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1. Introduction

We study the definition of stability in nonlinear situations. We show that the 'naive'
concept obtained by extending the standard linear definition is too narrow to cater
for truly nonlinear problems. The merit of two better definitions due to H.B. Keller
and H. J. Stetter is then assessed. These improved definitions, while very satisfac-
tory wheﬁ dealing with ordinary differential equations, are not well suited for the
partial differential equation case. An alternative concept is suggested which

extends Keller's definition.

We begin'by recalling in Section 2 the basic concepts of the linear case s].

2. Preliminaries

Discretizations. We consider a fixed, given problem concerning a, not necessarily

linear, differential or integral equation. Let u denote a solution of this problem.
(Well-behaved nonlinear problems may of course possess more than one solution.) Often
u cannot be readily expressed in terms of the data and one must obtain a numerical
approximation U to u. We have appended a subécript h in order to reflect that Uh de-
pends on a (small) parameter h such as a mesh-size, element diameter etc... In.what
follows we always assume that h takes values in a set of positive numbers H, with

inf H = 0. The numerical approximation Uh is reached by solving a discrete problem
'(2.1) ¢h(Uh) = 0, .

where, for each h in H, Qh is a fixed mapping with domain Dh<: Xh and taking values

tin Yh. Here Xh and Yh are vector spaces, either both real or both complex, with ' i

" (2.2) dim Xh = dim Yh < ®,

"It is typical of nonlinear situations that °h cannot be defined everywhere in XP: it
}may involve logarithms, square roots etc... We assume, until further notice, that Dh'

. denotes the largest subset of Xh where the analytic expression for @h makes sense. As

h ranges in H, the family of problems (2.1) is referred to as a discretization.

;Global error, convergence. When a solution Uh of (2.1) has been gbtained, the questlon
arises as to what extent does Uh provide a good approximation to u. Aflrstdlfflculty
in answering this question stems from the fact that Uh can be completely dissimilar
to u. (Typically U is a wvector with, say, d entries, while u is a function of one or
several continuous varlables,) Tnls'dl;flculty is circumvented as follows. Since any :
solution U of (2.1) is bound to be an element in Dh’ we first make up our minds as

to which eiement Uy in Dh should be regarded as the most desirable numerical result.
(Typically ug contains d nodal values of u.) Once u, has been chosen, the vector e, =
- U is defined to be the global error in Uh' In order to measure the size of this
error, we introduce, for each h in H, a norm f.l in X, (Norms in different spaces

will simply be denoted by | .[l without mention of the space.) We say that the discre-



tization (2.1) is convergent if there exists ho > 0 such that,for each h in H with h

< h, (2.1) possesses a solution U and as h+ 0, lim “uh—UhH = lim “ehu = 0. If,

" furthermore, HehH = 0(hP) as h + 0, then the convergence issaid to be of order p.

Local error, consistency. The local (discretization) error in uy is defined to be

the element 1h = %1hﬁ3 € Yh. The measurement of the size of 1h requires, therefore,

the introduction of norms ﬂ.l[ in Yh. When these norms have been chosen, (2.1) is

said to be consistent (resp. consistent of order p) if, as h + 0, ﬂlhﬂ + 0 (resp.
_ p
Il = o(h®)).

Linear stability. So far no distinction has been made on the linear or nonlinear cha-

racter of (2.1). In dealing with stability it is expedient to first present the linear.
case, where there is universal agreement in the literature. Let us then suppose that

(2.1) takes the linear form

(2.3) ¢h(Uh) = WhUh - fh =0 or YhUh = fh,
where, for each h in H, Wh is a linear operator (matrix) mapping Xh into Yh and fh is
a fixed element in Yh' If norms in Xh and Yh have been introduced as above,then {2.3)

is stable if there exist positive constants S (the stability constant) and h0 such
that for each h in H, h < ho, and for each Vh in Xh

(2.4) thﬂ < 8 Iwhvhll .

The bound (2.4) is employed to derive two kinds of properties:

(i) Assume that for h small (2.3) is uniquely solvable. (The solvability of the dis-

_crete equations is obvious in some applications, e.g. explicit methods in initial

. value problems, but cannot be taken for granted in many other settings.) Considera-

“tion of (2.4) for h varying leads to the easy proof of the implicatioﬁ "consistent

: (of order p) + stable +~ convergent (of order p)." In fact b

(2.5) lu-u, 0 < s fly (o =Ud T = ey (u )0, (U, !

‘which leads to ,
(2.6) ol = Ul <5 oy Cul = s k1,

gand the last term is o(1) (resp. 0(hP)) for consistent methods {resp. for methods

1
i
'

- consistent of order p). ’ |

"Remark 2.1. If (2.3) represents an initial value problem, then, under the appropriatef

éSee (1. '

choice of norms, (2.4) is identical to the requirement of uniform boundedness of the 2

¢ {
‘powers of the evolution operator which maps a time-~level into the next (Lax stabiLity:

i

‘Remark 2.2. In practice the computed Uh does not satisfy (2.1) but ¢h(Uh) = oy with °

Ph accounting for round-off. There is no difficulty in incorporating this fact into

the analysis; the bound (2.6) is obviously replaced by “ehﬂ <s ”lh" + th" ).
{ii) If we now look at a fixed value of h, h < ho, then (2.4) shows that vhvh =0
-1

implies V, = 0, or (see (2.2)) that Wh exists. We emphasize that in the linear case

h
the existence and uniqueness of .solutions follows from the stability bound (2.4).



3. Nonlinear stability, first attemps

_In the rest of the paper we return to the nonlinear discretization (2.1) and assume
‘ that we have made, for each h, definite choices of elements Uy in Dh and norms in Xh %
and Yh' Our task is to study how best to define the notion of stability under the ‘
restriction that the conclusions in points (i)-(ii) above are still valid.

On looking at (2.5)-(2.6), it is clear that if the existence of Uh is guaranteed,
then consistency implies convergence (point(ii)) provided that a bound

(*) hv~w | < s o, (v )-e, ()]

holds for h in H, h sufficiently small, Vh and Wh arbitrary in Dh’ S independent of h

‘T;;f and Vh’ wh. This leads to the following temptative definition of stability.(N::naiveL

Definition N. The discretization (2.1) is stable if there exist positive constants S

(the stability constant) and ho, such that for each Vh’ Wh in Dh’ and each h in H,

h < ho, the bound (*) holds.

The techniques presented in the next Section show that, under very mild hypotheses, a
consistent discretization which is stable in the sense of definition N possesses
unique solutions Uy for small h (point (ii)). The conclusion appears to be that this
definition is satisfactory and in fact this definition and minor variants of it have
often been employed in the literature. However the Definition N is so restrictive
that classifies as unstable many useful numerical methods.

Example. Let o be a fixed constant 0 < e < 1. If N is a positiye integer and h = l/N;
consider the discrete equations

+(3.1) UO - a=0,

(Un+1

I
(@]
oy
=2

|
[ury

- U )/h "\f(U ) = 0, n
N n n ]
‘where f(v) = v2. This results from the application of Euler's rule to the problem g
u(0) = a, du/dt = u2, 0<t<l, with solution u(t) = a/{1-at). Here Uh = (UO, Ul,..ﬂ
EUN) and Xh = Dh and Yh are spaces of (N+l)-vectors. We choose uy equal to the grid
‘restriction and ‘norms

“Vhl = max |vnl, if V= (vo, Vis eee s VN) e X»
Ie

These are typical norms for initial value problems [5]. We now pgove that (3.1) is

F
, 'N) € Yh.

n

thnl, if F = (FO, Fiv one

- T
IFol * 4 1nan
not N-stable. It is enough to consider the (N+l)-vector Vh in X recursively defined é
:(3-2) Vo—d=1-—a, :

(V- v )/ - £(v,) =0, n=0,1, ... , N-1. 3

It follows from [6] that as h + O, Vg ™ 1/(h+loglh}). Then, as h + O, ﬂuh-Vh“ incre—
ases without bound, while ﬂ¢h(Vh)R = 1 - & and, by consistency, H@h(uh)“ = 0(h).

Thus (*) cannot hold with S independent of h.

It is expedient to gain insight into this example. The equations (3.2), which so
far have been viewed as the result of perturbing the right hand side of (3.1) are the

Euler discretization of the problem v(0) = 1, dv/dt = vz, whose solution 1/(1-t) is




infinite at time t = 1. This explains why it is not reasonable to expect that

| uf 1)—V | be boundable in terms of the size |l a| of the perturbation as required by
the definition N. It is clear that, for stability, we should not agk that (*) holds

if the perturbation ¢ (V ) is too large or alternatively if Vh is too far away from

Uy - This introduces the 1mportant idea of stability threshold discussed next.

4. Stability, Stetter's definition

The following definition is used by Stetter | 7]:

Definition S. The discretization (2.1) is stable if there exist positive constants S

(the stability constant) and ho' and a value r, O<r <= (the stability threshold)

such that for each h in H, h < ho and for each Vh’ Wh in Dh with

(4.1) I, (v,) -o, (w )l < r, o, (W) -0, (u)l < r,

the bound (*) holds.

It is easy to show that, when (2.1) takes the linear form (2.3), & discretization
which is stable with threshold r <= is also stable for the threshold r = =. For this
choice (4.1) provides no restriction and we accordingly recover the usual linear

definition. Note that the present definition is less demanding than the naive defi-

nition N, since (*) is only asked for vectors Vh, satisfying the threshold

condition (4.1). In the context of the example abovz, it is not necessary now to cater
for the unruly vector Vh generated in (3.2): with r < l-a, Vh would not pass the test
(4.1) that vectors must undergo before we let then feature in (*). The main point is
that the threshold condition (4.1) which leaves out unwelcome vectors is not in the
way of the two elements u, and U which we want to substitute in (¥) to estimate the .

global error: with Vh = = Uh the condition (4.1) is satisfied for small h; i

1
zthis is obvious for uy ang coisistency takes care of Uh' Then the implication "stab- i
ility + consistency + convergence" can be proved in the usual simple way, provided
fthat the existence of solutions has been established. !
: Moreover the Definition S is also successful in proving existence of solutions
:(point ii). Here the erucial stepping-stone is the following Lemma due to Stetter .%
'Lemma. Let X, Y be normed spaces with ths same finite dimension,? : D& X+Y a .
.mapping and u an element in D. Assume that: (L1) There exists R > 0 such thattheopen.
ball B{(u,R) is contained in D. (L2) ¢ is continuous in B(u,R). (L3) there exist S >0
iand r, 0 <r < = such that if v and w are in B(u,R) and ;
| o(v) - el <, o) el <r
-then
fv-wl<si O(v) - ow) .
Under the hypotheses (L1)-(L3), ¢ possesses an inverse mapping o defined in the open
ball B(#(u), ro) and taking values.in B(u,R). Here r, = min (R/S, r). Furthermore this
inverse is Lipschitz continuous with constant S.
"~ We now give the following important result (Stetter [7], Th. 1.2.3):

Theorem S. Let the discretization (2.1) be consistent and S stable. Assume that there



exists a constant R (independent of h) such that, for each h in H, ¢h is continuous

in the open ball B(uh,R)c:.Dh. Then:

(a) For h in H, h sufficiently small, the discrete equations (2.1) possess a
solution Uh in B(uh,R).

(b) This solution is unique in Dh'
(c) As h + 0, the solutions converge and the order of convergence is not smaller

than the order of consistency.

Proof. If S is the stability constant and r the stability threshold, application of
the Lemma to ¢h guarantees the existence of an inverse @;l defined in,B(¢h(uh),ro),
r = min(R/S,r), h sufficiently small. Consistency implies that for h small H¢h(uh)ﬂ

. _ -1 _ -1 L.
< r,i.e. 0 B(¢h(uh).ro) = dom(¢h ). Then U, = o, (0) is in B(uh,R) and solves
(2.1). This proves (a). The uniqueness follows without resorting to the Lemma. In
fact for h small, any solution Zh of (2.1) satisfies (4.1). Therefore if Z Z2h are

ih’
two solutions of (2.1)

The easy proof of (c) has been given above.

5. Stability, H. B. Keller's definition

H.B. Keller [2] presented an alternative way of introducing thresholds in the naive

definition.

Cefinition K. The discretization (2.1) is stable if there exist constants S > O (thé

stability constant), ho >0 and R, 0< R < = (the stability threshold), such that for
:each h in H, h < ho’ the open ball B(uh,R) is contained in D
.in this ball the bound (*) holds.

and for each V and W

h h h

i
Again this definition reduces to the standard one in linear cases. Now the i
.stability inequality is only asked for Vh and Wh near u, . This involves a threshold j
“condition which explicitly involves Vh and Wh in lieu of their images ¢h(Vh), ¢h(wh) E
‘which feature in Definition S. !
As distinct from the situation with Stetter's definition, it is far from obvious
;that the stability in the sense of Keller and the consistency of a discret%zation i
'imply convergence, even if the existence of Uh has been proved independently. In fact;
it seems that, even if the existence of Uh is guaranteed, the stability estimate (*)
-cannot be applied to bound the global error without first proving the a priori bound :
ﬂuh—Uhﬂ <R. This notion is wrong. There is no need for a priori bounds. Again the '
.theory hinges on Stetter's lemma which can be readily applied to prove.
Theorem 1. Let'the discretization (2.1) be consistent and stable in the sense of def-
, inition K. Assume that ¢ is continuous in B(uh,R), where R is the threshold. Then

h
the conclusions {(a) (existence) and (c) (convergence) of the Theorem S hold. Further-

more:
(b') The solutions Uh of (2.1) are unique in the ball B(uh,R).
It should be emphasized that the connection of Definition K with Stetter's lemma

was first established in [3 ]. Keller [2] resorts to linearizgtionS'u:proveconvergence.



6. Practical implications

The definitions N, S, K will now be compared. It is useful to present first a simple
example which gives much insight. We consider the problem

(6.1) - du/dt = f(u), 0 <t <1, u(0) =

where o is a fixed real number and f a fixed C1 real function defined for -= <u < =,
Tt is assumed that (6.1) possesses a solution u(t) defined up to t = 1. If h = 1/N,
N a positive integer, the problem (6.1) is discretized by Euler's rule as in (3.1).
Here Uh = (UO, Ul, oo UN) and Dh = Xh, Yh are spaces of (N+l)-vectors. The norms
and the elements u, are chosen as in the example of Section 3. The discretization is.
consistent of the first order ( u is C, ) and the existence of a unique solution U
is evident.

(A) Following most textbooks, we first make the hypothesis that f is globally
Lipschitz-continuous, i.e. that there exists a constant L such that for v, w, real
(6.2) | £(v)-f(w)| <L |v-w|.

This is a very restrictive hypothesis that not many smooth nonlinear functions f

would satisfy.

In order to study stability, we take vectors Vh and Wh, define'Fh = ¢h(vh)f Gh =
Qh(wh) i.e. |
(6.3a) FO = Vo—a, Fn+l = (Vn+1'vn)/h - f(Vn), n=0, . , N-1, E

— — = 1 - = ‘' N—
(6.3b) GO = WO a, Gn+l (Mn 1 -W )/h f(w ), n=0, . .. N-1,

and try to bound IV W | in terms of IFn—GnI, uniformly in h. This is easily done.

Subtractlon in (6.3) leads to

. v W ) - ‘
(6.4) VoW +h (£(V)=£(W ) + b (F -G ) |
m=0,1, ... , N-1, and use of (6.2) yields E

-wn+1| < (1+hL) lvn—wnl +h |[F_ -6 _|. .

1(6.5) lvn+l

n+l n+l

‘A well-known induction argument, using induction in n, shows that

: : Ly v
(6.6) hv,-w b = max [V W 1< e (TFg=Gol + Iy o h|F -G |)

L
leo, (v, )-o, ()] ;

This proves stability in the sense of N, and a fortiori in the weaker senses S and K.?
E(In S and K the thresholds can be respectively chosen r = =.or-R = =, so that the '
threshold condition becomes void.)

(B) We now suppress the restrictive assumption (6.2) introduced in (A). In this
general framework the Euler discretiztion (3.1) is not, in general, N-stable, asshown
by the counterexample f(u) =.u2, studied above. (The argument leading to (6.6) breaks
down, one cannot proceed from (6.4) to (6.5).) However it is still possible to show
that (3.1) is K-stable and hence convergent. Let R be a positive number and consider
the union M = M(R) of the intervals [u(t)-R, u(t)+R] for t varying, O < t <1, We

can think of values not in M as being far from the values taken by the solution u and



therefore irrelevant to the problem. The properties of f outside M should not affect
the convergence or otherwise of the discretization. Now .the smoothness of f implies
that (6.2) must be valid, with a suitable constant L = L(R), for v and w in M. To
prove K-stability with threshold R, only vectors Vh' wh such that

“Vh—uh“ = maxnlvn—u(nh)l <R, "Wh—uh! = maxnlwn—u(nh)l <R

must be considered. But this threshold condition implies that Vn and W_ lie in M,
" where (6.2) holds. Then it is again possible to proceed from (6.4) to (6.5) and (6:6)
follows, proving K-stability and hence convergence via Theorem 1. Note that we have

not needed any a priori bounds on Un'

(C) The literature contains several ad hoc tricks to prove the convergence of
(3.1) in cases where f is not globally Lipschitz~continuous and therefore N-stability
does not hold. Some of these tricks have been reviewed in [3]. Note that our Theorem
1 easily bypasses the need for any ad hoc considerations and that proving stability
in the sense of Keller for smooth f is not more difficult than proving N-stability
for globally Lipschitz f.

(D) Until now the function f has been assumed to be defined for all real u. Very
often (i.e..if f involves logarithms or square roots) f is only defined in a suitable
neighbourhood M = M(R) of the solution. In this case the existence of Uh cannot be
taken for granted: a value n can be reached in the time-stepping so that Un+l is out-
side M and then Un+2 cannot be computed. The technique in (B) shows that for h small
the discrete equations possess a solution.

(E) Stetter's definition. Let us now return to the situation in (B): (f smooth and

defined for all real u, but not globally Lipschitz-continuous) and try to prove thati
(3.1) is stable in the sense of Stetter. We have now to show that a stability bound ;

like (6.6) holds for V_ and Wh close to U close meaning that (4.1) holds. As dis-—

h .
tinct from the situation in (B), where we had information relating directly to V.,V .

) :
we now know that Fn’ Gn are small. Unfortunately it is not apparent how this inf:rmz;
tion could be used to go from (6.4) to (6.5). Therefore Stetter's stability does not
~appear fo be easily checked in practice. In fact we are not aware of many instances
where S—stability has been proved from first principles. However it is fair to say
that the more advanced linearization theory of Stetter [7]can be employed to prove
the S—-stability and convergence of (3.1).

Thus, while the conclusions in Theorem S and 1 are equal in strength, the practi-

cal application of the framework in Section 5 is easier than that of the material in

Section 4. On these grounds we believe that Keller's definition should be favoured.

(F) Uniqueness. There is a final issue to be commented upon. Theorem S guarantees
the uniqueness of Uh in the whole domain Dh' whereas Theorem 1 only yields uniqueness
in the ball B(uh,R). Many nonlinear problems, mainly in boundary value settings, pos-
ses several isolated solutions uy and correspondingly their consistentdiscretizations
are expected to have, for each h, several solutions Uih' Such discretizations cannot

be S-stable: if they were they would contradict Theorem S, conclusion (b).



See [3], [4] for further analysis of the relation between definitions S and K.

7. Restricted stability

Just as the naive definition N was too restrictive to cater for most realistic ODE
problemé, the improved definitions S and K are too narrow to accommodate many PDE pro-
blems. This statement does not question the merits of the definitions by Stetter and
Keller, as these authors were mainly concerned with ODEs.

Cases of convergent nonlinear PDE discretizations which are not stable in the sen-~
ses S or K have been presented in [1], [8] .and some insight into the situation will
be obtained from the example in the next Section. For the time being, we anticipate
that in order to cope successfully with nonlinear PDEs is essential to allow thres-

holds which depend on h. Several stability definitions using such thresholds have

been suggested in the literature, see [3]. We introduce the following definition.

Definition. Suppose that, for each h in H, Rh is a value 0O < Rh < . Then the discre-

tization (2.1) is said to be stable {(restricted to the thresholds Rh) if there exist
positive constants ho and S (the stability constant) such that for h in H, h < ho’
the open ball B(uh,Rh) is contained in the domain D

ball the bound (*) holds.

and for any V. and W_ in that

h h h

Clearly Keller's definition is recovered in cases where the thresholds can be éﬁo;
sen independent of h. Again, in linear cases this definition reduces to the standard

one. Furthermore with the present definition a smooth discretization is stable if

and only if its linearization around u, is stable [4]. It is also possible to derive

requivalence theorems.

The final theorem is provedas Theorem S.

Main Theorem. Assume that (2.1) is consistent and stable with thresholds Rh. If °h

is continuous in B(uh,Rh) and "lhﬂ = o(Rh) as h + 0, then:
(i) For h small the discrete equations (2.1) possess a solution in B(uh,Rh).
(ii) This solution is unique in the ball.
(iii) As h - 0, the solutions in (i) converge. The order of convergence is not

smaller than the order of consistency. i

8. An application

A nontrivial example of the application of the theory just introduced is now presen-
ted which is useful in gaining insight into the need for h-dependent thresholds. ,

We consider the following l-periodic initial value problem for a nonlinear Schroe-
dinger equation [3]:

(8.1) iu, +u_ + f{u) =0, o < X < @

< < e
t po ’ 0<t<T '
(8.2) u(x,t) = ul(x+l,t), = < x < =, 0<t<T,
(8.3) u(x,0) = uo(x), —» < X < @,
where 12 = -1 and u is complex. The initial datum ug is l-periodic and the {(nonlinear)

function f is smooth and defined for all complex u, but not globally Lipschitz-conti-



nuous. (In applications of physical interest f is often a power.)

If J is a positive integer, we introduce the mesh size Ax = 1/J and the grid x_,
j integer. With ¢ a fixed positive constant, we define the time-step h = cax and the
time levels tn =nh, n=0,1, ... , N, N= T/h . Now (8.1)-(8.3) is discretized by
means of standard spatial central differences together with a Crank-Nicolson time-

stepping. Explicitly:

0]
. - =0, j=1, «ur, J;
(8 4) Uj uO(xj) J ’ J
- 1 22 1
(8.5) i L)+ ) ST U+ 4(f(U“+1> £(UM) = o0,
J J J J J
n=0,1, ..., N-1; j =1, «.. , J. In (8.5) use must be made of the periodicity in

the computation of § U j=1,J.
It is convenient to collect the J complex values U s, Jo=1, , J in a vector

g and analogously define vectors U i(g ). With this change in notation (8.4)-(8.5)

become
0
(8.6) U-u =09, ,
- -1
(8.7) h 1Ahg“+l - n7B U ¥(e(U™ (™) = 0, 0 <n < N1,
where Ah, Bh are suitable complex JxJ matrices..This is a discretization of the form
(2.1), where Dh = Xh and Yh are spaces of block vectors with N+l blocks, each block

being in turn a vector with J complex entries. We employ the norms (cf. Section 3)

. 0 .1 N
maxnl[y_n“z, if v = (V, Ve, V) e X

(8.8) v, |
(8.9) IE I = 1520+ Dpnen B IE D 36 F = (), B ven s E) e Yo
in (8.8)-(8.9) | .1 o denotes the usual discrete L,-norm.

When the theoretical element uy is taken to be the obvious restriction of u to the
grid, consistency of order p = 2 is easily proved via Taylor expansions.

The stability of (8.6)-(8.7) will be studied next. Let Vh and W. denote two ele-

h

‘ments in Xh and, as in Section &, set Fh = ¢h(Vh), Gh = ¢h(wh). Then, for n = 0, ..

N-1 we can write

n+l

rxy
it

vn+1 B Y /(f(vn+l)+£(y“)),

h—~
9.n+l h—lAh!é+l - n Bh! Z(f(w

n+l

J+£(Wh)), -
As in Section 3, these are subtracted to get

(8.10) A (vt

n+l n+l
L =B () - (h/2) (20 ) -

(h/2) (£(W)-£™) + h (@E™g™).

Now the relations

T

-1
NP la, Byl 5 <

are easily derived either by an energy estimate or by a von Neumann analysis. Thus:



(8.11) IV, < (V7w + (h/2) e h f(w“"l)lz+

n/2) [£@-£WM1, + b JETGM . i

In order to apply the standard induction argument, we would like to have bounds

(8.12) “f n+l) E(wé+l)“ )< L H!n+1_yn+l“2 .
n
™ -£M 1, < L v,
A Keller threshold is of no use: even if the attention is restricted to elements Vh,
Wh with

17, -u | = max Jv=ul, <R, W -u o= max -, < R,
the individual grid values V?, W? may increase like h_y2 and it is not possible to
bound f(V?)ff(WE), as £ is not globally Lipschitz-continuous. On the other hand, it
is obvious that (8.12) holds if we introduce an h-dependent threshold condition as
follows ‘

%

1
IV, o I = max |67, < bn® %

“wh—uhl = maxnﬂyn-gnﬂz < bh™,
When (8.12) holds, the standard induction argument leads to the stability bound (¥).
Thus we have proved stability restricted to the thresholds bhz, b any positive
constant. Since the order of consistency is 2, the condition ﬂlhl = o(Rh) is fulfi-
1led and our main Theorem shows that the discretization is convergent of the second
order, i.e. (8.7) possesses a unique solution En near Eﬁ (provided that h is small

enough) and furthermore

n n 2
max jui—u| 5 = o(h%). 5

Before we conclude the paper we would like to mention that even though our exam- |

ples have dealt with finite differences, finite elements can be treated in an analo-n

“gous way [4]. Also the restriction to nonlinearities of the form f(u) was dictated by
"simplicity in the exposition; more general nonlinear terms, involving derivatives of

'u, can also be studied in a similar manner.
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