Soliton and antisoliton interactions in the “good” Boussinesq equation

V. S. Manoranjan

Department of Chemical and Process Engineering, University of Surrey, Guilford, Surrey GU2 SHX,

England
T. Ortega and J. M. Sanz-Serna

-

Departamento de Matematica Aplicada y Computacion, Facultad de Ciencias, Universidad de Valladolid,

Valladolid, Spain

(Received 5 November 1987; accepted for publication 4 May 1988)

The solitary-wave interaction mechanism for the good Boussinesq equation is investigated and
found to be far more complicated than was previously thought. Three salient features are that
solitary waves only exist for a finite range of velocities, that large solitons can turn into so-
called antisolitons, and that it is possible for solitons to merge and split. Small solitons,
however, appear to be stable. The existence of a potential well is linked to the different
behaviors observed between small and large initial conditions.

I. INTRODUCTION

The importance of soliton-producing nonlinear wave
equations is well understood among theoretical physicists
and applied mathematicians. An equation that produces sol-
itons and has received comparatively little attention in the
literature is

Uy = — Ugex + Uee + (1) 4. (1.1)
This is referred to as the “good” Boussinesq equation

(McKean') or the nonlinear beam equation.” The related
equation

Uy = Uy + e + (%) e i
known as the “bad”” Boussinesq equation, hds been studied
by Hirota.? In a recent article, Manoranjan et al.* obtained a
closed-form expression for the two soliton interactions of
(1.1) and carried out numerical experiments to demonstrate
the possibility of the breakup of an initial pulse into two
solitons.

In this paper we show that the interaction mechanism is
more complicated than that reported in Ref. 4. It turns out
that when small amplitude solitons of (1.1) collide, they
emerge from the nonlinear interaction with no change in
shape or velocity. However, the large amplitude solitons
change into so-called antisolitons as they come out from the
interaction. We show that this difference in behavior is
linked to the existence of a potential well for (1.1). Further,
the existence of a local minimum for the potential energy
enables us to investigate the existence of a class of solutions
that remain bounded for all time, along with another class of
solutions that blow up in finite time.

Throughout the paper our attention is confined to real-
valued solutions # of (1.1) defined in — o <X < 0.

1. PRELIMINARIES
A. Conservation laws

It is clear that if u is a smooth solution of (1.1) that
vanishes, along with its derivatives, as |x] - 0, then the
quantity

J(u) = J‘m u, dx
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is an invariant of motion, whereas

I(u)=J udx 2.1)

varies in time as I = Jt + const. Since we are interested in
solutions that remain bounded as  increases, we restrict our
attention to initial conditions that satisfy J =0. It is then
expedient to introduce a new function w defined by

w(x,t) = J u, (&,1)dg,
which also vanishes with its derivatives as |x| — co. In terms
of the functions u,w, the equation (1.1) becomes
2.2)

a system that conserves the functional 7 in (2.1) and the
functionals M and E given by

— 2
w, = —uxxx+u.x+(u )x’ u, = Wy,

M(w,u):f wu dx, (2.3)
and

E(w,u) = T(w) + V(u), (2.4)
with

T(w)=—;—J w’ dx, 2.5)
and

V(u)=ro (—l—u2 +—1-u2+—1—u3)dx (2.6)

_L\2 "2 3 ) '

Note that the system (2.2) isin Hamiltonian form and that
E,T,V act as total energy, kinetic energy, and potential ener-
gy, respectively.

B. Solitons and antisolitons

We now look for traveling wave solutions of (2.2) of the
form w = w(£), u=u(£),§=x—ct. With a prime denot-
ing differentiation with respect to £, the system (2.2) then
reads
—cu'=w.

—cw = —u" + (u2)'+ul’ 2.7)

Elimination of w', followed by an integration in which the
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integration constant must be zero in view of the boundary
conditions for u, leads to

—u=u"—u*—u. (2.8)

If ¢? > 1, then the origin # = 0, ¥’ = Qs a center in the phase
plane of (2.8), and hence nontrivial solutions such that
u,u' ~0as |£ | - oo are not possible. On the other hand, when
¢? < 1, the origin is a saddle point as depicted in the phase
plane shown in Fig. 1, and the homoclinic trajectory
0—A—B- O represents a soliton. The possible velocities
— 1<ec< 1 can be described in the form ¢ = £(1 — P?)'/?,
where Pis a parameter 0 < P<1,and e = + 1 or — 1 deter-
mines whether the wave moves to the right or to the left. A

simple integration in (2.8) yields the analytic form of the
soliton as

u(€) = (—3P%2)sech?[(P/2)(E — &) (29)

The (real) integration constant &, gives the initial location
of the wave. It should be noted that the velocity ¢ of the
soliton is related to the amplitude A=3P?/2 by
A=3(1—c*). For the rightward- and leftward-traveling
soliton of parameter P, the quantities in (2.1) and (2.3)-
(2.6) are given by

I,, = — 6P, (2.10)
M, = —6e(1 — P*)'2P3, (2.11)
Ep, =$P3(5—4P%), (2.12)
Tp, =3P*(1— P?), (2.13)
Ve, =3P3(5—3P%). (2.14)

It should also be pointed out that the functions w(&),u(£)
corresponding to the soliton solve the variational problem

SE(w,u) =0, subjectto M(w,u) =M,p,. (2.15)

This can be verified by comparing the Euler-Lagrange equa-
tions of (2.15) with the system (2.7) satisfied by solitons.

Returning to the phase plane in Fig. 1 (¢*<1), and
if we allow singular solutions, the trajectory
0-C— w —D— 0 also provides a traveling wave with ve-
locity ¢, whose analytic form is found to be

u(€) = (3P%/2)cosech’[(P/2) (£ — &o) . (2.16)

This singular solution, which has a double pole at £ = £,
will b2 referred to as antisoliton. It is helpful to combine Eqs.
(2.9) and (2.16) into a single form,

u(§) = —6P%"(1+e") 7%, 5=P(&— &) +ino,
(2.17)

where 2 = — 1, and o = O gives the soliton and o = 1 the
antisoliton.

The possibility of traveling waves with velocities
c¢= + lor — 1 has not been discussed so far. In these cases,
astudy of (2.8) reveals that there is a singular solution given
by u = 6(& — £,) 2, but no solution of the soliton type ex-
ists. The singular solution just mentioned can also be ob-
J

u _ Plem 4 Plem+ [a(Py+ P) + (P — Py)’Jem * ™ + ae™ + (e} + e"PY)
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FIG. 1. Phase plane, & < 1.

tained by taking in (2.16) the limit P—0, i.e., the limit
le]—1.
I1l. SOLITON AND ANTISOLITON INTERACTION

Following a technique used by Hirota,> Manoranjan et
al* constructed the family of solutions of (1.1) given by

u= —6(fu f— LI/
F(x,0) =1 +exp(n,) + exp(n;) + aexp(, +72),

(3.1)
with i
; =P[x— g+,
Ej B i l, 0<1’1<1, j= 1,2, (3-2)
a= (5101—52"2)2—3(1’1—})2)2 , (3.3)
(6,0, — €305)° — 3(P, + Py)
and
y=(1—-P)"% j=12 3.4)

Only real values of the phases 7, j = 1,2, featuring in (3.2)
were considered in Ref. 4, while in the present study we let %;
have the following complex form:

n; = P[x — gyt + x7] + ima;,
== 0<P<l, 0;,=01, j= 1,2. (3.5)
With this choice of 7;, (3.1) is still a valid family of real-
valued solutions u. We next show that (3.1) and (3.3)-
(3.5) describe the exact interaction of solitons and antisoli-
tons. To simplify matters we only discuss the case £, = 1,
g, = — 1, but the other possibilities in the choice of ¢;,
j= 1,2, can be analyzed in a similar fashion (see Ortega®).

Elimination of f in (3.1) yields

(3.6)

—6 [1+e7h+e'l:+ae"h+"h]2

\
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The behavior of (3.6) depends very much on the value of the
number a in (3.3). Several cases must be considered.

(i) 0 <a < . This corresponds to the interior of the
regions I,,, I, I in Fig. 2. More specifically, 0 <a < 1 in the
interior of the regions I, I., while 1 <@ < o in the interior
of the region I,. By arguing as in Whitham (Ref. 6, Sec.
17.2.), it is found that as - — oo, the solution (3.6) be-
comes just the linear superposition of two traveling waves of
the form (2.17) with

n=mn,_ =P [x—vt+x]+ im0,
n=n,_ =P[x+ vt +x3+P; 'log a] + ima,.

As f— o, the solution consists of the traveling waves
n=m4 =P [x—vit+x} + P 'loga] + imo,,
=1, =P[x + vt +x3] + im0

Thus the right moving wave (resp. the left moving wave)

emerges from the interaction having a shift in position

Ax=P[ 'loga (resp. Ax= — P, !log a), but with no

change in shape or velocity. Note that there are four choices

for o,, 05, so that the interacting waves could be both soli-
tons, both antisolitons, or a soliton along with an antisoliton.

The right-going wave is shifted to the left (log a>0) for

P,,P,intheregionl, andto the right in the regions I, and I.

The shift in the left-going wave occurs in the direction oppo-

site of that in the right-going wave, in agreement with the

fact that the total change in the phases 7,,77, must be zero

(cf. Hirota®).

(i) a <0. (Interior of region II.) Here the behavior of
(3.6) as t— oo is given by

N="7_ =Pl[x—v,t+x?] + iy, !
7 =1, = Py[x+ vyt +x3 + Py 'logla|] +imoF,

where 0¥ =1 — 0,. For 1— 0 we have

"7=77|+=P1[x_ult+x(l)+P1_11°g lai]
tiro, ot=1-a,
=1y, = Py[x + vt +x3] + im0,

FIG. 2. Soliton and antisoliton interaction forthecase g, = 1,6, = — L.
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Itis apparent that now the waves not only undergo a shift but
also change their nature; a soliton/antisoliton entering an
interaction emerges as an antisoliton/soliton. Again four
cases g; = 0,1,j=1,2, are possible.

(iii) @ =0. (Arcs AB and CD.) We consider first the

arc AB where*P, > P,. By taking limits in {3.6) along lines
x — mt + n, m,nreal constants, and comparing with (2.17),

s st act — oo thesolution consists of a single wave
with phase

Px—vt+ x}] + imoy,
while for t— oo there are two waves,

Py[x — vyt +x3] + im0y,
Py[x — vt + Py (PSS — Px3) ] + imas,

with

P,=P,—P, v,=(1-P}'3
05 = 0, + 0,(mod 2).

In obtaining the last outcoming wave, use must be made
of the relation (P, —Py)[1— (P —Py)?1"*=Pw,
+ P,v,, which follows from a = 0 in (3.3). These formulas
mean that a single soliton (o, = 0) can split into either two
solitons (o, = 0) or two antisolitons (g, = 1). The outgo-
ing wavesmove in opposite directions and the corresponding
parameters satisfy P, + P; = P, [cf. (2.10) and the conser-
vation of (2.1) ]. On the other hand, an incoming antisoliton
(o, =1) splits into either a left-going soliton and a right-
going antisoliton or into a left-going antisoliton and a right-
going soliton. It is perhaps useful to observe that if we repre-
sentby Sand 4 thesoliton and antisoliton, respectively, then
the rules :

S.S+S, S—A+A4, A-S+A4, A-A+S,

familiar from Boolean algebra, govern the possible interac-
tions.

The arc CD, where P, > P,, contains the merging of two
incoming waves with parameters P,, P, — P, into a single
wave with parameter P,. The possible interactions can be
represented as

S4+S-S, A+A4-S, S+A4-4, A+ S—-A

(iv)a= . (ArcAC.) This case corresponds either to
waves of parameters Py, P, merging into a single wave of pa-
rameter P, + P,, or to the splitting of a single wave with
parameter P, + P, into two waves with parameters P,,P,.
The corresponding analysis can be performed by taking lim-
jits in (3.6) forat o, 0ral — co. However, taking limits di-
rectly in (3.6) results in the trivial solution ¥ = 0, and it is
therefore necessary to make the parameters x} and/or xJ
functions of a before letting |a| — oo . For instance, we could
take 7, as given in (3.5) (x° a fixed constant) and

m=Pfx+vt+m+ Py 'log|a|] + imo,, m constant.

Although we have only considered two-wave interac-
tions, N-wave interactions with a far more complicated dy-
namics are also possible and can be studied by using a formu-
la analogous to that of Hirota.’
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IV. THE POTENTIAL WELL

In the preceding sections we have allowed singular solu- ‘

tions, i.e., solutions with poles. For instance, the S—A4+ A
splitting solution possesses two poles past the interaction
time. In the rest of the paper we exclude this possibility and
say that a solution ceases to exist at the time when poles
develop. According to this point of view, standard in math-
ematical analysis, it has been shown in Sec. III that some of
the solutions of (2.2) exist for all times whereas other solu-
tions cease to exist at a finite value of . This difference in
behavior, numerically verified in Ref. 4, is explained in the
next section in terms of a potential well studied below.

If v is a function of X, — o0 <X < 0, we define the po-
tential energy V'(v) as in formula (2.6). According to Sobo-
lev’s imbedding theorem (Adams’), the expression for ¥(v)
makes sense whenever v is in H !, i.e., whenever v is square
integrable with a square-integrable distributional derivative.
It is clear that ¥ can take arbitrarily large positive and nega-
tive values. The stationary points of the functional ¥ are
easily found to be given by the functions v, = 0 and
vy = — sech®[ (x — b)/2], with b an arbitrary real con-
stant. Note that in view of (2.9), the function v, , provides
the shape of the soliton with parameter P = 1, amplitude
A =}, and velocity ¢ = 0. This is in agreement with the fact
that the functions for which the gradient of the potential
vanishes give rise to time-independent solutions of the Ham-
ilton equations (2.2).

The function v, = 0 provides a local minimum for the
functional ¥, because the Sobolev inequality

U v dx

<[ b dx = ol <Kl

o0 372
=K? (J W+ ui)dx)

(K is the imbedding constant) reveals that the cubic term in
the potential is negligible in the H ! neighborhood of v; = 0.
To study the behavior of V near v =10, ,, We make the
change v=1v*+0,,. The functional V(v* +v25)
— V(vy,) is of the form Q(v*) + C(v*), where

(4.1)

* 11 1 3 x—b
v*) =J [—— v*2 4 —p*? — —sech’ —— v“] dx,
¢ —w L2 2 2 2

and Cis cubic in v*. The spectrum of Q is known in closed
form (e.g., Whitham,® Sec. 17.5), and it turns out that the
functional is indefinite, hence v,, is a saddle point of the
potential V.

The depth d of the potential weil around the local mini-
mum v, is defined by

d =inf[V(v):vinH‘, v#0,

..

r [ +v2+v3]dx=0]. (42)
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Note that d >0, because if v#0 satisfies the integral con-
straint in (4.2), then

VW) == ol = —H;.,sdx, ¢

which, in view of (4.1), implies that |[v] {and hence V(1) ].
is bounded away from zero. If we denote the potential well
by W, then W consists of functions v with potential energy
below the depth d and satisfying the condition

—J [ + 0* + v*]dx<0. 4.3)
When v possesses a square-integrable second derivative, an
integration by parts of the v term in (4.3) shows that this
condition can be interpreted as the requirement that the an-
gle (in the sense of the L 2 metric) between the function vand
the force density ¥ (v)/dv be obtuse. In symbols W is de-
fined by

W ={vin H': V(v) <d and (4.3) holds}.

In view of (4.1), Wisa neighborhood of the origin in the
space H '. Furthermore, forvin W,

ol =J [ +v*]dx

— 6V () _3J°° (4.4)

— o

[v2 + 07 + v ]dx<6d,

so that W is bounded. The key issue is that if w(?),u(¢) isa
solution of the system (2.2) that is smooth enough to con-
serve the energy E(w,u) in (2.4)-(2.6), and such that ini-
tially E(t =0) <dand u(t=0)isin W, then u(t) remains
in W for all later times. In fact, if u were to leave the well at a
time £, thené_aét that time (4.3) would hold with = instead of
<, which, sihce E is below d, is in contradiction with (4.2).

The Euler-Lagrange equation for the constrained mini-
mization problem in (4.2) is easily shown to have no solu-
tion other than the function v, 4, where ¥V takes the value §
[see (2.14)]. This makes it plausible thatd = § and that v, ,
provides the mountain pass out of the well. In order to prove
rigorously that this is the case, we would have to show that
v, isnotonly a critical point for (4.2) but also a minimum,
something we have not attempted. Note that, be that as it
may, it is certainly true that d<§.

V. EXISTENCE AND NONEXISTENCE OF SOLUTIONS

Fourier analysis reveals that the linearization of (2.2)
given by :

W, = — Uxxx +u,, U, =Wy

generates a strongly continuous semigroup in the space
L% H'. Since the nonlinear mapping (wyu) —{(17) 5,0 is
indefinitely continuously differentiable in that product
space, the results on nonlinear semigroups of Segal® show
that (2.2) has a generalized solution (w(t),u(t)) for each
initial data (w(0),u(0))in L 2y H''. This solution exists for a
positive length of time {depending on (w(0),u(0))] andisa
continuous function of ¢ and (w(0),u(0)). Furthermore,
(w(8),u(?)) is smooth if w(0) and u(0) are. The functionals
M and Ein (2.3)-(2.6) are conserved by generalized solu-
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tions, since these functionals are continuous in L * X H ' and
conserved by smooth solutions. Therefore, if a generalized
solution satisfies £(0) <d and u(0)eW, then u(t) remains
in the well throughout its interval of existence. Then (4.4)
implies that ||u||;,» remains bounded; hence the solution ex-
ists for all times 0<f < « (Segal®). On the other hand, solu-
tions for which u(0) is not in W and solutions for which the
energy F exceeds the well depth d are not likely to exist for all
time. This is exemplified by the case where the initial condi-
tion consists of two solitons, well separated and moving
towards each other. In Fig. 2 the dashed line represents the
locus

§P1(5—4PY) +4P3(5 —4P3) = §>d.

Thus, according to (2.12), E>d to the right of the dashed
line, a domain which includes region II, which was shown to
correspond to S + S—A + A interactions and therefore ex-
hibits blowup in finite time.

Sufficient conditions for the blowup to occur can be ob-
tained by concavity arguments (Payne®). For instance,
smooth solutions (w(¢),u(t)) that vanish at x = + oo, to-
gether with their derivative, cannot exist for all time if £ <0

and / = 0. Elimination of w in (2.2) reveals that such solu-
tions satisfy

2

-2
—D 7 u, =u,, —u—u,

with

o= [ .

Since the operator — D ~? acting on the indicated class of
functions is symmetric and positive definite, the results in
Payne®, Sec. 8, establish that the existence time of the solu-
tion is necessarily finite.
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V1. DISCUSSION

We have shown that the “good” Boussinesq equation
possesses a highly complicated mechanism for solitary wave
interaction. Three salient features are that solitary waves
exist only for a finite range of velocities, that interactions can
alter the nature of the solitary waves, and that merging and
splitting are possible. These properties may, no doubt, be of
interest in modeling. In this connection it would be useful to
carry out a stability analysis of the solitons of (2.2) (cf.
Benjamin'®). However, solitons with a large value of P are
certainly orbitally unstable. This can be seen in Fig. 2, where
it is apparent that perturbing the soliton of parameter

P, = J3/2 with any other soliton, no matter how small, al-
ways leads to an S + S—A4 + A4 interaction, and, therefore,

to blowup in finite time. Also, solitons with P, >+3/2 can
split, under arbitrarily small perturbations, into either two
solitons or two antisolitons with parameters P, and P, — P,,
where (P,,P,) lies in the arc AB. On the other hand, numeri-
cal evidence has led us to conjecture that small-amplitude
solitons are orbitally stable. This conjecture can be proved
for the periodic problem for (2.2). The details will be report-
ed elsewhere.
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