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ON THE SCOPE OF THE METHOD OF MODIFIED EQUATIONS*
D. F. GRIFFITHSt AND J. M. SANZ-SERNA$

Abstract, A rigorous analysis is presented for the method of modified equations whereby its range of
applicability and its shortcomings are delincated. Numerous examples from different areas are presented
and the theoretical findings are confirmed throughout by computational experiments,
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1. Introduction. Modified equations have been a commonly used tool in the study
of difference schemes. Because of the lack of any theoretical foundation, this use has
been accompanied by constant difficulties and results derived from modified equations
have sometimes been regarded with apprehension. As a result a situation has arisen
where authors either disregard entirely the technique or have an unjustified faith in
its scope. The aim of the present paper is to investigate carefully the foundation and
applicability of the method in the hope of clarifying the situation.

To our best knowledge the method of modified equations was first used by
Garabedian [4] in the analysis of SOR iterations. Few papers have been devoted to
studying the method (Hirt [11], Warming and Hyett [34), Wilders [35), also Morton
{16]). On the other hand the technique has been cxtensively employed in the literature,
see e.g. [1], [6], (7], (8], (10, [14], [19], (201, (26), [33] and [36]. By and large,
applications have concentrated on the investigation of dispersive

and dissipative
i es. A nonstandard example is given by Duncan
i has rightly pointed out the analogy between the

idea of modified equation and the backward error analysis of Wilkinson,

A summary of the paper is as f

in § 4, by making comparisons with other forms of analysis. Our findi
are summarized in § S.

In keeping with the aim of the
been chosen to provide insi
of new real-life applicatio

paper, the examples included, mostly simple, have
ght into the various aspects of the method; the presentation
ns is completely outside the scope of the article,

2. Modified equations. This section introduces, in a rigorous way, the concept of
modified equation, For simplicity, the ideas are presented in the case of a model
problem which exhibits all the important features of the more general situation. In
fact, it is not difficult to rewrite the material below in the language of any of the general

discretization theories (e.g. [31], [29), [33], [23]) and in particular, [37 § 2.4]).
We consider the scalar initial value problem

(2.1a) u(0) = x,
(2.1b) mm.l..\f;. Omtr=1,
dt

——
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where f(u) is smooth and Lipschitz continuous in —co < y <00, with Lipschitz ooswm_.::
L. These hypotheses ensure the existence and the uniqueness of a smooth solution.
The problem (2.1) is discretized by means of Euler's rule

(2.2a) Up=n+35,
AN.NGV Ac=+_¢l~\:v\}".\,Ac:v. :“O-....~Z(_.

Here N is a positive integer, h = T/N and 8 caters for a possible error in :_o, starting
value. For simplicity, the effects of round-off errors are not considered in this paper.

Some of the basic, elementary steps of the analysis of (2.2) ([12], (9], (5]) will
now be presented for later reference. A crucial part of the analysis is the estimation
of the size of the global errors

AN.uv €n = M\: - c:.

where Y, = u(t,) is the value of the theoretical solution at the grid-point ¢, = nh, In
more concrete terms we are interested in the quantity

(2.4) e=max{le,:n=0,1,--+ N},

Note that U,, Y,, e, ¢, & depend on the parameter h but this dependence n_o@m. not
appear in the notation, The standard approach to the study of e is the following indircet
one (and this includes both the derivation of bounds for e for a given, fixed h and
the investigation of the behaviour of ¢ as h tends to zcro).

First the auxiliary local truncation errors

(2.5a) =Yy~ (n+38),
AN.MGV ~:+_"AM\:+_IM\=V\}|.\.AM\:Y 3"0. -...<21~

are introduced. A simple Taylor expansion taking into account that Y, = u(1,) reveals
that, for n >0, I, can be bounded by $hB,, where B, is a bound for fu"(),0S ¢ = T, Thus

(2.6) I=max{|lin=0,1,+- N}
is O(h+8) as h-0,
Then, the stability of the discretization is established, i.e. it is shown that

2.7) esCl,

where C is a postive constant which depends on T and L but not on h. This bound

-is derived by subtracting (2.5) from (2.2) and applying induction w.r.t. n. No property

of Y, is required in the derivation, i.e. the fact that Y. = u(1,) is not used at this stage.

From (2.7) e is also O(h+8) and one says that (2.2) possesses first order rate of
convergence,

Remark. Some authors [13] prefer to write (2.2b) in the undivided form
Uier = U, = hf(U,).
Accordingly they define the local truncation error for n> 0, to be
Yo~ Y, =y,

rather than (2.5b). With this definition the local errors are O(h*+ 6) while the global
errors, whose definition remains unchanged, are O(h +8). In this paper, finite difference
schemes are always written in divided form, ie. in the form resulting from the
replacement of derivatives by divided differences,
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The introduction of modified equations aims pt describing the behaviour of the

numerical solution U,. This will now be illustrated in the context of (2.1), (2.2), We
consider the modified problem

(2.8a) 2(0) =7+,
(2.8b) (M +3hf(2)2' = f(z), O=isT

(The derivation of modified problems is considered in the next section. No motivation
for (2.8) will be provided at this stage.) The stundard theory of continuous dependence
on the parameters shows that, at least for A small, (2.8) has a unique solution z(1),
(Notice again that z(1) depends on h.) We claim that z(1,) is a better approximation
to the numerical solution U, than u(1,). Our task is to bound the quantity e given by
(2.4)-(2.3), where now Y, =2(1,). In order to do §0, we resort to the indirect approach
above, We still define L, I' by (2,5)-(2.6) with Y, =2(1,) and observe that (2.7) is still

valid, since, as noted before, the derivation of the stability bound does

not use any
information on Y,. However, now

lo=Yo— U= z(0) - Up=0
while, for :uo.r...,er
b= (Yar, = Y,)/ b= f( Ya) =(2(tss1) = 2(0,))/ h = f(2,)
uN\QL+Q\NVN:TL+§~\3N52L..\ANL
where 1, < 9, < tn+1. On using (2.8b)

i

Ly N_t..v+2.\51?.:Q_N\SN,:SL|NfLzt_\mv\gu?.zuf._v
(h/2)(2"(1,) =S (2(1))2'(1,)] + (h¥/6) 2 (6,)

which, on using the equation obtained by differentiation of (2.8b), leads to
(2.9) L= Q\SAHAN?.:N::..V+2NCLXN5LE+?QS%QL.

Now z, 2, 2 2" can be bounded inde

[l

means of an example.
The problem (2.8) is easily integrated to yield

2(t)
(2.10) LN CO))]

nea S(0) 27| f(n+8)
In what follows we set S(u) = u’. This does not strictly satisfy the hypotheses above
in that f(u) is Lipschitz continuous for - M < u <M, M finite but not for —co< y <o,
however this poses no difficulty (see e.g. [25, P. 24]). We further set T=99, 5n=1,

& =0 with theoretjcal solution u(t)=1/(1- 1). From (2.10), the modified solution z(1)
is given by

=1

_l.~.+\::~u>
z

Figure 1 depicts z(1), u(1) and the Euler points U, when h = T/4, T/16. It is
clear that the values computed by the difference scheme are much closer to the values

z(t,) than to the valyes u(t,). Moreover the agrecment between z(1,) and U, is very
good, even for the coarser grid.
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FI1G. 1. Exact solution of u*

=ul0sisT
(broken lines) and

numerical solution by Euler's method (+ and x) Jor h =

noted that the modified €quation continues to
ion even for nh = 1, when the th
trated in Fig, 2. One can a
will not be pursued further,

eful in preventing the pitfalls which may arise from an in

It should be
of the Euler solut
(cf. [24]). This is
nhz 1, but this point
main ideas and are us

nate application of modified problems.

F1a. 2. Solutiony ay in Iig,

A modified problem correct of order p is
he property that jts solution z has 4 |
except for O(h") terms, the discrete equations definin
the local discretization error |/ is O(h")
where B, depends on the derivatives of 2. In fact » < o/ 54 oo o000

to prove that
that I's h*B,

997

(=0.99) (full line), together with solution of modified equation
T/4 and h = T/16.

describe the behaviour
eoretical solution u(t) ceases to exist
ctually derive bounds for U, - (1),
The following points summarize the
discrimi-

"h=T/16 / *

Lt T

L

e SR P

0.6 08 10T

SR

2.0

-

Lbut for an exte

ed time interoal,

aproblem depending on the parameter
ocal discretization error O(h"); ie. it

g the numerical method,
, itis not enough o show
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also check that B, remains bounded as h
which follows (2.9).

It is perhaps worth pointin
convergence, the original
correct of order gq.

(ii) It should be observed that even though it is customary in the literature to talk
about modified equations, it is essenti

] alto consider modified problems, i.e. the modified
cquation should be supplemented by the necessary initi ¢ iti

as (2.8a) and care should be exercised in checking that the modi i i )
except for O(h?) terms, the msm:m_\co::auQ discrete equations (such as (2.2a)) which
supplement the main scheme (such as (2.2b))

(iii) The stability of the numerical method is an essential ingredientin guaranteeing
the success of the method of modified problems. Without stability the bounds for local
errors cannot be transferred to the global error z - U, The concept of stability used

-stability in ODEs [13], Lax stability in PDEs

= 0. This point was illustrated in the argument

g out that for a numerical method with gth order of
problem being solved provides already s modificd problem

The importance of the points (i)-(iii
the next section.

The idea of comparing
different from the theoretical
and {37, Chap, 1].

) above will be borne out by the examples in

the numerical solution U with a function close to but
solution u goes back to Strang [30]. See also [27], [22]

3. The coustruction of modified problems:
section examples of modified problems are co
applicability of the technique.

(A) In our first example we return to (2.1)-(2.2). In order to construct a modified

problem, correct of order two, the values of a smooth function w(¢) are substituted in
(2.5):

examples and counterexamples, In this
nstructed, which illustrate the range of

lo=w(0)~(n+35),
o1 = (W(tss) = w(1,))/ b = f(w(1,)),

The possible dependence of w
expanding, we obtain

n=0,1,.--+ N-1,

(1) on h is not reflected in our notation. On Taylor

. h h?
by = z?.:m:. ?.:N{f,.:. = Slw(i,)

and the requirement that | = O(h?) implies that w(s) should satisfy
w(0)=n+8+ 0O(h?),

h
E,S+m€=3 =f(w(1))+0(n?).
In particular, the equations

(3.1a) w(0)=1n+35,

(3.1b) e.+m€=u>5
appear to be good candidates for the

role of modified problem with second order of
correctness. However two difficulties

have to be addressed. First the missing initial
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value w'(0) needs to be specified, Secondly, as h >0 the equation (3.1a) is singularly
perturbed und there is o danger of w” increasing without bound, Such a growth would
destroy the O(h?) bound on l, as noted in § 2(i). The success of the modified problem
approach depends on extracting a regularly perturbed problem from (3.1), A meuns
of achieving this is by a suitable choice of w'(0) to accompany (3.1). The difficultics
inherent in this approach do not manifest themselves in this example and the study
of this technique is deferred until the next example.

A second means of regularizing (3.1) is now presented,

Difterentiation of (3.1b) leads to

h
€:+m W= [ (W),

Upon eliminating w" between this equation and (3.1b), we obtain

2
A_+W\A€vvx\|.\“ﬂ€su.\.ﬁ€v.

The solutions of this equation we are interested in, namely those whose derivatives
remain bounded as h - 0, differ by O(#?) from those of

(3.2) A:mi&vu\u\?v.

an equation which is not singularly perturbed. It was rigorously shown in § 2 tha
Euler's method provides a second order approximation to (3.2).

In practice, and for a more general problem, the steps leading up to a modified
problem need not be performed rigorously, One would begin by replacing the grid
values in the discrete equations by those of a smooth function w, Then, on performing
a Taylor expansion and discarding powers of h higher than the pth, one would arrive
at an equation involving high derivatives of w. Finally, and as far as possible, higher
derivatives would be eliminated by combining this equation with those resulting from
its differentiation (while systematically deleting terms which involve powers of h above
the pth).

Once & candidate for a modified problem has been obtained by mere formal
manipulation, the local error of its solution z should be rigorously shown to be small
in order to conclude that z models the behaviour of the numerical solution provided
by a stable scheme (ef. (i)-(iii) § 2).

An instance is provided by the equation

(3.3) N‘uATm}s 12),

which results from formal inversion up to O(h*) of the factor 1+(h/2)f(z) in (3.2).
One easily shows that solutions of (3.3) with z(0) = 1+ 8 possess a local error I's Ch®
(C independent of h), thereby providing a new modified problem for (2.2). This
demonstrates that modified problems correct of order p are, by no means, unique.

(B) We retain the initial value problem (2.1), but this time discretize it by means
of the backward Euler rule

Qc“d+m~
Acailcav\rﬂ.\.AQ:iY n=0,1,++ N-1,
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On proceeding as at the be

ginning of the previous example we arrive at the following
analogue of (3.1)

(3.4a) w(0)=7n+35,
G.Ag xxlmzzuhi.

We now discuss the regularization of (3.2) by means of a suitable choice of w'(0), To
avoid any unwelcome detail, we only consider the case n=1,8=0, f{u)=Au The
family of solutions of (3.42)-(3.4b) is given by

wit)=(1+a)e ' —ae’,
re=(=1/h)[£V1-2A0 -1},

sothat r,= A+ O(h), r.= 2/h+0(1) and the derivatives of w will increase as h-0
unless the missing starting value w'(0) is chosen to guarantee that a =0, j.e, w'(0) =r,,
When w'(0) # r,, solutions of (3.4) do not describe up to O(h?) the behaviour of the
numerical solution, even though (3.4) was obtained by insisting that the expansion of
the local error should only contain terms involving Tactors i, s =2 (cf (i) of §2).

This is illustrated numerically in Tuble I, where A = Lot=1and w'(0)=A (a
reasonable choice, since this coincides with u’(0)) und w'(0)=r,. The theoretical
solution has u(}) = 1.649.

TABLE |
Modified
h Numerical w(0)=A w'(0)=r,
4 1.778 93 1.796
i 1.706 -7.32 1.709
s 1.676 ~5,907.49 1.676

Had Euler’s rule been used, the roots r,,
r-=-=2/h+ O(1} and then the study of the siz
have been rather delicate due to a boundary |

(C) This and the following example show
problems rather than modified e
conditions (§ 2(ii)).

We again consider the problem (2.1), but this

r- would have satisfied r, = A + O(h),
e of the derivatives of exp (r_t) would
ayerat t =0,

the importance of considering modified
quations, i.e. proper account must be taken of all side

{ime discretized by the leap-frog
scheme
(3.53) Uo=m,
(3.5b) (U= U/ h = f(U,),
AU.MOV Ac:ou.lcav\wruu.\&c:.‘_v‘ 3"0._...‘.Z'N.

where the additional starting value U, is obtained b
(3.5) possesses second order of convergence and th

provides a modified problem with second order of co
problem of third order

Y Euler’s method. The scheme
erefore the original problem (2.1)
rrectness. We now seck a modified
of correctness, On proceeding as in the derivation of (3.2), we
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obtain the equation

h?

(3.6) 2 (M@ +1(2)) |2 = f(2)

However solutions of (3.6) with z(0) = 7n only satisfy (3.5b) with secon €r of
correctness, Therefore a modified problem based on (3.6) cannot attain third order wﬂ
correctness. A numerical example with f(u) =y, u(0)=z(0)=1, r=1is presented in
Tuble 2, which shows that the approximation provided by z has only second order of
accuracy. In fact, no smooth function w of ¢ and the parameter h can satisfy w(t,) - U, =
O(R?), since the theory of asymptotic expansions of global errors (91 .w:oim :.::
W(t) = Uy = Ld (1) + (= 1)"0(1,) ]+ O(h*), with ¢ and ¢ 5:0@:.2_6.:0_.,,,.. which
leads to a disparity between even and odd grid values of U,. (This a;.v::& is evident
in the table.) A means of describing the behaviour of U, may be found in [21] (cf. [28]).

Tanig 2
h (u—-U)/R? (z=-U)IW
| 113 .69
i 0.99 55
} 1.21 76
i 1.03 58
& 1.22 a7
& 1.04 58

(D) The two-point boundary value problem

(3.7a) u(0)=0,

(3.7b) —-u'+u=0, 0srs1,

(3.7¢) w()=1, '

is discretized by

(3.8a) Uy =0,

(3.8b) “(Uny=2U,+ U,y )/ B2+ U, =0, n=1,2,-+-, N-1,
(3.8¢) ACZIQZ:_v\ru_.

where h=1/N, N a posilive integer. We observe that (3.8b) approximates (3.7b) witl
second order accuracy, while (3.8¢) is only a first order accurate replacement of (3.7¢)

Consequently we obtain the following modified problem, which has second order o
correctness

(3.9a) z(0) =0,
(3.9b) -2'+z=0, 0sisl,
(3.9¢) Z(1)=(h/2)z(1) =1,

where the last equation has been derived by Taylor expanding A.u.wov m:.a using (3.9t
to eliminate 2", Tuble 3, which shows values af ¢ = 1, provides illustration of the fuw
that (3.8) is first order accurate, while (3.9) coincides with (3.8) up to second orde
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TARLE )

(Exact-numericul)/ b (Modified-numerical M h

W ' ~.287 +.034
‘ -.289 +.018
i6 ~.290

(3.10a) u(x, 0) = uy(x), —00 < x <,
(3.10b) u(x, :uix+_.3. —O<x<©, >0
(3.10¢) U =u,, —00<x <, >0

together with the discretization

(3.11a) U3 = ug(jh), J=0,%1,%2,...,
(3.11b) Ui=Ul, n=1,2,..., J=0,£1,%2,.. .
(3.11¢) E\i_;cv;ic\,._-“c?E:v:m_ n=0,1,...

J=0,£1 82,0,
Here u, is 1-periodic, h =
parameter. We now present
order of correctness (in k),
with PDEs, A smooth funct

1/J, J a positive integer and & = rh?,
in detail the construction of a modified problem of second
$0 as to show the additiona] novelties involved in dealin

ton w(x, 1) is substituted in (3.11¢) to yield ¢

with r a positive

M =(wpr' = wi k= (w., =2w]+ Wi/ R,
where w) = w(jh, nk), On Taylor expanding, we obtajn
(3.12) It = (w, - LA _
J t xx) 2 Wy, Oﬁ_-txxxx tee
which leads to
(3.13) W, = LA -1
t {kk N €: o\‘ {Kkkk

. . . 1gh order, requires more side conditions
than can be aoq.zoa from a.:mv-G.:S. Diflerentiation of (3.13), first with reg ect
to ¢ and then with Tespect to x twice, yields . v

Wiy = Wy — WA Wiy — ‘~l w
N o\- Xxxxt Al

k 1
Waxt = Wyrex IM Wegyy == U«”S»

6r

”:_omo .oacmmo:m can now be used to eliminate w,, from
involving k?, we arrive at the equation

(3.13) and, on discarding terms

(3.14) = k L) p: z
N o‘ X AXY
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We notice in passing that the form

(3.15) IW T% D}z =z,
resulting from formally inverting the operator in brackets on the right of (3.14), may
also be considered, This alternative form seems advantageous in the case of initial
boundary value problems, since it does not increase the number of required boundary
conditions. See below.

We now discuss whether (3.14), together with

(3.16a) z(x, 0) = ug(x),
(3.16b) Z2(x+1,t)=z(x, 1),

provides a modified problem for the study of (3.11). The Fourier transform of (3.14)
is given by

~00 < x < 00,

—00<x <, (>0,

k Py
(d/dt)i(m, t) =~ IMT a% As{vaswuﬁs. 1

where m is the wave number (m =0, £1, 2, ). This leads to
(3.17) Z(m, 1) =2(m, 0) exp [o(m)1]
where o(m) is the symbo! of (3.14)

QASVN IA_ +WA~ !Mﬂvu§~ﬂ~va§u§~.

Three ranges of the parameter r should be studied separately,

(i) §=r=3 When r has been fixed within this range the exponential term in (3.17)
is bounded for all 1= 0 uniformly in m and k., Therefore the solutions of (3.14)-(3.16)
are bounded together with their derivatives uniformly in k This fact combined with
the stability of the scheme (3.11) allows us to conclude that we are dealing with a
problem of second order of correctness. (Note that for r=% (3.14) reduces to the
original equation (3.10c), in agreement with the fact that, for this value of , (3.11) is
convergent for order O(k?) [15].) Table 4 provides a numerical illustration of the
approximation at

© (—] i _
x=4 1=4 ulx)=7% { Nov cos 2mix, wu(}, $)=5.172%x10"
tm]
when r=1],
TABLE 4
h Numerical x 10° Modified x 10°
4 26,327 1.875
I} 4,351 4.013
T 4.851 4854
b 5.091 5.091

(i) $<r. In this range the exponential term in (3.17) is still bounded. However
the scheme is now unstable and bounds for the local discretization error do not lead
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to bounds for g
(3.11). This is b

3.

TABLE §
h Numerical x 10° Modified x 10°
} ~2.05%10*
. 0.0

i -3.13%x 107 1 2

i ’ 129

& -4.57x 103 3.535

% 1.55x10%° 4.703

(iii} 0<r<{. In this range the sch i
cannot be bounded c:#o:.a_w inm, k %::mwm%wwwo. WE oo
_az k (Even for a fixed k>0, (3.14)-(3 16) ot b )
ue .
e ﬁ”ﬂ%ﬂﬂom:aoa:omm of the exponential term as m varies, a
that | n. g.\w._d heat equation. In Particular (3.14)-(3 u.o
ution for the initial datum employed in Tables 4 ; 10
When attention is restrict o

ed to initial dat;
number M of harmonics, (3.14 Fdata w, cont

. . y w._ i
in (3.17) is bounded for ms \NAA e il b of so

often been expressed in the litera
when the product mk is small [3
Table 6 refers to the initial

me value, since the exponential

all k= ko(M). This k
ture by saying that modified e i valid ot
& 1) o 201 quations are valid only

condition
M (- I
ug= Y lqv.ogwik
T ’
X=5,0=4r=4 M=5ul})= -
be doens & s u(3,8)=5172%10"*

Y accordingly it oo .As M s increased, the value of h must

er to attain a prescribed level of accuracy

TABLE 6
N h Numerical x 10° Modificd x 10*
w 34,474 2277 % 10M
5.927 5.872
s 5.342 5339
» 5.214 5.213

To conclude this exa
(3.15)-(3.16) is uniform!
Therefore (3.14), (3.
the entire stable

mpl i i i

win__.v_.._"xwﬂmazw_.:\” out .ﬁ:.: the alternative modificd problem
16) el ...w =0, ifand only il rliesin the range0<rs!
. piement each other and allow a study of he s i
range < ropl study of the scheme in

4. Related techniques, The modi
oosa.oa_w employed means of an
€quations to study the behaviour of

altention is restricted 1o
[9] that U,

fied equation approach is ¢l

ilied oscly related to othe

.”__Wm_m_. W<_o first consider the use of <w1mao=wﬂ
¢ giobal error w ~ U. For the sake of simplici

he gl impl

o v+rc2~:n+300wm_ situation (2.1)-(2.2) with § =0, It is well m:.m.&m

n n (h*), where the function v(1) does not depend on h

lob
o_‘:w_oﬂdﬂ%.ﬂ\ww_m wom::. (3.14)-(3.16) do not model the behaviour of
that now r =2 ¢ 5, which is analogous to Table 4 except for the fact

ponential term in (3,17)

is not well-posed uniform|
cannot be solved for arbitrary initial 38«

situation similar to
does not possess a

aming only u prescribed finite
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and satisfies

(4.1a) v(0) =0,

(4.1b) v =fu()v-u"(r), 0st=T

Thus y(1) = u(1)+ho(s) provides a model for the description of the Euler solution
accurate to O(h?). However the determination of y{1) requires successively the solution
of the original problem (2.1) and that of the variational problem (4.1). The modified
problem approach, on the other hand, involves only the solution of the single problem
(2.8). This latter approach is therefore more convenient in practice, where often only
qualitative information on the behaviour of U is of interest. Nevertheless the two
approaches are closely related, as borne out by the fact that (2.8) can be rigorously
derived from (4.1) as follows. On using (2.1b), we can rewrite (4.1b) as

c‘H\)A:vclww‘A:v:‘.

Hence, since y = u+hy,

y'= :‘+rc‘n\?v.fr\\ﬁzvclw%?v:\
(4.2)

=f(y) xmsczi Ok,

where in the final step we have made use of the smoothness of u and v. Deletion of
the O(h?) remainder in (4.2) can only lead to an O(h?) change in the solutions and
yields (2.8).

This close relationship between the variational and modified equation approaches
merely reflects the fact that they are based on the same information, namely the leading
terms in the expansion of the local error. This remark applies equally to any strongly
stable [29] linear multistep method. For stable linear multistep methods having roots
r#1, |rl=1 the situation is more delicate [9] due to the cffect of choice of starting
values. (See example C) above.)

The observation that modified problems make use only of the leading terms of
the expansion of the local error applies generally, and is primarily responsible for
restricting the scope of the method. A further illustration is given in the context of the
heat equation example in the previous section. The scheme (3.11) was used there only
insofar as to derive (3.12). In turn the modified equations (3.14), (3.15) were based
solely on the terms displayed in (3.12); consequently they would serve as modified
equations for any scheme that gave rise to the same terms. On the other hand the
amplification factor [15]

£(m)=1-4rsin’® mmh,

where the wave number m is an integer, provides a complete characterization of the
scheme and may therefore be used 1o deduce sli its propertics. Tn particular the firs
order of local accuracy (r#}) is a consequence of the expansion

b e g0 - 2
(43) E-cexpl »@::l »_u |«m3::l., _i.w.v + O m"),

Gr

This expression is simply the Fourier transform of (3.12) when w is a solution «
(3.10¢). The O(k) term in the right of (4.3) is the Fourier transform of the leadir
term of the local truncation error, which is the only information required to constru
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the modified problems. This is reinforced by noting that

IWGSAV. _l|_l = K 4 !

> o) =exp 1~|G§i _lwﬂ =1+ 0(k*m?®)

_ _ ) k? 1
exp [—=(2mm)’k]{ exp —Cmm){1-—) -1

2 6r

+0(k’m"),
which, together with (4.3), leads to
§—ex k
M;q vuo?Nsoy

where o =a(m) is the symbol of the modified equation (
symbol .QASV w:.a consequently the modified equation itsel
terms displayed in (4.3) without having to resort to the ori

The study of the stability of the schem
) e (both for k- 0, 1 fixed and k fixed, t » o0
MMM_«MN oo_aﬂ_.o«a knowledge of ¢(m), |hm| S w, information which cannot be a.aaﬂoonw
e leading Snsm. of the expansion of é(m) around mh=0 Consequently

3.14). In other words the
f, can be derived from the
ginal difference equations.

These attempts have

previously been analysed by different means a
beforehand.

os_wﬂw_””v_uaww MMMME ”n“ruowa—.ocﬁ that although the derivation of modified equations
! unt the behaviour of the numerical schem fi h
modified problems describe accuratel i ton provided by (Lucy Fosed
¥y the numerical solution provid db ax) s
schemes even if the solution contains Fable &) Te renorible
her ¢ all wave numbers (cf. Table 4
this is that in any initial datum in (s 2 i Lcies are repmmser 3o for
s ay) L* the high frequencies a i
amplitudes which tend to zero as the way i  docs mo heam o
. 4 € number increases, "It d
these higher harmonics to be falsified” b : odifiod ey
u ; oth by the scheme and by th di i
provided only that they do not become amplj et a5 10 b e ation
vided plified to such an extent as to be no lo
negligible” (see [19, p- 11]. The quoted sentences have been taken from this qa?«a%owow
S. Conclusions. The follow
Bo:_oA of modified problems.
(i) The construction of a modifi

ing conclusions have emerged from our study of the

. ed problem correct of order

n 2o ( : : P may be undertaken

<o:%5ﬂ.~<=ﬁo_,ﬁm_.5»::«.... Having .u_.:<aa at a suitable candidate it is necessary to
§ solution satisfies the discrete equations except for an O(h”) remainder

——d Q —SW SO 1tis —BU t
. .
0 0 1t 0—AN ve to G:MVC—O :—ﬁﬂ ”ﬂ( QO—.—<N:<GM vaﬂﬁ—‘:dm in :_0 ~G:_N:~Qﬂ_

ecmaoooz&aozmm: vogz..ao..
. : niginal problem and its dj izati
incorporated into the analysis (cf, oxuSv_am Ow w:a vaa o dlseretization must be

(iii) Stability as h-0 of the discrete method being analyzed is an essential

prerequisite for the success of the analysis. Without stabili imates

:dsom:oa error do not imply estimates of the global ozwn_mw\m ﬂ“wﬁ&% of the focl
. (iv) Since only a limited amount of informati . |
inga S.o&maa problem, such problems ¢
In particular stability properties, both
deduced from a modified problem.

annot provide a full description of the scheme.
for h fixed, 1+ o0 and h ~+0, 1 fixed, cannot be
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(v) Tt has often been asserted in the literature that modified partial differential
equations provide a valid description of the numerical solution only when the product
(wave number)x h is small. However our analysis has revealed that this is not
necessarily the case and that solutions to initial data containing all harmonics can be

described, provided that the candidate modified problem satisfies (i)-(iii) above (cf.
Table 4 and last paragraph of § 4).
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AN EXTERIOR POISSON SOLVER USING FAST DIRECT
METHODS AND BOUNDARY INTEGRAL EQUATIONS WITH
APPLICATIONS TO NONLINEAR POTENTIAL FLOW*

DAVID P. YOUNGt4$, ALEX C. WOO41, JOHN E. BUSSOLETTI$§ AND FORRESTER T. JOHNSON#§

Abstract, A general method is developed combining fast direct methods and boundary integral equation
methods to solve Poisson’s equation on irregular exterior regions. The method requires O(N log N)
operations where N is the number of grid points. Error estimates are given that hold for regions with corners
and other boundary irregularities. Computational results are given in the context of computational aerody-
namics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting

aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of
thinness.

Key words. partial differential equations, fast direct methods, boundary integral equations, fast Poisson
solvers, preconditioned conjugate gradient, transonic potential flow

1. Introduction. Fast dircct methods have been used extensively in recent years
to solve Poisson's equation on rectangular and other separable domains [1], [2]). Much
work has been devoted to extending these methods to other elliptic partial differential
equations and/or nonseparable domains. In particular, for irregular geometries the
analogy of capacitance matrices with potential theory has been exploited by Pros-
kurowski and Widlund [3], [4]. In this paper, we show how a consistent, second-order
boundary integral discretization can be implemented using fast direct methods. The
starting point is the classical theory of double- and single-layer potentials. Il N is the
number of grid points, our discretization enables a solution of Poisson’s equation in
O(N log N) opeations which retains the spectral properties of the boundary integral
formulation, This discretization has certain advantages with regard to conditioning of
the matrices, flexibility in boundary discretization, and computation of quantities such
as surface pressures.

In § 2, we outline the hybrid method in the context of boundary integral (panel)
methods, Section 3 explains how the boundary integral problem is approximated using
an exterior fast solver and an error estimate is given. Section 4 presents some two-
dimensional computational results. Section 5 explains some iterative techniques for
solving the lincar system resulting from the approximations given in § 3 (such techniques
are necessary in three dimensions). It also contains the results of some numerical

experiments with preconditioned conjugate gradient, Tn § 6 we put our work in the
context of previous work in this area,

2. The hybrid method, Because of the extreme sensitivity of airfoil problems to
small perturbations in geometry (5], (6], {7], pancl (boundary integral) methods with
their accurate representation of surfaces have long been standard for lincar potential
flow calculations. But implementations of these methods have not been optimal compu-
tationally. Fast direct methods and boundary integral methods can be combined for
the Poisson problem with advantages over either method alone. Consider the boundary
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