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We are concerned with the solvability of the discrete equations arising in the use
of Runge-Kutta methods. Under suitable assumptions on the RK tableau, we
show that in the neighbourhood of a sink (asymptotically stable equilibrium) a
unique solution exists for arbitrarily large stepsizes. Furthermore in the neigh-
bourhood of a slowly varying integral curve z = z(¢) that attracts neighbouring
integral curves of the ODE system, a unique solution of the algebraic equations
exists, provided that the stepsize is suitably restricted. This restriction does not
depend on the stiffness of the ODEs being integrated.

1. Introduction

WE ARE concerned with the algebraic equations
Y,=yo+h D a;f(to+ch, Y), 1<iss, (1.1)
j=1

that result from the application of an implicit Runge-Kutta process with real
coefficients (a;) and real abscissae (c;) to the m-dimensional system

?=f(t, y), t=t,. 1.2)
t
Throughout the paper the steplength 4 is supposed to be greater than 0.

The available results on the existence and uniqueness of a solution Y;,.., Y, to
(1.1) are of two types:

(i) Results that hold for h sufficiently small, see for example Hairer et al.
(1987: p. 201). These are based on the contraction mapping/implicit
function theorem and work under mild assumptions on f, typically local
Lipschitz continuity. The results of this group may be regarded as not
powerful enough, since implicit methods are resorted to in order to operate
with steplengths & that are large. (Here ‘small’ and ‘large’ are measured
with respect to the reciprocal of the Lipschitz constant.)
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(i) Results where the steplength 4 is not restricted by the size of the classical
Lipschitz constant. The first theorems in this direction were given by
Crouzeix, Dekker, Hundsdorfer, and Spijker in papers of the early 1980s.
Their work is surveyed in Dekker & Verwer (1984: Ch. 5). More recent
references are Di Lena & Peluso (1985), Hundsdorfer & Spijker (1987),
Liu & Kraaijevanger (1988), and Spijker (1985). This sort of theorem is
powerful in the case of dissipative problems in that, for each # >0, a
unique solution Y;,..., ¥; is shown to exist, under appropriate assumptions
on (a;). However, such a strong conclusion is only possible at the price of
imposing on f the very restrictive requirement of global dissipativity: a real
constant v should exist, such that in an appropriate inner product (e, *) in
R™, with associated norm ||¢||,

(ft,z2)—f(t, 22), 2 — ) Sv|z;— 2|*, forallzy, e R™, t=1t,. (1.3)

The one-sided Lipschitz constant v is required to be either <0 or =0,
depending on the specific theorem. The requirement (1.3) is so strong that
it is satisfied by very few functions f arising in real applications.
Correspondingly theorems in this group have conclusions that are stronger
than actually needed in practice. While it is true that in stiff problems we
wish to take steps that are significantly larger than the reciprocal of the
Lipschitz constant, accuracy considerations preclude using values of /4 that
are arbitrarily large. Also, the insistence on global uniqueness is not
necessary in practice. The solution should be unique with Y;,..., Y, near y,,.
Spurious solutions away from y, usually exist. They cause no problem
provided that the iterative nonlinear solver and the initial guess used to
deal with (1.1) are judiciously chosen. (It should be mentioned that it is
possible to treat, with theorems in this second group, the case where v in
(1.3) is positive, see Dekker & Verwer, (1984: Thms 5.3.9, 5.3.12).)

The following example may clarify these issues. Consider the backward Euler

rule applied to the logistic equation

y'=—y+y? (1.4)
arguably the simplest nonlinear model (cf. Iserles, 1989). Solutions of (1.4) with
initial value y,>1 only exist in a bounded time interval (0,t,,,), with
Imax = Imax(Yo). Solutions with y,<1 are attracted, eventually exponentially,
towards the equilibrium y = 0. Condition (1.3) is not satisfied and the results of
the second group do not apply (or at least not directly). On the other hand, if y,
is very close to 0 we would like to take a step & substantially larger than unity
(reciprocal of the local Lipschitz constant), a situation not covered by results of
the first group. It is only in this y, close to O situation that the application to (1.4)
of a stiff solver is practically meaningful. In other regimes an explicit method
would certainly be more advantageous.

Since a simple differential equation and a simple method are being considered,
it is straightforward to solve, in closed form, the corresponding nonlinear
equation

Y=y, +h(-Y +Y?. (1.5)
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FIG. 1. Solutions of equation (1.5) with (a) 0 <y, <1 and (b) y,> 1.

The result when y, € (0, 1) is plotted in Fig. 1a, while Fig. 1b depicts the case
¥o>>1. Note that in Fig. 1a a solution does exist for arbitrarily large &, so that
contraction mapping results are over pessimistic. On the other hand, in Fig. 1b,
the branch emanating from y, can only be continued over a finite k& interval
0=<h <h,,,,. This matches the fact that the true solution only exists over a finite
time interval. However, while the true solution ceases to exist as it becomes
infinite, the numerical solution has a turning point at h = h_,,. Finally, observe in
both figures that when a numerical solution exists, it is generally nonunique; real
solutions occur in pairs as correspond to a second-degree equation for Y.

In this paper we give existence and uniqueness results that are not of the types
(i)—(ii) above. In Section 2 we examine the situation where (1.2) is autonomous
and has an equilibrium that, without loss of generality, may be assumed to be
y = 0. If this equilibrium is a hyperbolic sink, so that neighbouring solutions of
(1.2) are attracted towards 0 at an exponential rate, we shall prove that, under
appropriate conditions on (g;), the system (1.1) possesses a solution for arbitrary
h > 0. Furthermore this solution is locally unique. In Section 3 we look at the case
where (1.2) is nonautonomous and possesses a slowly varying solution y = z(¢)
defined for all t=1¢, and such that z(f) exponentially attracts neighbouring
solutions. Under suitable assumptions on the RK method, we prove that, near
z(t), (1.1) possesses a unique solution, provided that 0 <h <h,,,,. Here h,,,, is
only determined by the size of the derivatives of z and not by the stiffness of
(1.2). In other words, in the situations considered, a large Lipschitz constant does
not unduly restrict the solvability of the algebraic equations (1.1) (cf. the
B-convergence theory of Frank, Schneid, and Ueberhuber (see Dekker &
Verwer, 1984: Ch. 7)).

It should be pointed out that we have not attempted to present our results in all
possible generality or under minimal hypotheses. Our aim has been to illustrate
the underlying problems and ideas.

There has been considerable interest recently in the investigation of the
behaviour of numerical methods for evolutionary problems in cases where the
time step is large (Griffiths & Mitchell, 1988; Iserles, 1989; Iserles et al., 1990;
Sleeman et al., 1988; Stuart, 1989; Sweby ef al., 1991). The application of implicit
methods in these situations requires, as a first step, the study of the solvability of
the nonlinear equations along lines similar to those delineated in this paper.
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2. The case of a sink

In the remainder of the paper we consider the following assumptions on the
RK method.
(RK1) Each internal stage is consistent, i.e.

s
2a,~,—=c,~, ISiSS.
j=1

(RK2) The abscissae ¢;, 1 <i=<s, are nonnegative.
(RK3) An s X s diagonal matrix D with positive diagonal elements exists such
that

s <A‘§’ E)D
e S

where (e, *)p, is the inner product in R* defined by
(&, m)= E dgm..
i=1

The condition (RK2) is useful when (1.2) is not autonomous and f is not defined
for ¢t <t,. Condition (RK3) holds for many stiff solvers and has been often used in
the literature (see Dekker & Verwer, 1984: Sections 5.5-5.10). Under this
condition, A is invertible and W(A™") >0 (Dekker & Verwer, 1984: Corollary
5.1.4). We point out the suggestion in Dekker & Verwer (1984: Remark 5.4.5)
that (RK3) may be a stronger property than required.
In this section our assumptions on f are as follows:
(F1) f does not depend on ¢ and is defined and continuously differentiable in a
neighbourhood of 0 e R™.
(F2) 0 is an equilibrium of (1.2), i.e. f(0) =0.
(F3) 0 is a hyperbolic sink of (1.2), that is, the Jacobian J of f at 0 has no
eigenvalue with real part =0 (Guckenheimer, & Holmes, 1983).
Under these conditions solutions of (1.2) that start near 0 are defined for all t = ¢,
and approach 0 at an exponential rate. For the discrete equations we have

THEOREM 1. If RK3 and F1-F3 above hold, there exist neighbourhoods €,,9,
of 0 in R™ so that, for each >0 and each y, € Q,, system (1.1) has a unique
solution Y;,.., Y, with Y, e ,, 1 <i=<s.

Proof. The hypothesis F3 on J implies (Hirsch & Smale, 1974: Ch. 7) that an
inner product (*, *) in R™ and a negative number v can be found such that

(z,Jz)y<sv|z|? zeR™
Since f is continuously differentiable near 0,
f@)—f(@), zn—2)=(z1—2,J/(21—2)) + o(llz; — z|%), 23,0,
and therefore a neighbourhood £, of 0 in R™ exists such that

(f@)~f(2), 21— 2) <0, z12,€Q, 2.1)
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The uniqueness of solutions with Y; € £, can now be proved in a standard way as
in Dekker & Verwer (1984: Thm 5.3.9).

To prove the existence we employ an argument based on topological degree
(Ortega & Rheinboldt, 1970). We first rewrite (1.1) in the compact format

Y=e®y,+h(ARDF(Y), (2.2)
where
Y=[Y], Y], .Y]"eR™, e=[1,1,.1] eR’,

® denotes Kronecker product, A is the s X s coefficient matrix, I is the m X m
identity, and F(Y) =[f(Y)",f(Y3)",..f(Y.)"]" e R™. Also we introduce in R™
the inner product

X, X]p= 2d< , X, XeR™, X,X eR™,

and denote by || || o the associated norm. (We use throughout the notation of
Dekker & Verwer (1984).) After these preliminaries, (2.2) leads to

A'@NDY -hF(Y)=(A"'® (e Qyp),
[(A™'® DY, Y- h[F(Y), YI=[(A"'® (e y,), Y]. (2.3)
The term [F(Y), Y] is easily proved to be <0 (see (2.1)), if Y € (2,)°. Results in
Dekker & Verwer (1984, Section 5.3) show that
VoA N Y I <[A' ® DY, Y],
(A ®)(e® ), YI<IIA Iblle®ylloll Yl o

s 3
= 147o( 2 ) Tl 1Yl

and hence (2.3) gives, whenever (2.2) holds with Y € (2,)°,

Yl o=<Blyll, (2.4)
where

= 1a71o($, ) 1@ata = (3 4)'

Now choose r >0 such that the closed ball B, centred at 0 e R™ is contained in
(£2,)° and define £2, to be the open ball centred at 0 with radius r/8. The estimate

(2.4) implies that if y,e 2, and Y satisfies (2.2), then Y cannot belong to the
boundary of B,. Thus the degree of the mapping

G(Y)=Y-e®y—h(AQDNF(Y), YeB,
does not vary with h, h =0. At h =0 this degree is 1 because

s

le@sollo=(3; 4) Il <5 (3, ) <r

i=

so that e ® y, € interior of B,. Hence the degree is 1 for each h >0 and a solution
exists. O
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3. The case of a slowly varying solution

We now consider the following hypotheses on f:
(F4) fis defined and continuous in a tube

L={@8):t=1t, |-zl <r}, r>0

around a solution z = z(¢) of (1.2).
(F5) (f(t, 21) = f(t, 22), s — 2) < V|2, — 2|1, whenever t=1¢,, ||z, — 2(2)|| <r,
i=1, 2. Here v is a nonpositive constant.
In practice we are interested in the case where z is a slowly varying function and
v <0 so that z attracts neighbouring solutions. However, these hypotheses on z
are not needed below.

TreoreM 2. If RK1-RK3 and F4-F5 hold, there exists a neighbourhood ,, of
z(0) in R™, a tube T, around z =z(t), and a constant hy>0 such that, for
he[0,hy) and y,e Q,, the system (1.1) has a unique solution Y,,..,Y, with
(to+cih, V) € T,,, 1<i=<s. Furthermore, for a given RK method the upper bound
ho on h only depends on the radius r in F4, on the norm |||| for which F5 holds,
and on bounds of the norm of the (q + 1)th derivatives of z, where q is the stage
order of the method.

Proof. The proof is an extension of that in the previous section and again we only
present the existence part. The discrete equations are still of the form (2.2),
where now

F(Y)=[f(to+ c1h, V)T, f(to + c,h, Y)TT".
We define
Z=[z(to+ c1h)" s z(to + ;)]
F(Z)=[f(to+ c1h, z(to+ c1h))T o f (to + 1, 2(to + c,1))T]",
and
R=Z-e®z(0)—h(ARDF(Z). (3.1)

Since z solves (1.2), the components of F(Z) are values of z'(¢). Hence, Taylor
expansion of (3.1) leads, after taking RK1 into account, to || R ||p =< Ch?*!,
where q is the stage order of the RK method (g = 1) and C is essentially a bound
for the (g + 1)th derivative of z.

Now subtract (3.1) from (2.2), to obtain

Y-Z=e® (y,—2(0)) + (A® D[F(Y) - F(Z)] - R,
which leads, as in Section 2, to the a priori bound
Y =Zllo=< {47 o/ ¥o(A ™ HYH IR Io+ e ® (30— 20) | o}, (3.2)

an inequality that now plays the role of (2.4). If 4 is small and y, is close to z(0),
the right-hand side of (3.2) is small and therefore (¢, + c,h, Y}),..., (to + ¢k, Y})
cannot cross the boundary of a tube 7,,. [J
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Remark. 1t is also possible to prove a similar theorem if v in F5 is positive. In
such a case h should be less than min (h,, Wp(A™")/v) where h, again depends
on r and on the size of the norm of the (g + 1)th derivative of z (see Dekker &
Verwer, 1984: Thm 5.3.7).
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