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Summary. It is known that certain Runge-Kutta  methods share the property 
that, in a constant-step implementation, if a solution trajectory converges to 
a bounded limit then it must be a fixed point of the underlying differential 
system. Such methods are called regular. In the present paper we provide a 
recursive test to check whether given method is regular. Moreover, by examining 
solution trajectories of linear equations, we prove that the order of an s-stage 
regular method may not exceed 2[(s+2)/2]  and that the maximal order of 
regular Runge-Kut ta  method with an irreducible stability function is 4. 
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1 Introduction 

The theme of this paper  is the investigation of equilibria of Runge-Kutta  meth- 
ods. We assume herewith that the autonomous initial-value problem 

(1.1) y '=f(y) ,  t>_to; 

y(t0) = Yoe~";  

where f is a continuous function, is solved by the Runge-Kutta  method 

(1.2) r = f(Ym + h(ax, 1 r + al, 2 r + ... + al.~ r 

e2=f(Ym+h(a2,1 r +a2.2 r  ... + a2,~ r 

r r +a,,2 r  ..- +a~,~r 

Ym+l =ym+h(bx  e t + b 2  r "'" +b~ r 

offprint requests to: A. Iserles 
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Here y,, approximates the exact solution at to + m h ,  h > 0. We denote the method 
(1.2) in the customary way as 

(1.3) 

CI a l , 1  a l , 2  . . .  a l ,  s 

, , s  a 2 , 2  . . .  a 2 ,  s 

s a , l  as ,  2 . . .  as ,  s 

I bl  b2 ...  b~ 

where Ck := )'. ak. t, k = 1 . . . . .  s. 
1 = 1  

Classical error bounds can be used to estimate the difference between the 
Runge-Kutta approximant and the exact solution of (1.1) in a compact time 
interval [HNW 1]. Unfortunately, this leaves open the question of whether, as 
t--+ 0% the dynamics of (1.1) are correctly modeled by the dynamics of the Runge- 
Kutta  solution. 

Subjects of interest in the study of dynamics are the invariant objects of 
(1.1), e.g. fixed points, limit cycles, homoclinic and heteroclinic orbits and strange 
attractors. Numerical analysis poses two questions: Firstly, are all the invariant 
objects of (1.1) reproduced, up to an error inherent in the numerical procedure, 
by the approximant (1.2). Secondly, does each invariant object of (1.2) have 
a continuous counterpart in (1.1). The first question has been debated in [BEL 1], 
[BEY1], [ISE1], I-ISE2] and [KLL1].  The aim of the present paper is to 
answer the second question in the particular case of fixed points and for the 
constant step-size h > 0. 

Let ~ be the set of all the zeros of f. Obviously, ~ is precisely the set 
of all the possible bounded limits of the exact solution y(t), for all sets of initial 
values in ~". Furthermore, let O%* denote the set of all the possible bounded 
limits of the iterated map y,,m+y,,+ 1 which is induced by (1.2). Note the depen- 
dence on h. It has been proved in [ISE1, ISE2] that ~,~c ,~* is always valid 
but that it is possible for O%*\o,~ to be non-empty. Runge-Kutta schemes signifi- 
cantly differ in that respect from multistep methods, that always obey o%* = o~. 

The possible existence of spurious asymptotics is not universal to all Runge- 
Kutta methods. In line with [ISE2], we say that a method (1.3) is regu lar  if 
O%* =.~" for all h > 0  and all initial value problems (1.1) - otherwise it is said 
to be irregular.  Examples, introduced in [ISE 1] and [ISE2], include the regular 

2 6 

3 + 6 

schemes 

(1.4) 

1 
4 4 6 

1 V~ 1 
4-+ 6 4 

1 1 
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(fourth-order Gauss-Legendre, a Butcher I A method [BUT 1]) and 

1 5 1 

(1.5) 1 

(fourth-order Clippinger-Dimsdale [BUT 1], a Lobatto III^ method [EHL1]), 
and the irregular 

2 10 

1 

2 

1 
(1.6) 

36 9 15 36 30 

24 9 36 24 

5 2 I/i  5 
15 37 

5 4 5 
18 9 18 

(sixth-order Gauss-Legendre, a Butcher Ia method [BUT 1]) as well as the sec- 
ond-order explicit scheme 

�89 O. 

1 

Furthermore, it has been proved in [ISE 1] that two-stage Runge-Kutta methods 
of order p > 2 are regular if and only if al,  1 + az, z = �89 

The technique used in [ISE2] to prove irregularity is based on applying 
a Runge-Kutta method to the logistic equation y ' = x y ( 1 - y ) .  In that case an 
intuitive explanation is provided by means of the underlying bifurcation diagram. 
Unfortunately, the logistic equation is not powerful enough to study regularity 
in general methods. In the present paper we adopt a different approach, investi- 
gating whether the Runge-Kutta Eqs. (1.2) may, for a specially "tailored" func- 
tion f, produce a solution (with y,,+~=y,~) such that f(y,~)+0. Clearly, this is 
equivalent to irregularity. 

In w 2 we introduce our formalism and use it to characterise regular Runge- 
Kutta methods in terms of a recursive algebraic condition. This provides an 
easy computational means of checking a method for regularity, as well as an 
analytic tool. 

In w 3 we analyse the stability function of regular Runge-Kutta methods. 
We prove that its coefficients are related to Bernoulli numbers. This is exploited 
to produce the order barrier 2 [(s + 1)/2] for a regular s-stage method. The added 
requirement of A-stability lowers this bound to 4, subject to the stability function 
being irreducible. Moreover, we derive the explicit from of those regular, maxi- 
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mal-order methods whose defining matrix A has only real and positive eigen- 
values. 

Implementation of (1.2) usually involves a mechanism for step selection. Thus, 
if (1.2) is written as the map 

(1.7) Ym+ 1 = G(ym, h), 

a step of the implemented algorithm reads 

(1.8) Ym+ 1 = G ( y m ,  h,.), 
hm + 1 = 7 (Y,., hm), 

where ~ represents the underlying step-control technique. The dynamics of (1.8) 
were studied in [ G R I l l  and [HALl ] .  Constant-step analysis is relevant to 
(1.8) in the sense that if (~, h') is a fixed point of (1.8) then ~ is a fixed point 
of (1.7) with the constant step h =/~. Consequently, if (1.2) is regular then every 
variable-step implementation has no spurious fixed points. Of course, it is perfect- 
ly possible for (1.7) to possess for some h > 0  a spurious fixed point ~ that 
is not inherited by (1.8), since h 4: ~ (~, h). In other words, the step selection mecha- 
nism may operate to eliminate spurious fixed points. 

Inasmuch as step selection should be preferred whenever possible, constant- 
step implementations are sometimes used, e.g. when solving large systems of 
ODEs that arise from semidiscretization of partial differential equations of evolu- 
tion. Practitioners employing constant steps should be aware of the possibility 
of spurious equilibria arising from irregular Runge-Kutta methods. 

2 Characterisation of regularity 

We assume herewith that b r l  = 1, where 1 .'=[1, 1 . . . .  ,1] r. This is only natural, 
since the condition is necessary for consistency. We recall that A 1 = e. 

The method (1.3) is said to be regular if for all h>0 ,  all positive integers 
n and all continuous mappings f: ~ " ~ - ~ "  the Eqs. (1.2), together with y,,+ 1 = Y,,, 
imply that f(ym)=0, the zero vector. In other words, (1.3) may not produce 
a solution with wrong steady state for any h >0  and any differential system 
(1.1). 

Given a Runge-Kutta method (1.3) and a step-size h > 0  we consider the 
system 

(2.1) y + h  ~ a i ,~ j=z i ,  i=1,  . . . , s  
j = l  

~ bj ~j=O, 
j = !  

where y, Cj and zi are vectors in ~". 

Lemma 1. The method (1.3) is regular if and only if, for every n> 1 and for 
every step-size h > O, every solution of (2.1), which satisfies r = r whenever Zk = Zl, 
admits an index v such that ~v = 0 and y = zv. 
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Proof This follows from the definition of regularity because we can construct 
a continuous function f such that 

(2.2) f(zi) = ~i, i= 1 . . . .  , s, 

if and only if the data zi, ~i satisfy ~k = ~l whenever Zk = Zt. [] 

We denote by ei the ith unit vector, whose dimensionality should be transpar- 
ent from the context. A Runge-Kutta method (1.3) is said to be essentially 
one-stage (EOS) if there exists ke {1 . . . . .  s} such that 

(2.3) b = e k ,  

a k ~- c k ek,  

where a T is the lth row of A. Thus, a step y,,~--~y,,+ ~ with the underlying method 
produces the same result as a step with the one-stage Runge-Kutta 

Ck ~1_~, k 

(The converse is not always correct - it is entirely possible for f to exist such 
that the s-stage implicit equations have no solution, whereas the one-step method 
is soluble.) 

Lemma 2. An EOS Runge-Kutta method is regular. 

Proof Let ~ be a fixed point of an EOS method that obeys (2.3). Since, in 
the terminology of (2.2), ~ b i ~ i = 0 ,  we obtain ~k=0. Thus, (1.2) yields f(~ 

i 
+ h ~ ak. j ~j)= 0 and, by virtue of the second relation of (2.3), f(~)= 0 concluding 

J 
the proof of regularity. []  

EOS methods are exceptional and, arguably, not very interesting. It is the 
non-EOS case that merits the greater attention. The following theorem shows 
that it is possible to reduce the question of regularity of a non-EOS s-stage 
method to that of an ( s -  1)-stage method: 

Theorem 3. Let the Runge-Kutta method be non-EOS. Then 
(i) Regularity implies that there exist distinct k, l~{1, ..., s} such that ak--al 

is a scalar multiple orb; 
(ii) Suppose that a k -  a! is a scalar multiple of b and reorder the Runge-Kutta 

tableau so that kw-~ 1 and l~-. s. Define a new ( s -  1)-stage Runge-Kutta method 

(2.4) Ib *r  

by specifying 

(2.5) 

c* = [l~_ t,  0-1 c; 

b*r=br[I;~x],  
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where I~_~ is the ( s - 1 ) x ( s - l )  identity matrix. Note that c*=A*I~_~ and 
b * r l , _ l = l ,  where 1 ,_1=[1 . . . . .  1 ] r ~  ~-~. We say that (2.5) is a folding of 
(1.3). Then (1.3) is regular if and only if (2.5) is regular. 

Proof. Assuming that (1.3) is regular, we stipulate first that b~=ek for all k 
= 1, ..., s. Thus, there exists an open orthant 

~'U:={E~I . . . . .  ~ J r e ~ : ( -  1)'t')~, >0,  l=  I . . . .  , s}, 

where a(l)= +_ 1, l= 1 . . . . .  s, such that J :=~ff ca b • :#0, where 

b• = { [ ~ 1 ,  . . . ,  ~ ]  T e ~ ' :  Zbs Cs = 0 }  
1 

is the orthogonal complement of b in ~ .  Thus, J is a cone - a convex set, 
dosed under the map [~t . . . . .  ~ ]  ~ [)~ ~ ~ . . . .  ,2 ~ ]  for all ;L > 0. We contend that 

(2.6) A J =  U { z ~ :  Zk=Zz} �9 
k,l 
k * l  

For suppose that (2.6) is false. Then there exists [ ~  . . . .  , ( ~ ] r ~ j  such that the 
s-vector z:=A~ has pairwise distinct components. Since ~ b  -L, it is true that 
bl (1 + ... +b~ (~=0. Thus, the set {(~ . . . . .  (~, 0, z 1 . . . .  , z~} is admissible (for n =  1). 
Moreover since ~ e ~ ,  it follows by Lemma 1 that the method is irregular, contra- 
dicting our assumption. 

Since (2.6) is valid, convexity of A J  implies that there exist distinct k and 
I such that 

(2.7) A J  c {z e~/~ : zk = zl}. 

Thus, A J  ~ (ek--et) • Consequently, J is contained in the orthogonal comple- 
ment of Ar(ek--e~). Since that orthogonal complement is a subspace of ~ ,  
we have 

span J = (Ar(ek --el)) • 
But span or = b • hence 

b • = (A  r (ek - -  el)) • = (ak - -  at) • 

and a k -  a~ is, indeed, a scalar multiple of b =t= 0. 
To complete the proof of (i) we need to consider the case of b being a 

coordinate vector, e l ,  say. Since the method is non-EOS, al may not be a 
multiple of b. Thus, the set ~r  a r ~>0,  ~1=0} is non-empty: in fact, 
its projection to the ( s -  1)-dimensional space spanned by ~2, --., ~s is a hyper- 
plane. We can now choose an orthant ~ in the ( s -  1)-dimensional space (keep- 
ing ~ = 0 )  such that 6r  and J is a cone. The inclusion (2.7) is 
seen again to hold: otherwise there exists [ ~  . . . . .  ( j r ~ j  such that z..=A~ has 
pairwise distinct components. Since b = e l ,  we have bl (1  -~ " '" -~- b~ (~= bl (1 =0. 
Thus, the set {~1 . . . . .  ~ ,  0, zl . . . . .  z,} is admissible (for n = 1). Moreover, since 
~ =t= 0 for 2 < i < s and z 1 = a r g > 0, Lemma 1 implies that the method is irregular, 
a contradiction. This establishes (2.7) and the remainder of the proof is identical 
to the case of b not being a coordinate vector. 
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Finally, we assume that a a - as is a scalar multiple of b. Then, every solution 
of (2.1) also solves 

s - 1  

(2.8) y + h  ~, a*.~j=zl ,  i=1  . . . . .  s - 1  
j=a 

S--I 

Z b* ej=0.  
j = l  

Further, if ~1 . . . . .  ~s-1 is a solution of (2.8) then, by adding ~s=r we get 
a solution of (2.1) which satisfies z s = z l .  This and Lemma 1 imply that the 
original Runge-Kutta method is regular if and only if (2.4) is so. [] 

Corollary 4. Let (1.3) be a consistent explicit scheme (i.e. ak, l = 0 for  all 1 < l < k < s). 
Then it is regular if  and only if it produces the same solution sequence as the 
first-order forward Euler method y,, + 1 = Y,, + h f(y,,). 

Proof  If the method is EOS (and this includes the case s = 1) then explicitness 
implies that ak =0  in (2.3) and everything reduces to forward Euler. Thus, let 
us assume that the method is non-EOS. In particular s > 2 and, by Theorem 3 
there exist distinct k and l such that ak--a l=(ck-c t )  b. There are two cases: 
if a k = a, then the stages Ck and r are identical. Thus, we can remove the kth 
stage, say, replacing b t by bk+bt.  Otherwise Ck*Ct and, since the method is 
explicit, 

bs a k ' s - - a l ' s  - - 0 .  

C k - -  C I 

Thus, the sth stage does not contribute to the solution sequence and can be 
omitted. 

In either case the method is equivalent to an (s-1)-stage explicit method. 
We continue by induction, progressively reducing the number of stages until 
encountering an EOS method which, as we have already seen, is equivalent 
to forward Euler. []  

Note that irregularity of (1.3) means either that the first condition of Theo- 
rem 3 fails (i.e. the weights are not a multiple of a difference between two rows 
of the Runge-Kutta matrix) or that, if it satisfied, the folded method is irregular. 
This yields the following recursive terminating algorithm for determination of 
regularity: 

The regularity test 

(1) Set g:=s, .4:=A, b:=b, ~:=e. 
(2) Check if there exists ke{1 . . . . .  g} such that 

~j=Jk,  j, j = l  . . . .  ,g, 

ak, j = C k ( ~ k , j ,  j = l ,  ..., g, 

where 6k, j is Kronecker's delta. If so (and, in particular if g= 1) go to (5). 
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(3) Check whether there exist 1 < k < 1 < g such that 

Kk,j--Utt,j=(Ek--~l)Uj, j = l  . . . . .  ft. 

If no such k and I exist then go to (6). 
(4) Set 

g , = g - 1 ;  
&,=b-k+E;  

j = l ,  .... 

~i:=~i+ 1, i = l  . . . .  ,g; 

ai, k,.~.ai, k~-ai, l, i=1  . . . .  ,1--1; 

a~,k,=iii+~,k+ai+l,l,  i= l ,  . . . ,g; 

gti.j,=gti+ l , j ,  i = l  . . . . .  g, j = l  . . . .  ,1--1, 

[ti.j:=gti+l.j+l, i , j = l  . . . . .  g 

and go to (2). 
(5) The method is regular. Terminate. 
(6) The method is irregular. Terminate. 

The dimensionality of a function f that demonstrates irregularity is of interest. 
The proofs of Lemma 1 and Theorem 3 show that if condition (i) fails then 
we can choose a scalar f to interpolate f(zi)={~, i=  1, .. . ,s. Likewise, if (i) 
is valid but the folded method is irregular then it is seen from the proof that 
both methods (the original one and the folded) produce a spurious equilibrium 
for the same problem (1.1). Thus, by iterating the folding (like in the regularity 
test) until condition (i) fails (as it must, sooner or latter, otherwise we will reach 
an EOS method, which, by Lemma 2, must be regular) we see that, again, we 
can choose a scalar f. Moreover, in both cases we may take a polynomial 
f of degree not exceeding s. Thus, irregularity means that even fairly " s i m p l e "  
systems (1.1) may give rise to wrong equilibria. 

An inherent shortcoming of the regularity test is its non-constructivity: It 
is easy to use it to verify whether a specific method (1.3) is regular, but far 
more complicated, because of its recursive nature, to answer questions regarding 
the highest order of a regular Runge-Kutta method of given number of stages, 
implicitness structure etc. In a forthcoming paper by K. Burrage [BUR 1] the 
regularity test will serve as a point of departure for the derivation of a non- 
recursive regularity condition. 

3 The stability function of regular Runge-Kutta methods 

The test of w 2 provides the means to check whether any given Runge-Kutta 
method is regular. In the present section we derive some necessary conditions 
for regularity. They will be obtained by applying the method to the linear test 
equation y ' = 2 y .  For this problem the numerical solution is given by y,.+l 
= R (h 2) y,., where 

P(z) (3.1) R ( z )  = Q(z) 
= 1 + z b r ( I - z A )  -1 1 
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is the stability function of the method. Throughout  this section we shall assume 
that R(z) is an irreducible rational function, so that the poles of R(z) are exactly 
the zeros of de t ( l - z A) .  Moreover, we let q..=max {deg P, deg Q} < s. 

Theorem 5. I f  a Runge-Kutta method is regular and of order p > 1, then 

(3.2) R(z)= 
1 +(1 +~l)  z+ct2 Z2"~(X3 Z 3 + . . .  Ai-O~qZq 

I "1- ~ 1 Z "~'- ~ 2 Z2-1"-~3 Z3-a t- . . .  nl-O~qZ q 

Proof. Regularity implies that R (z) # 1 whenever z # 0. Consequently, P(z) # Q (z) 
for z4:0. This together with the order assumption implies that 
P(z)=O(z)+z. [] 

Theorem 6. '/he stability function (3.2) satisfies R(z) = e ~ + O(z p+ 1) iff 

Bi 
~=-~. for i=1,  . . . , p - - l ,  

where Bi are the Bernoulli numbers (recall that n 2 j + l  = 0  for j =  1, 2 . . . .  and that 
B o = i, B~ = - 1/2, B2 = 1/6, n 4 = - -  1 / 3 0 ,  B 6 - -  1/42, etc.). 

Proof. The assumption P(z)=Q(z)+ z inserted into P(z)/Q(z)=e~ +O(z p+ l) 
implies 

Z 
Q (z) = ~ + o ( :)  

and the result follows from the definition of the Bernoulli numbers 

i 

eZ--1 =i 

It has been proved in [ISE2] that a two-stage Runge-Kutta method of 
order p >  2 is regular if and only if it is equivalent to a method with tr A = t/2. 
Herewith we provide a short proof of this statement. 

Theorem 7. A regular Runge-Kutta method of order p > 2 satisfies 

(3.3) a l ,  1 d - a 2 , 2  d-  . . .  +as,~=�89 

For s = 2 and p > 2 condition (3.3) is sufficient for regularity. 

Proof. The necessity of (3.3) follows from Theorem 6, because axl + ... + ass = ~1. 
For the proof of sufficiency (in the case s=2)  we use the regularity test of 
w 2. We assume cx :~ c2 (otherwise the method would be reducible) so that 

c:-�89 �89 
bl = - - - ,  b: = 

C2--C 1 C2--C 1 
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The assumption (3.3) then yields 

a 2 t - a t 1 = c 2 - ( a l l  + a 2 2 ) = c 2 - � 8 9  

a n - a , 2  =(all  +a22) -c l  = � 8 9  =(c2-cl )  b2 

which proves the regularity of the method. [] 

For many classical implicit Runge-Kutta methods (e.g. Butcher's methods 
of type I, II and III [-BUT 1], or the A-stable methods of Ehle [EHL 1], Axelsson 
[.AXE 1] and Chipman [.CHI 1]; see [-DEV 1] for a collection of these methods) 
the stability function is a Pad6 approximant to the exponential function. The 
following result shows that most of these methods can not be regular. 

Theorem 8. The only Pad~ approximants which are of the form (3.2) are 

1 
R,/o(Z)= 1 +z, Ro/, (z)= 1 --z'  

Z 2 

R' / I (z )= z '  R 2 / 2 ( z )  = z z 2 "  

1-~ 1 - ~  12 
Proof. This follows from Theorem 6 and the requirement p = deg P + deg Q. [] 

Apart from one-stage methods only the two-stage Gauss method and the 
3-stage Lobatto IIIA method are regular. (Note that q=2 for the last two 
methods.) The coefficients of these methods have been given in the introduction. 

Theorem 9. The order p of an s-stage regular Runge-Kutta method satisfies 

(3.4) p <= s + 2 if s is even, 

p < s + l  if sisodd. 

Proof. This follows immediately from Theorem 6 because ~i=0 for j >  q and 
since q<=s. The different order barriers for s even and s odd are due to the 
fact that the odd Bernoulli numbers vanish, except BI. [] 

Remark. The order barrier (3.4) also holds if we allow the stability function 
to be reducible. In this situation it can be written as 

P(z) S(z) R(z)= (2(z) S(z) 

where P(0)= Q (0)= S(0)= 1, de t ( I - zA)=  Q (z). S(z) and the polynomials P and 
Q are relatively prime. As in the proof of Theorem 5 we conclude that 

(3.5) P (z) = Q (z) + z T(z) 

where T(z) divides det ( I - - zA)  and hence also S(z). If we insert (3.5) into the 
order condition P(z)= Q (z). eZ + 0 (z p+ 1) we obtain 

Q(z) z 
+ 0 (zP). 

T(z) e z -  1 
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Since deg Q + deg T < s, one can deduce from the Pad6 tableau for the function 
z/(e Z -  1) (see [PER 1]) that p is bounded by (3.4). 

For  s < 3 the order barrier (3.4) is optimal. For  s > 4 it is not clear whether 
(3.4) can be improved or not. So far, no regular Runge-Kutta method of order 
p > 4 is known to the authors. For  Runge-Kutta methods whose defining matrix 
A has only real and positive eigenvalues we have the following result: 

Theorem 10. The maximal order of a regular Runge-Kutta method with det(I 
- z A ) = ( 1  --Yl z)....-(1 --Ts z) and ~j>0 is 3. 

Proof This is a consequence of Theorem 6, because a3 = - ~ 7i Yj Yk < 0. []  
i<j<k 

Example. A general 3-rd order SDIRK method with a , =  1/6 (c.f. condition 
(3.3)) is given by 

(3.6) 

where 

and 

1/6 1/6 

c2 I c 2 - 1 / 6  1/6 

C 3 [c3--~--1/6 ~ 1/6 

[ bl b2 b3 

C3 1 1 1 ~ - - ~ - C  2 

bl - (c3-c2) (c2-~) '  b2 - (c3-c2)  (c3-~) '  b 1 = I - b 2 - b 3 ,  

( c ~ -  c 9  (c~ - ~) 
= 36(c2 -~-)(1--1C3)" 

In order to find regular methods of this type we consider a folding of the 
third row with the first one. This leads to the conditions 

=(c3 -~-) b2, -~ = (c3--~) b3, 

both of which are equivalent t o  c2-~-c3 =3. The folded method can be seen 
to be regular under the same condition. Consequently, the method (3.6) is regular, 
provided that c2 + c3 -_3 - -  2" 

Finally, we present a stability barrier for regular Runge-Kutta methods. 
We recall that a method is called A (a)-stable, if the stability function satisfies 

(3.7) IR(z)[< 1 for [ n - a r g  zl<~. 

It is called A-stable, if it satisfies (3.7) with a = n/2. 

Theorem 11. I f  the stability function (3.2) with ctq ~ 0 is A (a)-stable, then 

7~ 

co< 2(q_  1)" 

Proof Since P(z) = Q(z) + z, the condition IR(z)l < 1 (or [Q(z) + z[ 2 < [Q(z)[ 2) is 
equivalent to 

2 Re(~Q(z))_-< -Iz l  ~. 
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O n  the r ay  z = r e  ~t with  r ~  o~, I n - t l < ~ ,  we o b t a i n  

2 ~ r ~ § 1 cos ((q - 1) t) + 0 (r q) < - r 2 . 

y ie ld ing  ~ cos ((q - 1) t) < 0. S ince  A (~)-stabil i ty impl ies  A (0)-stabili ty,  a n d  that ,  
in  t u rn ,  impl ies  t ha t  ( - 1 )  q % > 0 (otherwise the  s tab i l i ty  func t i on  has a nega t ive  
pole), we have  ( -  1) q -  1 c o s ( ( q -  1) t) > 0 a n d  o u r  a s se r t ion  follows. [ ]  

Coro l l a ry  12. An A-stable regular Runge-Kut ta  method with an irreducible stabili- 
ty function obeys q < 2, hence its order satisfies p < 4. [] 
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