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Summary. The "good" Boussinesq equation utt = - u . . . .  + Uxx + (u2)~x has 
recently been found to possess an interesting soliton-interaction mechanism. 
In this paper we study the nonlinear stability and the convergence of some 
simple finite-difference schemes for the numerical solution of problems involving 
the "good"  Boussinesq equation. Numerical experiments are also reported. 

S u b j e c t  c la s s i f i ca t ions :  AMS(MOS): 65MI0; CR: G.1.8. 

I Introduction 

It has recently been discovered [7] that the interactions of solitary-wave solu- 
tions of the "good"  Boussinesq equation 

utt = - u . . . .  + Uxx + (U2)x~ 

obey a highly interesting mechanism. The analytic expression of such solutions 
is 

(1.1) u ( x , t ) =  - A s e c h E [ ( p / 2 ) ( 4 - ~ o ) ] ,  4 = x - c t ;  

where 40 and P >  0 are free real parameters and the amplitude A and velocity 
c of the wave are related to P through the formulas 

(1.2) A = 3 p 2 / 2 ,  c=  + I / / I - P  2. 

Note that 40 determines the initial position of the wave, and that, due to the 
square root in (1.2), the parameter P can only take values in 0<P=< 1. Thus, 
the solitary waves (1.1) only exist for a finite range of velocities - l < c < l .  
Of course, a positive (respectively negative) velocity corresponds to a wave mov- 
ing to the right (respectively to the left). 

When two solitary waves with parameters P1 and P2 are initially well sepa- 
rated and approach each other, a nonlinear interaction takes place. If PI and 
P2 are of moderate size, the incoming waves emerge of the interaction without 
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changing shape or velocity. However, if P1 and P2 are large, the interaction 
leads to the creation of singular solutions, which have been studied in [7]. 
In the border-line case between the two situations previously described, the 
incoming waves merge into a single wave with parameter P3 = P1 + P2. 

To sum up, the "good"  Boussinesq equation is similar to the Korteweg-de 
Vries (KdV) or cubic Schroedinger (CS) equations, in that it gives rise to solitons. 
However it differs from these well-known equations in a number of features: 
finite-range of velocities for the solitary waves, possibility of interactions leading 
to singular solutions and possibility of two waves merging into a single one. 

While for the KdV and CS equations the available literature, both numerical 
and analytical, is very large, the study of the "good"  Boussinesq equation is 
only beginning. Two recent papers, containing references to earlier work, are 
I-6] and [7]. In [6] an exact formula is given for the interaction of solitary 
waves. Numerical experience is also reported. The article [7] studies in detail 
the interaction mechanism and discusses the existence and regularity of solutions. 
However further investigations are needed, particularly as far as the stability 
of the solutions is concerned [8]. Clearly such investigations should combine 
numerical studies with analytical techniques. 

This paper is devoted to the analysis of finite-difference methods for the 
numerical integration of the "good"  Boussinesq equation. For the sort of prob- 
lems considered here (one-dimensional, smooth waves), finite-difference tech- 
niques are often (see e.g. [13, 14]) judged not to be competitive with spectral 
and pseudo-spectral methods. However, it is fair to say that the finite-difference 
schemes presented in this paper are very simple to code and may be easily 
modified to cater for a variety of boundary conditions. Therefore, such schemes 
may provide convenient numerical methods if high accuracy is not required. 

The organization of the article is as follows. In Sect. 2 we present the problem 
to be solved. In the Sect. 3 we introduce a simple explicit scheme. Its nonlinear 
stability and convergence are proved in Sect. 4. Section 5 is devoted to the analy- 
sis of unconditionally stable implicit schemes. The final Section presents some 
numerical experiments. 

2 The "good"  Boussinesq equation 

We consider the periodic problem 

(2.1) u,, = - u . . . .  + uxx + (u2)~, 

(2.2) u(x, t) = u (x + 1, t), 

(2.3) u(x, O) = u~ 

(2.4) u,(x, 0) = v ~ (x), 

-- oo < x <  oo, O < t <  T<oo,  

- o o < x <  oo, O< t < T ,  

--OO < X < O O ,  

- - O O < X <  00,  

where the data u ~ v ~ are 1-periodic functions, which are assumed to be smooth 
enough for (2.1)--(2.4) to have a unique solution (cf. [7, 8]). 

The quadratic functional 

(2.5) II u, II 2 + II Uxxll 2, 
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where [l" 11 denotes the standard L2-norm for 1-periodic functions, is an invariant 
of motion of the problem given by (2.2)-(2.4) along with 

(2.6) u . = - u ~ ,  

i.e. of the periodic initial-value problem for the linear principal part of the 
"good" Boussinesq equation (2.1). The conservation of (2.5) is proved by multi- 
plication by u, in (2.6) and integration by parts. 

Another conservation law for (2.2)-(2.4), (2.6) is given by 

1 1 

u,(x, t) dx=  ~ v~ 
0 0 

leading to 

1 1 1 

(2.7) I u(x, t)dx=t ~ v~ ~ u~ 
0 0 0 

Combining the conservations of (2.5), (2.7), using the Cauchy-Schwartz inequality 
and denoting ut = v, we arrive at 

(2.8) ([Iv(., 01t2+ Ituxx(., 0112)'/2+ i u(x, t)dx 

1 

so that the l-periodic, initial-value problem for (2.6) is well posed in the following 
energy norm for pairs (v, u) of 1-periodic functions belonging to L~ • H i,  

(2.9) 1 d x .  II(v,u)ll~=(llvll2+ Ilu~xl12)l/2+ ~ u 
0 

Now the well-known inequalities 

I 2 

(2.11) I l w x J I 2 ~  IlWxxll 2, 

valid for wellS, clearly imply that the norm in (2.9) is equivalent to the Sobolev 
norm 

(2.12) (llvl[ 2 + IluH 2 + [luxll 2 + Iluxxll2) x/2- 

Therefore (2.8) shows that (2.2)-(2.4), (2.6) is well posed L~ x H~. The nonlinear 
finite-difference analyses to be presented later are based on the use of discrete 
analogues of the energy norm in (2.9). 
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3 An explicit scheme and its energy norm 

Let J be a positive integer and set h = 1/J. We denote by Z h the space of real, 
1-periodic functions defined on the grid {xj: xj=jh, j = 0 ,  +1 ,  + 2  . . . .  }. Thus 
each element V~7Z, h is a sequence {Vj}j=o, • x .... with Vj= Vj+ j , j=0 ,  + 1 . . . .  We 
need the following finite-difference operators with domain and range equal to 
zh. 

(3.1) (T+ V)~= Vj+ 1, j = 0 ,  •  +_2 . . . .  

(3.2) (T_ V)~= Vj_ 1, j = 0 ,  + l ,  +-2 . . . .  

(3.3) (O+V)j=(Vj+I-Vi)/h, j=O,  +-a, +-2 . . . .  

(3.4) (O_V)j=(Vj-Vj_O/h, j=O,  +-l, +_2 . . . .  

(3.5) D 2 = D + D_,  

(3.6) D 4 = D 2 D 2. 

Next, let k denote a parameter  0 < k < T and consider the time-levels t, = n k, 
n = 0 ,  1 . . . . .  N, with N=[T/k]. In the sequel a superscript n denotes a quantity 
associated with the time-level t,. With these notations, we consider the finite- 
difference scheme 

(3.7) ( U " + I - 2 U " + U " - ~ ) / k 2 =  -D4Un+D2Un--I-D2(Un) 2, n=0 ,  1 . . . . .  N - - 1  

with the periodicity condition 

U"eZh,  n=0 ,  1 . . . . .  N - 1  (3.8) 

and initial values 

(3.9) 

(3.10/ 

U 0 ~ ~,  

(U 1 - U~ =# ,  

where ate;E h,/leT.h are given approximations to the grid-restrictions of the func- 
tions u ~ and v ~ in (2.3), (2.4). 

The remainder of this section deals with the construction of a discrete ana- 
logue of the energy norm (2.9). We first introduce a discrete analogue Qk of 
the quadratic functional (2.5). If (W, W*)~Z h x Z h we set 

(3.11) Qk(W, W * ) =  [ I (W- W*)/kll 2 + (D2W, D2W*), 

where I1" I[ denotes the standard L2-norm 

[]W[12 = Xx__<j__<sh Wj 2 

and (.,.) represents the corresponding inner product. (Note that the same symbol 
II ~ II is used for the continuous and discrete cases, but no confusion is possible.) 
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The definition of the quadratic form Qk in (3.11) is motivated by the fact that, 
if UneTZh, n=0 ,  1 . . . .  , N satisfy 

(3.12) (U"§ i - 2  Un +Un-  1)/k 2= - D 4 U  n, n--0, 1 . . . . .  N - l ,  

(principal part of (3.7)), then 

Qk(un+I, un)=Qk(U1, U~ n=O, 1 ....  ,N--1.  

This follows easily by induction, after taking the inner product of (3.12) and 
(U . + 1 _ U .) + (U . _ U n - 1) and noticing that in (3.6) the operator D 2 is selfadjoint. 

After introducing the averaging functional I 

I(W)=Sl<=j<_shWj, W ~ h ,  

we define the energy 

(3.13) H(W, W*)IIE = Qk(W, W*) ~/2 + ]I(W)I, (W, W*)~ T. h x T,h, 

for which it is easily shown that the solutions of (3.12) possess an estimate 
similar to (2.8). However such an estimate will not be presented here because 
it plays no role in the analysis of (3.7) to be carried out in Sect. 4. We rather 
turn to the study of the properties of (3.13). 

Proposition 3.1. Assume that r :=k/(h 2) < 1/2. Then there exists a positive constant 
C1, depending only on r, such that for (W, W*)~Zh x ;Eh 

(3.14) Qk(W, W*)<II(W-W*)/klI2 +(1/2)HD2Wtl2 +(I/2)IID2W*II 2 

<C1 Qk(W, W*). 

Proof. The first inequality in (3.14) is obvious. To prove the second, we introduce 
the following quadratic form Pk in Zh X 7/h 

Pk(W, W*) = IF (W - W*)/k I{ 2 + (1/2)t] 0 2 W tl z + (1/2)11 0 2 W* II 2 

and compare the eigenvalues/vectors of Pk and Qk. 
From (3.11), the self-adjoint operator in ~hX7Zh associated with Qh may 

be writen in block form as 

__ k-2I  - -k-2l+�89 4] 
k-EI+�89 4 k-2I  J 

therefore, if (W, W*) is an eigenfunction associated with the eigenvalue 2, then 

k - 2 W _ k - 2 W *  +(1/2)D4W*=2W, 

- k - 2 W  +(1/2)D4W + k - 2 W  * = ~.W*. 

By adding and subtracting these equations we obtain 

(3.15) (i/2) O4(W+ W*) = 2 (W+ W*), 

(3.16) 2 k-  2 (W - W * ) -  (1/2) D4 (W - W*) = 2(W - W*). 
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When eigenfunctions with W = W *  are looked for, (3.16) holds and (3.15) 
implies that W is an eigenfunction of (1/2)D 4 with eigenvalue 2. This provides 
J eigenvalues of Qk. On the other hand, if eigenfunctions with W -  - W *  are 
sought, (3.15) holds and (3.16) reveals that 2 is of the form 2 k - 2 - / ~  with ~t 
an eigenvalue of (1/2)D 4 and W the associated eigenfunction. 

Turning now to the form Pk, a similar argument yields that the eigenvalues/ 
functions of Pk are {#, (W+W*)}, {2k-2+/~, (W-W*)}  with {/~, W) the eigen- 
values/functions of (1/2)D r Since Pk, Qk possess a common set of eigenfunctions, 
the second inequality in (3.14) is equivalent to the condition 

~(P~)_-__ c l  ~(Qk) 

for the corresponding eigenvalues, or 

(3.17) 2 k - 2 + / g ,  = < C l ( 2 k - 2 - / . t ) ,  / . t~Spec(1/2)D 4. 

Fourier analysis shows that the eigenvalues of the operator D 2 in (3.5) are 
2 h - E ( c o s  2 n j h - 1 ) ,  j =  1, 2 . . . . .  J, so that, according to (3.6), the eigenvalues 
of 1/2D r are 2 h-r 2 1 z j h -  1) 2, j = l ,  2 . . . .  , J. Therefore 
Spec {(1/2)D 4} ~ [0, 8 h-  4] and (3.17) holds with Cz = (1 + 4 r2) /(1-4 r2), pro- 
vided that r 2 < 1/4, i.e. r < 1/2. 

Corollary. If r = k/(h 2) < 1/2, then the expression in (3.13) defines a norm in Zh 
X 7. h . 

Proof The proposition shows that [l'ltE is a seminorm. If n(w, W*)ll~ =0, then 
(3.14) implies that D 2 W = 0 ,  which, taking into account the periodicity of W, 
shows that W must be a constant grid-function. On the other ha nd / (W) - -0 ,  
so that, in fact W = 0 .  Finally (3.14) reveals that W* = W = 0 .  

In [8] a proof is given of the following lemma which provides counterparts 
of the inequalities (2.10)-(2.11): 

Lemma. For W ~ Z  h 

(3.18) IlWll 2 ~ (1/4)lID_ W[I 2 +/(V) 2, 

(3.19) liD- Wll 2 ~(1/4)11 D2 WLI. 

The inequalites (3.18), (3.19), (3.14) readily imply that, for r <  1/2, the energy 
norm (3.13) is equivalent to a discrete Sobolev norm (cf. (2.12)). Namely: 

Proposition 3.2. Assume that r= k/(h 2) < 1/2. Then there exist a positive constant 
C2, depending only on r, and a positive constant C3 (independent of k, h and 
r) such that for (W, W*)~Zh x Zh 

(3.20) C 2 [[(W, W*)[12~ [ l(W- W*)/kl[ 2 + I[Wll2 + liD- W]l 2 -4-IID2WI[ 2 

+ IID2W*I[ 2 ~ C2 2 ]l(W, W*)l] 2. 
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Finally we shall employ the Sobolev-imbedding inequalities I-8] 

(3.21) ILWII2 <(1/2)I]D2WH2 +(5/2)IIWII 2, W~Zh, 

(3.22) liD- Wl! ~ _-< 2 liD2 W/I 2 + IlWl/2, W~Zh, 

together with the inverse estimate 

(3.23) [fW[l ~o <h- t / 2  tiW][, W~Zh. 
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4 Nonlinear stability and convergence 

To investigate the stability and convergence of the scheme (3.7)-(3.10) we employ 
a general analytical framework introduced by L6pez-Marcos and Sanz-Serna 
[9, 3-5]. The cornerstone of this framework is an important lemma due to 
Stetter 1-11, Lemma 1.2.1-t, whose use avoids the need for establishing a priori 
bounds in convergence proofs of nonlinear algorithms [1]. Furthermore, when 
using this general formalism on implicit discretizations, there is no need to 
provide a proof of the existence of discrete solutions separate from the proof 
of convergence. 

To facilitate the readibility of the subsequent analysis, we first present a 
very brief summary of the general definitions and main results of I-3-5]. This 
is followed by a study of the stability, consistency and convergence of (3.7)-(3.10). 
Other instances of use of the general concepts employed here can be seen in 
e.g. [-2, 12]. 

Discretization framework 

Consider a fixed, given problem concerning a differential or integral equation. 
Let u be a solution of this problem. We denote by Uh the numerical approxima- 
tion to u. The subscript h shows that Uh depends on a small parameter h, 
such as a mesh-size. We assume that h takes values in a set H of positive 
numbers with inf H = 0. The numerical approximation Uh is obtained, for each 
fixed h in H, by solving a discrete problem. 

(4.1) ~h (Uh) = 0, 

where ~h is a mapping with domain DhcXh and values in Yh. Here Xh and 
Yh are normed spaces, both real or both complex, with the same finite dimension. 

To investigate how close Uh is to u, we choose, for each h in H, an element 
uh in Dh. This element is a suitable discrete representation of u. Typically, in 
a difference method, Uh will be a set of nodal values of u. The global discretization 
error is defined to be the vector eh = uh--Uh and the local discretization error 
is given by I h = #h(Uh). We say that the discretization (4.1) is convergent if there 
exists h0>0,  such that for h in H, h<ho, (4.1) has a solution Uh in such a 
way that, as h ~ 0, lim Iluh--Uhll = 0. The convergence is of order p, if Ilnh--Uhll 
---t~(hP). The discretization (4.1) is consistent (respectively consistent of order 
p) if, as h ---, 0, lim II ~h (Un) IP = O (1) (respectively ~ (hP)). 
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Assume that for each h in H, R h is a value with O<Rh< +o0. We say 
that (4.1) is stable restricted to the thresholds Rh, if there exist two positive 
constants h0 and S such that for any h in H, h<ho, the open ball B(Uh, Rh) 
is contained in the domain D h and for any Vh, Wh in this ball 

( 4 . 2 )  II v h -  wh II ~ s II ~ (Vh) - ~ (wh)II. 

It should be emphasized that the stability bound (4.2) has to be proved 
not for arbitrary Vh and Wh, but only for vectors V h and Wh "near"  the theoretical 
solution; near in the sense that ItVh--Uhll < Rh, IIWh--uhll < Rh. Thus, this notion 
of stability is weaker than other available [3-5]. However stability and con- 
sistency still imply convergence. Namely: 

Theorem 4.1. Assume that (4.1) is consistent and stable with thresholds Rh. I f  
~h is continuous in B(Uh, Rh) and lllnl[ = o(Rh) as h--* O, then: 

(i) For h small enough, the discrete (4.1) possess a unique solution in B(uh, Rh). 

(ii) As h--* 0 the solutions in (i) converge with an order of convergence not 
smaller than the order of consistency. 

We write the scheme (3.7)-(3.10) within the previous abstract framework 
as follows. 

(i) First of all, only one discretization parameter is allowed in the abstract 
framework, so that a relation between k and h should be imposed. We assume 
that k -  rh 2 with r a fixed constant. 

(ii) We take Xh = Yh = ~]~ +1. In  Xh we use a maximum norm 

[IWnllxh=max{ll(W"+l,W")llE:O<_n<_N--1}, W n : [ W ~  1 . . . .  ,wN]~xh  

and in Yh we employ an Ll-norm 

N 

tlGhllY~= I{(G ~, G~ ~ k IIG"[I, 
n = 2  

Gh = [G O , G1, . - .G N] ~ Yh- 

For the relevance of using L ~ L ~ norms in initial value problems and the relation 
with the familiar Lax stability see [9, 10]. 

(iii) On defining the mapping ~h given by ~h(Wh)= Gh with 

G "  + t = k -  2 ( W  n + 1 _ 2 W "  + W ~ -  1) + D 4 W ~ _ D 2 W n _ _  D 2 ( W ~ ) 2 ,  

G 1 = W  1 -- ~-- kfl, 

G ~ 1 7 6  

l<_n<_N-1, 

the problem (3.7)-(3.10) adopts the abstract form (3.1). Each of the N + 1 compo- 
nents of ~h corresponds to the computation of a time level. 
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(iv) Finally the discrete representat ion of the theoretical solution u is given 
by the obvious  choice 

uh = [rhu ~ rnu I . . . . .  rh/~N], 

where u" is the function u(., t~), n = 0 ,  1 . . . . .  N and r h denotes the grid restriction 
opera tor  (with values in Zh). 

Consistency 

Simple Tay lo r  expansions yield: 

Theorem 4.2. Assume that the solution u of {2.1)-(2.4) possesses bounded derivatives 
~4U/(~t4, ~6U//~X6, 0 ~ X - ~  ~ 1, 0 ~ t - ~ T .  Then the local error of the discretization 
(3.7)-(3.10) satisfies 

(4.3) II~h(Uh) llyh< II(U I --rh ul, U~176 + f(k2 +h2), 

where C is a constant depending only on u and T. 

Note  that  the choice 

(4.4) ~t=rhU ~ f l=rhVO+(k/2)rhUt , ( . ,O)  

in (3.9)-(3.10) leads to 

(4.5) II(Ul -rhul ,  U~176 + h2), h ~ 0 ,  

and therefore to consistency of the second order. Of course u,  in (4.4) is available 
from u ~ v ~ and the differential equation. 

Stability 

The key result of this section is the following: 

Theorem 4.3. Assume that r=kh-2  < l/2 and that the derivatives ux, uxx of the 
solution u of (2.1) are bounded for O< x<  1, O<t< T. Fix a constant # > 0 .  Then 
the discretization (3.7)-(3.10) is stable with thresholds R h = ~ h  1/2. 

Proof Let Vh, Wh in B(un,/zhU2), V h = [ V  ~ V 1 . . . . .  VN], W n = [ W  ~ W 1 . . . . .  W N] 
and set ~h(Vh) = IF  ~ F 1 . . . . .  FN], ~h(Wh) = [ G  ~ G 1 . . . . .  GN]. Then, by definition 
of ~h, 

( V " + I - 2 V " + V " - I ) / k Z + D 4 V " - D 2 V " - D 2 ( V " ) 2 = F  "+1, n = l ,  2 . . . .  , N - l ,  

(W" + 1 _ 2 W" + W" - 1)/k 2 + D 4 W" - D 2 W" - D 2 (W") 2 = G" + 1, 

n = l , 2 , . . . , N - 1 .  

Subtract  and  rearrange to arrive at 

(4.6) (e"+l--2e"+e"-l)/k2+O4e"=D2e"+O2[(V")2--(wn)2]+L "+l, 

n = l ,  2 , . . . , N - - 1 ,  
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where we have used the nota t ion  e" = V " -  W", L" = F " -  G", n = 0, 1 . . . .  , N. Next, 
take the inner product  of (4.6) and (e" + 1 _  e")+ ( e " - e ' - 1 )  to arrive at (cf. (3.11)): 

Qk(e" +1 _ e")-- Qk(e"-- e" -  1) 

=(D2en+D 2 [-(Vn)2 _ (W,)2] + L , +  x, (e,+l - e " ) +  ( e " - e " - 1 ) )  

<=kIID2e"+DZ[(V")2--(W")2]+L"+lll {ll(e "+1 -e")/kll  + I I (e"-e"-  1)/kll }. 

The definition of Qk in (3.11) implies 

Qk(e,+ 1 - -e" )>  I[(e =+ 1 _ e")/k I[, 

and therefore 

(4.7) 

n=O, 1 . . . . .  N, 

Qk(e ~+ ' --e") I/2- Qk(e"--e"- ')I/2 

__< k II D 2 e" I[ + II D2 [-(V") 2 - (W") 2] l[ -4- [I Ln + ill. 

In the remainder  of  the p roo f  K denotes a constant  independent  of  k, h (K 
may depend on u, T, p and r and may  have different values at different occur- 
rences). 

To  bound  the right hand side of (4.7) we first recall that  the Proposi t ion 3.2 
implies 

[ID2e'[] < I[(e", e"-1)tJ~. 

On the other  hand, with the notat ions  in (3.1)-(3.5) 

D 2 [(V"): - - (W')  23 = D  ~ [(V ~ + W " ) e  ~3 

= 7:'+ (vn+w")D2e '+2D+ (V" + W ' )D_  e" 

+ D 2 (V" + W ~) T_ e", 

so that  

(4.8) [[ D2 [-(Vn) 2 - (W") 2] II < [I (V" + W")[I o~ [I D2 e" II + 2 IID + (V" + W")II ~ I[ D_ e" II 

+ IID2(V" + W")ll ~ Ile"ll. 

The  second bound  in (3.20) leads to 

llO2e"l[ _<_ H(e", e"- x)[l~ 

lID- e"l[ < [](e", e"-  1)11~, 

I[e"ll < H(e", e"- ')[ l~,  

while by (3.20)--(3.23) and the threshold condi t ion 

tl(V" + W")}[ ~ __<2 Ilrh u~]l ~ + H Va--rhu"]l ~ + IlW"-rhunll ~ <K,  

JlD + ( V " +  W")II co ---< 2 lID+ rh u=ll ~ + liD+ (V"-rhu")t l  | + HD+ (W"-rhu") l l  ~ < K,  

lID2 (V" + W")[l ~ =< 2 IlDZ rau"[I ~o + lID2 (V"-rhu")l[ | + IID2 ( W " -  rhu")l[ ~ 

<= K + h- 1/2 IID2(V n _rhun)][ + h-  x12 lID2 (W . _  rhu,)l[ 

< K +h- l /2  K#hl /Z=K.  
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Returning now to (4.7) 

(4.8) Qk(en+l, en)l/Z<Qk(en, e"-l)l/2+kKIt(en, e~-l)ll~+kllt"[I. 

Summation in (4.6) and rearrangement  leads to 

l(e "+ ~)=l(e~)+kl((en-en-1)/k)+k2l(L~+l) 
and therefore 

I I(e "+ 1)1 < II (e")l + k ll(e", e"- 1)II~+ k 2 IIL "+ 11t 

a bound which combined with (4.7) yields 

Ii(en + 1, en)llE < (i + kK)ll (e", e"-  1)11~ + k g  IlL "+ 111 

and now a s tandard recursion concludes the proof. 
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Convergence 

Theorem 4.4. Assume that the solution u of (2.1)-(2.4) satisfies the smoothness 
assumptions of Theorem 4.2 and that the discrete initial data satisfy (4.5). Then 
/f r < 1/2 

max{Jl(U"+l-rhun+l, Un-rhun)l[e,n=O, 1 .. . . .  N -  1} = (9(h2), h ~ 0 .  

In particular the estimates 

(4.9) max{ltU~--rhu~[I~+ tID_(U~-rhu")l[|  

+LID2(Un-rhun)ll, n=O, 1,.. . ,N-1}=(9(h2), h~O, 

are true, together with the following bound for the divided differences in time 

(4.10) max { II rh [(u n + 1 _ u")/k] - [(U" + 1 _ U")/k], n = 0, 1 . . . . .  N - 1} = 0 (h2), 

h - , 0  

Proof. The energy-norm estimate is a direct consequence of the Theorem 4.1. 
The Sobolev estimates then follow from (3.20)-(3.22). 

A s tandard yon Neumann  analysis shows that for r >  1/2 the linearisation 
of the scheme (3.7) possesses normal  modes with arbitrarily fast exponential  
growth. Therefore the restriction r < 1/2 in the theorems of  this section is tight. 

5 Implicit schemes 

The explicit scheme (3.7) is condit ionally stable. In this section we analyse a 
family of  implicit schemes whose convergence does not  require a condit ion k 
=- g)(h2). 

We consider the one-parameter family of methods 

(5.1) (U"+I-2Un+U"-I)/k2=OMUn+I+(I-20) MU'+OMU'-x, 
n=l,2 .... ,N-I, 
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where M represents the following finite difference operator in 7Z h 

M V =  - D 4 V  +D2V +D2(V) 2, Ve7Zh, 

and 0 is a real parameter. The choice 0 = 0 recovers the scheme of the previous 
sections. 

The analysis of (5.1), (3.8)-(3.10) may be carried out following closely the 
techniques used in the study of the explicit scheme. Again a key step is the 
construction of a suitable energy norm. We now choose, instead of (3.13) 

(5.2) II(W,W*)ll*=a*(w,w*)x/~+lI(W)l+lI(W*)l, (W, W*)~ ~..h X 7~h, 

with Q~' defined 

Q~' (W, W*)= II(W- W*)/k II 2 +0ll D2WII 2 +(1 - 2 0)(O2 W, D2 W*) + 0 liD2 W* IJ. 

Again the choice of quadratic form is motivated by the fact that for solutions 
of 

(U.+ 1 - 2  U" + U"- 1)/k2 = 0 M U  "+ 1 + ( 1 - 2  0)MU" + OMU"- 1 

the relations 
Q, /U.+I  U-~ k~ , j =  Q*(U1, U~ n=0 ,1  . . . .  N - 1  

hold. 
For 0>1/4,  the role of Proposition 3.1 is now played by the following 

Cauchy-Schwartz estimations: 

(5.3) K1Q*(W, W*)< [I(W-W*)/kIIE +(1/2)IID2WItE +(1/2)IID2W*[I z 

<KE Q*(W, W*), (W, W*)~7Zh • Zh, 

with K1 = 1, K 2 = 1/(4 0-- 1) if 1/2 > 0 > 1/4 and K I = 1/(4 0 -1) ,  K2 = 1 if 0 > 1/2. 
Thus, the Lemma in Sect. 3 implies that, for 0 > 1/4, the energy norm (5.2) is 
equivalent to the following Sobolev norm 

(5.4) (ll(W-W*)/kll2+llWll=+llO_Wll 2 
+ l[ O2 W [I 2 + I[ W *  [I 2 -F II D_ W* II 2 + [] 0 2 W *  [I 2) 1/2. 

Note that this equivalence is uniform in k and h, while for the explicit scheme 
the equivalence between the energy and Sobolev norms was only uniform in 
h, with k restricted by k/h 2 =constant  < 1/2. As a consequence, for 0>  1/4, the 
stability analysis of (5.1) may be performed assuming that, in the grid refinement, 
k varies as k=tr(h), with tr an arbitrary increasing function such that a(0)=0. 
Arguments very similar to those in the previous section show that, assuming 
always that 0>1/4,  the scheme is stable with thresholds i~h 1/2 for arbitrary 
refinements k=tr(h). On the other hand the general Theorem 4.1, cannot be 
applied to the case at hand assuming only k=tr(h), because we need that the 
local errors behave as o(R~. Since (5.1) is clearly second order accurate in space 
and time, the hypotheses of the Theorem 4.1 are satisfied for grid refinements 
k = s h  6, s and 6 constant, s>0 ,  6>  1/4. More precisely, the application of the 
Theorem 4.1 to (5.1) reads as follows: 



Finite difference methods for the "good" Boussinesq equation 227 

Theorem 5.1. Assume that 0 > 1/4 and that: 

(i) For 0 < x < 1, 0 < t < T, the solution of  (2.1)-(2.4) possesses (bounded) con- 
tinuous derivatives up to the sixth order. 

(ii) The grid is refined according k = s h  ~, s and ~ constant, s>0 ,  6 > 1/4. 

(iii) The discrete initial data satisfy (4.5). 

Then for h sufficiently small the (5.1) possess a solution U", n=0 ,  1 . . . . .  N, with 

max{]l(U"+l--rhu"+l,U"--rhu"))ll*,n=O, 1 . . . . .  N - l } = ( 9 ( k 2 + h 2 ) ,  h ~ O .  

As in Theorem 4.4, the energy estimates lead to estimates of the same order 
in the Sobolev norm (5.4). 

When 0 < 1/4, a standard yon Neumann analysis of the principal part shows 
that (5.1) is not unconditionally stable. For the limit case 0 =  1/4, not covered 
so far, (5.3) must be replaced by 

Q* (W, W*) < [1 (W - W*)/k It 2 + (1/2) II 0 2 W II 2 .q_ ( 1/2) II O2 W* 1] 2 

__< (1 + r 2) Q~' (W, W*), (W, W*) ~ gh • Zh. 

These inequalities, which are established by using the technique in the proof 
of the Proposition 3.1, reveal that in this case the energy norm is equivalent 
to (5.4) uniformly in h, provided that k is restricted as k/h 2= arbitrary constant. 
The previous theorem can be shown to hold also for 0 = 1/4 under the additional 
restriction that 6>2.  Within the range of unconditional stability 0 >  1/4, the 
value i/4 is of particular interest because leads to the smallest time truncation 
error. 

6 Numerical experiments 

The schemes analised above have been tested in the long-time integration of 
solitary waves and collision of solitary waves. Equation (1.1) shows that this 
kind of solution decays exponentially as [x[ ~ and therefore, for numerical 
purposes we have employed the schemes on an interval (xL, xR), where the 
artificial boundaries xr. and x R are located far enough for the theoretical solution 
to satisfy the periodic boundary conditions, except for a negligible remainder. 
For  both schemes the starting data were chosen according to (4.4). When using 
the implicit schemes, the nonlinear system of equations to be solved at each 
time level takes the form 

Au.+I = ~ u .  + c u . -  1+ D [ 0 ( u . +  1)2 +(1 - 2 0)(u.)2 + 0 ( u . -  1)2], 

where A, •, ~,  ID are circulant matrices with five nonzero elements per row. 
Furthermore these entries depend on 0, k and h, but not on n. This suggests 
the fixed-point iteration 

A ,  r.+ ~ = B U"  + ~ U " -  * + |D [0(U~ "+ 1)2 +(1 - 2 0)(U") 2 + 0(U"- x)2], 
, L ' S +  1 

where the only matrix to be inverted in each time-integration is A. The initial 
guess U~ § 1 is computed from U", U "-  1 by means of the explicit scheme. 
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Table 1 

h k Error CPU 

1.0 0.4 0.0070 4 
0.2 0.0071 11 
0.1 0.0072 18 

0.5 0.1 0.0017 33 
0.05 0.0017 63 
0.025 0.0018 123 

0.25 0.025 0.0004 237 
0.0125 0.0004 472 
0.00625 0.0004 94l 

Table 2 

h k Error CPU Iter 

1.0 0.4 0.0080 32 3 
0.2 0.0074 45 2 
0.1 0.0073 75 1 

0.5 0.4 0.0031 64 3 
0.2 0.0021 101 2 
0.1 0.0018 124 1 

0.025 0.4 0.0020 134 3 
0.2 0.0009 204 2 
0.1 0.0006 240 1 

Tables 1 and 2 refer to a single-soliton solution and correspond, respectively, 
to the explicit method and to the implicit method with 0 = 1/4. The value 0 = 1/3 
was also tested, but the results are not reported here, as they are very similar 
to those obtained with 0 =  1/4. The theoretical solution has an amplitude A =0.5 
and an initial phase ~o=0. The boundaries are located at x L = - 6 0 ,  xR=60  
and the integration was followed up to T=40 .  The tables display information 
at t = 2 .  The column "e r ro r"  shows IlUn-rhunll~o and CPU refers to the CPU 
time in hundredths of a second on a VAX-11/780 machine with a VAX-11 
F O R T R A N  compiler. For  the implicit scheme the last column gives the average 
number  of inner iterations per time-step. The computat ions were carried out 
in single precision and the inner iteration of the implicit scheme was stopped 
when two consecutives iterates were found which in the discrete L2-norm differed 
in less than 10- 5. 

The expected rates of convergence show up in the tables. Note  that in the 
explicit scheme a reduction in k with h fixed does not change the error. This 
proves that for the value of k allowed by the stability restriction k <0.5 h 2 the 
integration in time is very accurate and the error originates, almost entirely, 
from the space discretization (i.e. the results given by the scheme are the same 
as those of the corresponding time-continuous, space-discretized method). 

A comparison of both tables reveals that the explicit method is more efficient 
than its implicit counterparts.  This is due to the fact that the longer time steps 
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that  can be used in the  impl ic i t  a lgor i thms  do  not  m a k e  up for the higher  
cost  of per forming  an implici t  t ime step. I t  is fair to say that  this conclus ion 
is specific to  the per iodic  b o u n d a r y  condi t ions  used here. We  have also run 
the schemes with homogeneous  Dir ichle t  condi t ions  u =  u x = 0 ,  for which the 
l inear  a lgebra  is somewha t  s impler  than  for the per iodic  case (the mat r ix  to 
be inver ted is pentadiagonal ) .  Wi th  such a l ternat ive  b o u n d a r y  condi t ions  and  
small  values of  h, the implici t  schemes a re  more  efficient than  the explicit  method.  

We recall  that ,  even t hough  the tables  co r respond  to t = 2 ,  the in tegra t ion  
was fol lowed up to T = 4 0 .  The errors  exhibit  a roughly  l inear g rowth  with 
t and  no p rob lems  of non l inea r  b low-up  were encountered .  

Numer i ca l  results co r respond ing  to sol i ton in terac t ions  can be seen in I-8]. 
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