = w0,

where j/ is the generator of a strongly continuous semigroup in a Banach space 98.

This problem is cast in the form of Section 2.1 by choosing X to be the space of

continuous mappings from [0, T] into 3$ with the supremum norm, Y = S8, and A

the operator

«(•) -* Au(-) = t/(0),

with domain

D(A) = { u( ■ ) g X\ du/dt exists, du/dt = sSu, 0 < t < T}.

A difference scheme is a recursion [6]

(3.2) w„+1 = C(A)«„,       n = 0,1,2,. ..,[T/h]-l,

where A ranges in a set H as in Section 2.2, C( A ) is a bounded linear operator in 98,

and un is meant to approximate u(nh). This is accommodated in the present

formalism as follows. We define Xh to be the product of N + 1 = [T/h] + 1 copies

of the space OS endowed with the supremum norm. The restriction rh is the natural

point restriction

rhu(-)=[u(0),u(h),...,u(Nh)].

The space Yh is taken as the product of N + 1 copies of Se with norm

lll7o,/i,...,/,v]||= LUI
i = 0

The restriction sh is defined as

shu = [«,0,0,...,0],        u g SS.
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It is clear that (2.3) holds with C,

(3.3)

/
-C

C2 = 1. Now the recursion (3.2) can be written

l-i

/
-C

o

0

-c  /

h"o ~ Ahshu

which is of the required form. (We have omitted the dependence of C on A.)

We shall show that Theorem 1, as applied to this choice of X, Y, A, Xh, Yh, Ah, rh,

sh, is precisely the Lax-Richtmyer equivalence theorem. In fact, the matrix operator

A, has an inverse

/

C

c2

CN    C

I

c
0

CN-

with norm sup(||C"||, 0 < n < N}. (We recall that the norm of a matrix operator

from Ü into L00 is given by the supremum of the norms of its entries.) Therefore our

definition of stability reduces in this case to

(3.4) sup{||C(A)"||:0< «A< T,Ag//} < oo,

i.e., the usual definition of Lax stability. Furthermore, Eh attains its norm on sh98, so

that condition (P') holds with Sh = sh98. Finally, it is obvious that our definitions of

convergence and consistency are essentially those of the Lax-Richtmyer theory [10].

(Actually, the present requirement of consistency is less demanding than that of

[10].)
Remark. In order to follow more closely the conventions of [13, p. 6], we may

divide by A each row of Ah except the first, in order to write the difference equations

as approximations to the differential problem (i.e., Euler's method may be written as

(«,,+1 - un)/h = Aun, rather than un+x = un + hAu„). Simultaneously one must

change the norm in Yh into the normalized form ||/0|| + A£*L, ||/,||. We emphasize

that these changes are merely a matter of notation. See [13, p. 75] on the practical

advisability of choosing the norm in Xh to be of supremum type and that of Yh to be

of L1 type.

3.2. The L2-Inhomogeneous Case [7]. We now consider the inhomogeneous prob-

lem

du/dt =s/u+ /(/),    0 < t < T,       u(0) *0>

where jo* is as in the previous paragraph and /g L2([0, T], 98). We define Y

S8 X L2([0, T], SS), X = #([0, T], S8), and A the operator

u(-)^Au(-) = (w(0), du/dt -rfu)

with domain

D(A)= {«g X\ du/dt exists, du/dt-j^u g L2([0,T], S8)}.
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The problem is well-posed with solution operator

E(u0,f)(t) = S(t)u0 + [' S(t - s)f(s) ds,

where S is the semigroup generated by sé'. Following Mountain [7], we consider the

method

«„ + 1 = C(A)«„ + A/„       fn = h-1f"+l)hf(t)dt
Jnh

where C( A ) is as before. Note that averages must be used for /, since point values

are meaningless for L2-functions. This is cast in the form (2.2) by choosing Xh, Yh,

Ah,rh as before but changing sh into

s„(v,f) = [v,hf0,hfx,...,hfN_x].

It is readily shown that the sn are uniformly bounded. The condition of stability is

still given by (3.4), since Xh, Yh, Ah have not been altered. Thus, the convergence of

those methods which are stable and consistent follows from Theorem 1 (i). Con-

versely, a method which converges for all data in Y is stable, since it was shown

before that stability follows from the weaker requirement of convergence for

problems having/ = 0. Also note that L2 may be replaced by any Lp, 1 < p < oo,

or by the space of continuous functions, thus generalizing the results of [7]. When

Y = 98 X ^([0, T], S8), one can use point values/, = f(nh) rather than averages.

3.3. A Generalized Lax-Richtmyer Theory [9]. In the Lax-Richtmyer theory the true

solution u(nh) and its approximation un are supposed to lie in the same space 98,

while in practical applications the former is a function of the space variables and «„

is only a grid function. In [9] a simple proof was given of the validity of the Lax

equivalence theorem even if u(nh), «„ are allowed to lie in different spaces. It is easy

to show that this generalization of the Lax theorem is also a particular case of our

Theorem 1.

3.4. Elliptic Boundary Value Problems. We consider a homogeneous Dirichlet

problem [3] in a bounded domain with smooth boundary

aIJ(x) — u(x)\=f(x),   x^Q,dRJ.       u(x) = 0,    x g dQ,

for a strongly elliptic operator, with smooth coefficients a,  = »„.

We take the domain of the operator to be Hç(ti) n //2(ñ) with the energy norm

and assume that / ranges in Z.2(ß). Thus there is a continuous solution operator

E: L2 -» Z/1, which is characterized by the variational formulation

a(Ef,+) = (f,t),   V^g//1.

Here a(- , •) is the bilinear form associated with the differential operator (i.e., the

energy inner product), and (• , •) is the usual L2 inner product. If Zh is a sequence of

finite-dimensional subspaces of Z/1, we consider the Galerkin solutions uh g Zh:

We choose Xh to be Zh with the energy norm, and Yh to be Zh with the L2-norm. If

we take for the roles of rh, sh the a( ■ , ■ )- and ( • , • )-orthogonal projections of Z/¿ and

L2 onto Zh, respectively, then the conditions (P) and (2.3) are trivially satisfied.

_3_
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Upon introducing the discrete solution operator Eh: Yh -* Zh characterized by

a(Ehg,xli) = (g,t),   WeZh,

we conclude that the Galerkin solution is given by uh = Ehshf. But, on invoking the

optimality of uh in the energy norm, also uh - rhu = rhEf, and therefore the global

error is zero and the method is convergent. Now Theorem 1 shows that the method is

stable. When bases in Zh are chosen, this uniform boundedness of the operators Eh

can be translated into the uniform boundedness of the inverses of the stiffness

matrices.

Note that the global error has turned out to be zero, because it has been defined as

rhu - uh. In the finite-element literature one often considers the error u - uh, which

is the sum of our error rhu - uh and the term u - rhu, which merely reflects the

approximation capabilities of Zh.

4. Counterexamples. The implication "convergent => stable" has been shown to

hold provided that Y is a Banach space and that (P) holds. We now prove that these

two hypotheses are necessary. First we note that the completeness of Y cannot be

dropped in the context of the Lax-Richtmyer theory of Section 3.1. A counterexam-

ple is given in [8] together with a discussion. A fortiori, the completeness of Y cannot

be dispensed within the more general setting of Theorem 1. Next, we show an

example of a method which is unstable, yet converges for all data in a Banach space

Y, and is consistent.

We set X equal to the space of real, continuous functions u in 0 < / < 1, such that

«(0) = 0, with the supremum norm. The space Y is the space of real continuous

functions in 0 < / < 1, also with the supremum norm. The operator A maps each

continuously differentiable function in X into its derivative; thus our problem is the

Cauchy problem

«(0) = 0,      !!'(/)= /(/), 0<Í<1,

and clearly has a solution operator given by

(Ef)(t)=ff(s)ds.

Let H be the set of the numbers A = 1/N, N integer, and Xh, Yh the product of N

copies of the real line with the supremum norm. Finally,

rhu = [u(A),u(2A),...,«(l)],

**/- [/(0),/(A)-/(0),/(2A)-/(A),...,/((yV-l)A)-/((iV-2)A)],

(4.1) A^h-1

0

1

0

-2     1

-2    1
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The method is easily seen to be consistent. The condition (2.3) holds with C, = 1,

C2 = 2. The inverse of Ah is given by

Ah1 = h

0
1

so that U^1

N N-l N-2 ■ ■ 1

{-hN(N + 1) = \(N + 1), and the scheme is unstable. The condition

(P') does not hold, since A~hx attains its norm on the vector e = [1,1,..., 1], and it is

easily checked that any function / in Y, such that shf = e, possesses a norm

\\f\\>N.
In order to see that the method converges for all data in Y, we note that the

discrete equations are given by

(4 2) ux/h=f0,        (u2-2ux)/h=fx-f0,

("y + 2 - 2"y + i + uj)/h = fj-ri - fj,       j = l,...,N-2,

so that adding to each equation those which precede it,

(4.3) «i/*-/o.    (uJ+x-uJ)/h=fJ,      j = l,...,N-l,

i.e., the approximations generated by the unstable method (4.2) are precisely those

generated by Euler's rule, which is, of course, convergent and stable.

It should be emphasized that this equivalence between stable and unstable

methods takes place because round-off errors have not been considered in the

discussion. In order to assess the effect of round-off, we run our problem with

f(t) = t1/2 on a VAX computer (single precision). The approximations to u(l) = 2/3

turned out as follows:

Euler (4.3) Unstable (4.2)

IE- 1

IE- 2

IE- 3

IE- 4

IE- 5

0.6105094

0.6614627

0.6661584

0.6666176

0.6668774

0.6105096

0.6614678

0.6662932

0.5979251

0.2296276

We conclude that the "convergence" of the unstable method is more damaged by

round-off than the "convergence" of the stable method. It seems, therefore, advisa-

ble to employ a notion of convergence which takes into account the effect of

perturbations such as round-off. This point is addressed in the final section.

Remark. When/is differentiable, method (4.2) is best regarded as an approxima-

tion to the problem u"(t) = f'(t), w(0) = 0, «'(0) = /(0), obtained from differentia-

tion in the given problem. Then (4.3) is the "summed form" of (4.2) (see [5, p. 327]).

5. L-Convergence. Let (Xh, Yh, Ah, rh, sh) be a method for the solution of (1.1).

We say that the method is L-convergent for a given datum/if

(5-1) lim\\rhEf - Eh(shf + gh)\\Xh = 0,
h
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provided that the perturbations gh satisfy lim||gA||r = 0. The method is L-con-

vergent if it is L-convergent for every/in Y.

The name L-convergent originates from the theory of initial value problems in

PDEs (Ansorge [1], [2]). Similar concepts have often been used in the literature: cf.

stable convergence (Dahlquist [4]) and convergence under perturbations (Spijker

[12]). The notion of convergence of linear multistep methods in Henrici [5] is in fact

an L-convergence concept, since it is required there that convergence take place

under arbitrary consistent starting procedures (in particular, method (4.2) is not

convergent in the sense of Henrici).

Note that both the norms of Xh and Yh enter in the definition of L-convergence

and that the idea of stability is implied in the idea of L-convergence. Therefore, it is

not surprising that the following theorem can be easily proved by elementary means

(cf. Remark 2.2).

Theorem 2. Let(Xh, Yh, Ah, rh, sh) be a method for the solution of (1.1). Then

(i) If the method is stable and convergent for f in a dense subset of Y, then it is

L-convergent.

(ii) If the method is L-convergent for f = 0, then it is stable.

A proof can be found in Stummel [14, p. 53]. (Stummel uses "consistency" where

we use "convergence", and "convergence" where we use "L-convergence".) From

Theorems 1 and 2 we conclude

Corollary 1. A method is L-convergent if and only if it is stable and convergent.

Corollary 2. A consistent method is L-convergent if and only if it is stable.

Note that the equivalence result in Corollary 2 requires neither the completeness

of Y nor the condition (P). Corollary 1 holds—when L-convergence, stability, and

convergence are generalized in the obvious way—even in nonlinear situations [15,

Theorem 1]. For initial value problems the equivalence between L-convergence and

stability was first noted by Spijker [11]. Corollary 2 can also be extended to

nonlinear situations [12]. An appraisal of some recent work on equivalence theorems

may be found in [8].
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