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We study the approximation of radial functions in IRY, N = 2, by means of La-
grange finite elements on arbitrary grids. As an application, error estimates are ob-
tained for the finite-element discretization of the radial Schrodinger equation.
(AMS subject classification number: 65M60.)

1. INTRODUCTION

For N = 2, let ) C IR" be the open ball of radius R centered at the
origin. A function f(x) defined in () is said to be radial if it is constant on
each set r = |x| = constant. In this note, we are concerned with the ap-
proximation of radial functions by piecewise polynomials in 7, a topic that
arises naturally when analyzing Galerkin discretizations of problems with
radial symmetry. We first explain the notation. If A is a partition of [0, R]

A:0=r0<r1<--'<r,,=R
we denote

h = max(ri - r,‘_l)

1<isn

l'l_ = min(r,' - r,-_l)

1<isn
and we consider the space S, consisting of all the continuous functions f
such that, fori = 1, ..., n, the restriction f | , , ,is a polynomial of degree
k =1, k an integer. This definition means that we are using Lagrange
finite elements on the interval [0, R]. It excludes polynomial splines in the
sense of Varga [1], except for the special case of piecewise linear functions.
The subspace of S, « consisting of functions f with f(R) = 0 is denoted by
Sa . Functions f(r) of a scalar variable defined on (a,b) C (0, R) can
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clearly be interpreted as radial functions defined on the hollow open ball
with inner radius @ and outer radius b. The same symbol f is used for both
interpretations. We write H;"(Q) for the subspace of H™(Q), m = 0,1, ...
consisting of radial functions.

The main results of this article are given in Section 2 where, for
f € HF(Q), optimal rates of convergence are shown for the approxima-
tion error in the L* and H' norms. Our analysis applies on arbitrary
meshes. It is perhaps worth noting that for N large and fixed k = 1, func-
tions f in H¥*(Q) may be very singular near r = 0. The approximation
properties of S, « have been investigated by Eriksson and Thomée [2] and
Eriksson and Nie [3]. The analysis in [2] is restricted to quasi-uniform
grids, i.e., to grids such that

h

h

while [3] only considers the case where f is suitably smooth at the origin. As

an application of the results of Section 2, we analyze in section 3 a

Galerkin discretization of the radial Schrodinger equation which has at-
tracted much attention in plasma physics and nonlinear optics [4, 5].

In the remainder, we shall use the letter C to denote a generic constant,

not necessarily the same at each occurrence, which does not depend on the
mesh size h.

= 0(), as h—0

2. THE MAIN RESULT
Our basic approximation result is the following

Theorem 2.1. For f € HF"(Q), k = 1, Q C IR", there exists a function
v € Sa ik such that

V0 = Pllexey < C B | fllwn
where C is a constant depending only on k and N.

Proof. Without loss of generality, we may assume that f is real-valued.
For simplicity, we first consider the special case N = 3. We determine v
through the conditions

V(R) = f(R) (2.1)
01<i:£10v<">(r,- -e)=f%), 1<j<nl<is<k (2.2)

where the superscripts denote derivatives with respect to r. The conditions
in (2.2) make sense and determine v uniquely. Indeed, if 0 < 6 < r,

R k+1N2 1 (* k+1))\2 .2
P . . P 9 k+1 ]2
= [ s cow g s o co )

1
=5 CE)If 10 -
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Here, we have noted by 6 and ¢ the polar and azimutal angles. We have
also used the notation dx = dx, - dxy. This shows that f € H**'(§,R) C
CX(8, R) so that the derivatives in (2.2) are meaningful. On the other hand,
(2.1) and (2.2) with j = n are satisfied if and only if v|;, , ,; is the kth-
degree Taylor polynomial of f about r,. Once V|, .1 is determined, (2.2)
with j = n — 1 together with the continuity of v at r,_; clearly determine
the Taylor expansion of v|,,_,.,,_,; about r,_;. The iteration of this argument
shows the existence and uniqueness of v € S, , satisfying (2.1)—(2.2).

In order to establish the bound in the theorem, we note that, since
f € H*'(8,R) for each 0 <& < R, the Taylor formula gives, for
r <t <,

0 ~v0 = g | o= o as

Tj+1

which implies
Tj+1 , , _ 1 Ti+1 Tj+1 _ ) 1 2
| v —verrar = gt | [ [~ sppe ’(s)ds] rar

= ((k——ll)’—)E jl+1[J'j+l (r - S)Z(k—l)(f(k+l)(s))2s2ds]

[J”J“ds 24

__1— 2(k-1) (k+1) 2.2
G-y L (f“D)yrdr

Tj+1
-Jl (l - i)rzdr.
Ty r rj+1

Now after some manipulations

J'rﬁl(l 1 )rzdr = 3rjn(rin = 1)’ = 20 — 1)’ = %f

i ro I 6741

23)

and the theorem follows.
Only minor adjustments are needed to adapt the proof to the case
N # 3. For N = 2, one obtains, in lieu of the integral in (2.3)

Tji+1 1 1
J (In rj41 = In r)rdr = Er,-(rjﬂ -r)+ -Z(rjﬂ - rj)2
7
1, Tin — 7
- —rilnll+-——]).
2 7]

Note that the last term in the right-hand side vanishes for r; = 0. On using
the inequality In(1 + &) = ¢ — 1¢? valid for & > 0, it is readily concluded
that (2.4) is O(h?) uniformly in r; and the proof of the theorem can be con-
tinued as in the three-dimensional case. On the other hand, for N > 3,

(2.4)
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(2.3) must be replaced by
1 Jrjﬂ ! __1 1 . 2 =)
N-2), (' r,ﬁ’,{z)dr—N ~ 2[2("'“ DTN

For simplicity, we drop the factor 1/(N — 2) so that the above expression
becomes

1 1
ria(ris = n) — E(rjﬂ -y -—

N

: {'J'ZH - |:r1'2+1 - (];,)r,-ﬂ(rjﬂ -n+ (]Z)(rjn S/ (1:)

m=r NN _N-2_ L(N)(’m_—’f)s_...
i =2 mo s )

and the last expression is O(h?) uniformly in r;.; because (rj+1 — r;)/rjs1 < 1.

Remark 2.1. We can replace |f]|ue+ya) by [|(0**'/0r**") flizn) in the state-
ment of the theorem.

Remark 2.2. Note that, in the above construction, we avoid interpolating
f at the origin in view of the possible singularity there. Other techniques to
approximate (not necessarily radial) functions lacking in smoothness have
been considered in [6] and [7]. In the radial case however, the technique
presented here is possibly the most straightforward on arbitrary grids.

Remark 2.3. For f € H}*'(Q), an optimal O(h**") L*-rate of convergence
can be easily obtained by applying Nitsche’s trick to the Galerkin solution
of the problem

—-Af =g x €IR", gradial.

with Dirichlet boundary conditions.
The reader interested in L” estimates for functions which are smoother
than Hf*(Q) should consult [3].

3. APPLICATION TO THE RADIAL NONLINEAR
SCHRODINGER EQUATION

The nonlinear Schrodinger equation in N spatial dimensions
.ou
15 + Au = F(u) 3.0

where F is a locally Lipschitz function of its argument, has received a great
deal of attention in recent years. The case N = 2 arises in nonlinear optics:
u is then the envelope of an electromagnetic beam propagating along the ¢
axis in a three-dimensional optical medium. In the case N = 3, the equa-
tion has been derived in the context of plasma physics: u is then the enve-
lope of a Langmuir wave. It is often assumed in the literature [4, 5] that the
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solution u of (3.1) is radially symmetric and thus satisfies

Ty + V1
o’ r

i%(” N %(n 1) = Fu(r,1). (32)

Here, we shall consider the case where (3.2) applies for (r, 1) € 10, R[ X 10, 7T]
with initial condition

u(r,0) = uo(r), re[0R]
and a homogeneous Dirichlet boundary condition at r = R. The Galerkin

approximation u,: [0,T] — &A, « satisfies

i L %(&)& dx — LVu,,(t) - Védx = L Fuy@)$pdx, 0<t=<T

(3.3)
for all ¢ € S’A,k, and is equipped with an initial condition u,(0) such that
||u;,(0) - uo"LZ(Q) = O(hk+l). (34)

Of course, for practical purposes, the integrals in (3.3) are best written as
one-dimensional integrals over the interval [0, R].

In applications, the solution u of (3.2) often focuses at the origin [5] and
it is therefore desirable to have a spatial grid that is much finer near the
origin than elsewhere. For this reason, we have chosen to avoid the quasi-
uniformity requirement on the grid A. As we shall see, when the function F
is globally Lipschitz, the grid may be totally arbitrary. On the other hand,
in most cases of interest, F is only locally Lipschitz, so that inverse inequal-
ities are needed to prove convergence and consequently, we require some
grid structure. More precisely, we shall assume that constants C > 0 and
0 < 6 < 1 exist such that, as the grid is refined,

h < Ch. 3.5)

Note that (3.5) allows the ratio A/h to be arbitrarily large.

In order to analyze the convergence of (3.3), it is convenient to intro-
duce the Galerkin projection px(f) € Sa « of u(t), defined as the solution of
the problem

j Vpu(t) - Vddx = I Vu(t) - Vo dx
Q Q

for all ¢ € S‘A, v and 0 < ¢t < T. In view of the approximation results ob-
tained in Section 2, we have

Ipa(®) — u®)| iz + AV(pa(t) — u@®))| 20 < CEu@) 1@ (3.6)

Furthermore, if (9u/0¢) () belongs to H4((2), then the function p,: 10, T[ —
Hi(Q) is differentiable at ¢ and it is a simple matter to verify that (dp,/
dt) (t) € Sa« is the Galerkin projection of (du/t) (¢). Thus, (3.6) also holds
when p;, and u are replaced by their time-derivatives. We begin with
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Lemma 3.1. For N = 2,3 and k = 1, assume that
N

0>—.
4

Suppose also that
u € CY0,T; HF'(Q) N Hi(Q).
Then

lim max||pa(r) — w(®)]=@ = 0.

<t<T

Proof. In view of (3.5), we have, for all ¢ € S‘A, P
I#ll=@ = Ch=¥*|¢]| 20)
For any ¢ € S‘A, x» we may therefore write
[w(®) = pa(®)L=ey < |ul®) = Pllr=@ + [Pr(t) = Dlli=w)
< [u(®) = ll=@ + CH™V|pu(t) — ¢||20)
< [u(®) = e + Ch™¥u() = ¢|20)
+ Ch™Vu(t) = pu(®)] ).

Observe that the last term goes to zero like O(h**'~"*) and therefore we
only need to find ¢ € Sa, such that

lim{lu(t) = ¢|l=@ + Ch™"|u(t) = $| 20} = 0. )
Now, note that (3.2) can be rewritten as
ou N —10u . ou
5"—2'(7’,t)+ 5("J)=g(r,t)5 _lg(r’t)'i-F(u(r’t))'

A first integration with respect to r yields

1 ou 1 j Vet
—— == .
o 0 =5 | (s ds

Since the integrand on the right-hand side is bounded, this shows that
u € L0, T; H*0, R)). The condition (3.6) can therefore be achieved by
choosing ¢ to be the linear interpolant of u(f) with respect to A. Indeed, for
such a choice, standard one-dimensional approximation theory yields

l¢ = u@®lle=@ + CA™"¢ — u(®)]| i)
< 6 = u@®=0.n + CA™V*R" Y — u®)|20n
=< C(h + hz—MN)HU(t)“[-ﬂ(O,R) - 0.
Lemma 3.2. Under the same assumption as in Lemma 3.1, we have
| dpn, .~ n T
i d—(t)¢> dx — | Vpu(t) - Véddx = | F(pu(®))ddx
o at o Q

(3.8)
+ J 5u(t) dx
Q
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where
”8},([)"]}(9) < Ch**1. (39)

Proof. Clearly, we have

(4 d
84(1) = z(;’-’f(t) - a-"t‘a)) + (F(pa(t) = F(u(0)).

It suffices to note that p,(f) and u(¢f) are bounded. The fact that F is Lips-
chitz on bounded sets yields the result.

Theorem 3.1. We make the same assumptions as in Lemma 3.1. Then, the
solution uy, of (3.3) with initial condition u,(0) satisfying (3.4) exists and we
have

un(®) = u®)] 2@ = CH**!
for0 <t <T
Proof. Let
M = ||| =.7; =@y + 1
and introduce the set
Ap={r €[0,T]: forall0 <t < fuu(t) exists and |us(t)|L=c0) < M}.

It follows from standard ODE theory that A, is non-empty and we
may pose

t, = sup Ay.

Clearly, uy, exists at ¢, and we have either

()= = M (3.10)
or else

ty,=T. (3.11)
For 0 < i < t,, we define e,(t) = pn(t) — un(t). Subtracting (3.3) from
(3.7), we obtain
i 0Fdx - [ Vo) Voax = [ (Fpu) - P ax

+ L Su(t) dx.

Now, choose ¢ = ex(f) and take the real part in the above equality. Since
both p,(t) and u,(t) are bounded for 0 < ¢ < t,, we may use the fact that F
is locally Lipschitz to obtain, via Gronwall’s lemma,

lea(®)llza) = C{l18al|=0.7 20y + llen(0)] 2} -
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Thus, using the hypothesis, we have, for 0 < ¢ < ¢,,
lew®llize < ChE™. (3.12)
Now )
lent) =0 < [ PaEll=w) + lleat)] =
< [put)ll=@) + Ch™"|len(tn)l| 20
< [P =y + CH**17¥* < M.

for h sufficiently small. This shows that (3.10) is false if 4 is small enough
and thus (3.12) isvalid upto ¢t = T.

Convergence proofs for time-discrete Galerkin approximations to (3.1)
may be found in [8], along with further material on Schrédinger equations
and their numerical solution.
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