
JOURNAL OF COMPUTATIONAL PHYSICS 102,407416 (1992) 

The Numerical Study of Blowup with Application to a 
Nonlinear Schrijdinger Equation 

Y. TOURIGNY 

School of Mathematics, University of Bristol, England 

AND 

J. M. SANZ-SERNA 

Departamento de Matembtica Aplicada y Computacibn, Universidad de Valladolid, Spain 

Received August 17, 1990; revised July 9, 1991 

DEDICATED TO PROFESSOR A. R. MITCHELL WHO, AS ON MANY OTHER OCCASIONS, 

PROVIDED THE INITIAL SPUR 

We discuss the use of numerical methods in the study of the solutions 
of evolution problems which exhibit finite-time unbounded growth. We 
first examine a naive approach in which the growth rate of the numeri- 
cal solution is accepted as an approximation of the true growth rate. As 
we shall demonstrate for a radial nonlinear Schrodinger equation, this 
approach is inadequate since different discretizations exhibit different 
growth rates. The spurious behaviour of discretizations in the 
neighbourhood of the singularity is discussed. A reliable procedure for 
the estimation of the blowup parameters is considered which eliminates 
the discrepancies between different numerical methods. 0 1992 

Academic Press. Inc. 

1. INTRODUCTION 

In recent years, blowup phenomena have become a major 
topic in the theory of nonlinear evolution equations (cf. [ 1, 
20, 23) and the many references therein). Since the early 
work of Fujita [8] on semilinear parabolic equations, the 
interest in problems which feature blowup has now spread 
to such diverse fields as fluid dynamics [4], combustion 
[6], plasma physics [ 121, and nonlinear optics [ 161. 

One of the dominant themes of blowup theory concerns 
the behaviour of the solution, say u, or its derivatives near 
the blowup time t,,, . It is often conjectured that the growth 
of u near the singularity can be described by 

max 14x, t)l CC (t,,, - f)-“, 
x 

in which case the values of u and t,,, are naturally of 

interest. (Needless to say, one could also envisage 
more sophisticated functional relationships involving other 
unknown parameters.) Unfortunately, due to the inade- 
quacy of the mathematical tools available at present, the 
determination of those parameters must often rely on a 
mixture of heuristic reasoning and numerical evidence. 

Since the convergence properties of any numerical 
scheme depend on the good behaviour of u and its 
derivatives, it is clear that the calculation oft,,, and a poses 
some difficulty. As t,,, is approached, the discretization of 
the original problem results in a distortion of the blowup 
mechanism and, unless care is exercised, the numerical 
results can be misleading. 

This paper has two main objectives: first, to offer a simple 
general procedure which should ensure that reliable conclu- 
sions can be drawn when numerical methods are used in the 
investigation of blowup phenomena. Second, to provide 
insight into the behaviour of discretizations near t,,,. While 
the method considered here can cater for large classes of 
problems, we have deemed it best to concentrate on the 
cubic Schrodinger equation (henceforth, CSE). This is used 
as a model equation which encapsulates the main features of 
the issues which will be discussed. In Section 2, the physical 
origin and mathematical theory of the equation are 
discussed with particular emphasis on results pertaining to 
blowup. As we shall see, several conflicting conjectures have 
been made as to the correct value of a. In Section 3, we 
describe two different discretizations of the CSE. In Sec- 
tion 4, we carry out a computer experiment which illustrates 
the pitfalls of a naive approach to the calculation of 
the blowup parameters. With this approach, different 
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discretizations yield different values of a. In Section 5, we 
consider a simple procedure to obtain reliable results in the 
presence of a singularity. In Section 6, we discuss the 
significance of the results in the broader context of ODES 
and PDEs featuring finite-time blowup. Finally, Section 7 is 
devoted to concluding remarks. 

2. THE CUBIC SCHRC)DINGER EQUATION 

If we assume radial symmetry, the CSE in (N + l)- 
dimensional space-time becomes 

.a~ a% iv-i au 
'dt+iP+ r ar --+ ju12u=o, (2.1) 

where ZJ is complex-valued, t > 0, r = (xf + . . . + x’,)“’ 2 0, 
and i2 = - 1. 

The case N= 2 arises in nonlinear optics: u is then the 
envelope of an electromagnetic wave propagating along the 
t axis in a three-dimensional optical medium. The cubic 
term comes about by assuming that the refractive index 
increases with the square of the intensity of the beam [ 161. 
In the case N = 3, the equation has been derived in the con- 
text of plasma physics: u is then the envelope of a Langmuir 
wave. The appearance of a cubic term is due to the 
ponderomotive force [33, 121. 

The mathematical theory of the initial-value problem for 
(2.1) relies to a considerable extent on two invariance 
properties satislied by the solution [3,31]: 

s 
O” lu(r, t)12 rN-’ dr 

0 

=P=const for t>O; Q-2) 

zE=const for t20. (2.3) 

When N = 1, the constancy of P and E ensures the bounded- 
ness of the solution. When N > 1 and E-c 0, however, it has 
been proved [33] that the solution u must cease to exist at 
some finite value of t = t,,,. More precisely, 

lim Ilu(t)llLm(n) = + co. (2.4) 
f - fmax 

Figure 1 illustrates the development of the singularity for a 
gaussian initial condition of the type 

u( r, 0) = ae - w’)2 (2.5) 

with N = 2, a = 4, and 1= 1. As t -+ t,,,, the solution 
becomes unbounded at the origin. 

lu(t)I 

28. r 

r 
0. ’ 

0. 1. 

FIG. 1. Example of self-similar blowup in the case N = 2. 

In the case N= 2, this blowup of the solutions 
corresponds to a physical phenomenon known as self- 
focusing. It has indeed been observed in laboratory 
experiments that laser beams propagating for some distance 
in optical materials may rapidly become so intense as to 
damage the material [ 161. In the case N = 3, Eq. (2.4) has 
a useful interpretation in plasma physics and describes the 
nonlinear stage of Langmuir turbulence [33]. Thus, while 
the assumptions upon which the mathematical model (2.1) 
is based cease to be valid as t approaches t,,,, the 
behaviour of the solution u near the singularity is a matter 
of great practical interest in both plasma physics and non- 
linear optics. 

Many authors have conjectured that the singular solu- 
tions of Eq. (2.1) exhibit a self-similar structure as t 
approaches t,,, [23]; i.e., 

lim I+, t)l = ,Ef, y(t) @(r(t) r), (2.6) 
f - ~m2.x 

where y(t) is singular at t,,,. It turns out, however, that 
Eq. (2.1) is consistent with different choices of y and @, so 
that one needs to determine which particular self-similar 
structure acts as an attractor for a given class of initial con- 
ditions. In this paper, we shall, for the sake of convenience, 
restrict ourselves to the blowup arising from (2.5). 

In the case N = 2, most authors agree that the function @ 
in (2.6) is in fact the envelope of the ground state [23, 311. 
However, disagreement has existed regarding the nature of 
the singularity y(t). In Table I, we have listed some of the 
conflicting claims which have been made in the past. Note 
that, in the case N = 2, each reference appearing in the table 
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TABLE I 

The Nature of the Singularity r(t) 

N=2 

Kelley [ 161 Zakharov and Vlasov et al. [30] 
Synakh[35] Wood [32] 

Sulem et al. [26] Rypdal and 
and Rasmussen [23] 

N=3 

“weak collapse” 

(Glmx - tP2 

McLaughlin et al. 1211 
Goldman et al. [ 111 

“strong collapse” 

(1Imx - ,P5 

Rypdal and 
Rasmussen [23] 

Zakharov et al. [34] 

includes the results of numerical experiments purporting 
to verify the conjectured power law. It should be said, 
however, that, in more recent contributions [ 17, 181, Sulem 
and his collaborators have abandonned the power law 
(4n,x - t)- *I3 Instead, they present new calculations in . 
support of the conjecture 

( log log( t,,, - t) l’* t max ) --t . 

In the case N= 3, McLaughlin et al. [21] have derived a 
semilinear elliptic equation for Qi. They have carried out 
calculations with initial conditions of the type (2.5) which 
support the conjecture (2.6) with y(t) z (t,,, - t)- ‘I*. This 
is in agreemefit with earlier findings by Goldman et al. [ 111. 
However, Zakharov et al. [ 343 and Rypdal and Rasmussen 
[23] present other asymptotic arguments which suggest 
that another self-similar blowup regime which they call 
“strong collapse” is possible for suitable initial data. In this 
regime, the solution grows like (t,,, - t)3’5. This does not 
contradict the findings of McLaughlin et al., but it does, 
however, raise the possibility of two distinct blowup regimes 
for solutions arising from (2.5), depending on the particular 
choice of a and 1. 

The complex situation summarised in Table I indicates 
that considerable care must be exercised if numerical 
methods are to provide a reliable tool in the investigation of 
blowup phenomena. The results of our own calculations will 
be discussed in the next sections. In the case N = 3, detailed 
experiments will confirm the results of McLaughlin et al. At 
the same time, we also show that a careless approach may 
suggest the “wrong” power law (t,,, - t)-3’5. 

3. TWO FINITE-ELEMENT METHODS FOR THE CSE 

The solutions generated by gaussian initial conditions 
remain exponentially small as r + co. Let 0 c ZRN be the 
ball of radius R > 0 centered at the origin. If R is sufficiently 
large, we may, without significant loss of accuracy, replace 
the initial value problem (2.1), (2.5) by an initial boundary 
value problem on 52 with homogeneous Dirichlet boundary 
conditions. We refer to Goldstein [13] for a rigorous 
analysis of this truncation procedure for a simpler linear 
elliptic problem. 

LetA,:O=r,<r,<...<r,+,=Rbeapartitionofthe 
interval [0, R]. We introduce the finite-dimensional space 
Sh consisting of all the functions defined on [0, R] which 
are continuous and piecewise linear with respect to A,,. We 
also introduce the discrete time levels 

0 = to < t, < . . . < t, < . . . 

and use the notation 

h = max (ri+ 1 - ri), 
l<i<n 

h= min (ri+l-ri), 
l<i<?l 

At=max (fm+I-tm). 
O<Wl 

Let U; E Sh denote an approximation to u( t,). We shall con- 
sider two different ways of constructing an approximation 
to u at the next time level. In the first method, due to 
Delfour et al. [S] (DFP for short), U; + ’ E S,, is defined as 
the solution of the problem 

i s R ‘h 
~+l~U~ 

0 t 
--th &-N--l &-jRdU~+W6!,N-l d,. 

m+l m  o dr dr 

UT+ ‘/‘qbN- ’ dr = 0 (DFP) 

for all 4 E Sh, where UT + II2 = +(u; + ’ + u;). 
The main feature of the DFP scheme is the existence of 

discrete invariance properties analogous to (2.2) and (2.3), 
namely, 

i 
R luyl” rN--l dr = const for all m, (3.1) 

0 

{oR{l~~2-~[u~14}rN-1dr=const forallm. (3.2) 

The second numerical method which we shall use is due to 
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Grifliths er al. [ 141 (GMM for short). It consists of defining 4. A FIRST APPROACH TO THE CALCULATION OF THE 
uy + ’ E Sh as the solution of the problem BLOWUP PARAMETERS 

i (rN-1dr_SRdU;+1,2~rN-ldr 
o dr 

+/R~h(F(u~+“2)))rp’dr=0, (GMM) 
0 

where F(z) = 1~1’ z and I,( ‘): C(0, R) + Sh denotes the 
interpolation operator. (The technique which consists of 
replacing the nonlinear term by its interpolant is known as 
“product approximation” [28].) Thus, our two numerical 
methods differ only in their treatment of the nonlinear term. 
Unlike the DFP scheme, the GMM method does not 
feature discrete invariance properties. However, the latter 
leads to a more efficient computer code. 

If the partitions A, are relined in such a way that 

then both methods enjoy the rate of convergence [27,29] 

IIC - ~(LJll Lz(n) < C(u, T)(h’ + At2) (3.4) 

for t,d T-c t,,,. This result only holds for N = 1, 2, 3. No 
convergence results are available in higher dimensions. It 
must be emphasized that the constant C in (3.4) depends on 
the size of u and its derivatives in the interval [0, T]. This 
constant becomes unbounded as T + t,,, . 

The calculation of uy+’ in both the GMM and DFP 
methods involves the solution of a system of nonlinear 
algebraic equations. In order to solve this system, we shall 
use a simple fixed-point iteration procedure. Let z0 = $. In 
the case of the DFP scheme, we obtain zk + 1 E Sh by solving 
the linear problem 

i kfl -“h -tm/‘“-l dr_jRdZk+l+U%~rN-l d,, 
m+l m o dr 2 

+s 2 
R ~zk~2+l~~~2zk+u;: N-‘dr=O 24r . (3.5) 

0 

The sequence (zk) will converge to u;+ ’ geometrically 
provided that (t,, 1 - t,) is sufficiently small. (Roughly 
speaking, ( tm + i - t,) should be small compared to lu(t,)l 2; 
cf. [27] for details.) In the case of the GMM scheme, we 
have to solve a linear problem similar to (3.5) with the 
appropriate modification to the nonlinear term. 

In this section, we describe the results of a calculation of 
the blowup parameters based on a “naive” approach. As we 
shall see, the two numerical schemes discussed in the 
previous section then lead to conflicting results. 

Consider the case N= 3 in Table I. We use the initial 
condition 

u(r,0)=6,/?epr2 (4.1) 

and take R = 5 for the radius of the sphere Q. Assuming that 
the behaviour of u near t,,, takes the form 

I44 t)l cfz (fInax - t)r*, (4.2) 

we would like to estimate c1 and t,,,. The problem (2.1) 
(4.1) has been considered by McLaughlin et al. [21] who 
computed t,,, z 0.034302 and c1 z $. 

As far as the implementation of the numerical method is 
concerned, we have used uniform grids in space and time. 
The fixed-point iteration procedure was terminated when- 
ever the difference between two successive iterates zk and 
zk + 1 proved sufficiently small. More precisely, we have used 
the stopping criterion 

llz k+l - zkll LZ(Q) < lo-“. 

If this condition could not be met in less than 10 iterations, 
we would set 

m+l- 
‘h -z10 

and proceed to the next time level. Our calculations were 
carried out on a network of Sun computers 3150 and 3160, 
using double precision arithmetic. We shall write ah and t&, 
to denote the estimates of a and t,,,, respectively. We 
emphasize, however, that those estimates depend on At as 
well as on h. Our “naive” approach to the estimation of t,,, 
and a consists of the following two basic steps: 

l Given h and At, integrate forward in time until 
overflow occurs. (This happens whenever the numerical 
method generates a number in excess of 10308). Let tk,, be 
the last time level prior to overflow. 

. Having estimated t,,,, calculate ah by a linear least- 
square lit of the curve 

1% l4v)l vs lo&L - fr?z). 

In doing so, one should avoid using the results from the last 
few computed steps, as these will be very inaccurate. 
Naturally, this procedure should be repeated with 
decreasing values of h and At. 
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TABLE II 

Computed Estimates of t,,, 

h = 0.002 h = 0.001 

AI DFP GMM DFP GMM 

1om3 0.034 0.035 0.034 0.035 
1om4 0.0343 0.0343 0.0343 0.0343 
10-5 0.03430 0.0343 1 0.03430 0.0343 1 

In accordance with this program, our first task was to 
estimate t,,, . The result of this calculation, for different 
values of h and At, is given in Table II. The good agreement 
between the two numerical methods is encouraging and it 
seems that the computed values of t&, are converging to a 
limit which is close to McLaughlin et al.‘s t,,, = 0.034302. 
Using the discrete solution corresponding to h = 10e3 and 
At = 10e5, we have then sought to estimate the local value 
of the exponent c( in Eq. (4.2) on different sections [t,, fb] 
of the time interval. The results are displayed in Table III. 

Once again, we observe that our two numerical schemes 
are in good agreement in the early stage of the blowup. Near 
t max 1 however, they produce conflicting evidence: the DFP 
method yields a “weak collapse” which supports the claim 
of McLaughlin et al. [21]. In contrast, the numerical solu- 
tion obtained by the GMM scheme exhibits a growth rate 
consistent with the “strong collapse” discussed by Rypdal 
and Rasmussen [23] and Zakharov et al. [34]. 

This discrepancy stems for the fact that, for h and At fixed 
as t-, t,,,, the behaviour of the numerical methods does 
not reproduce the true behaviour, no matter how small h 
and At are; cf. the discussion in Section 6. Recently, Berger 
and Kohn [ 1 ] and LeMesurier et al. [ 193 have proposed 
resealing algorithms which reduce both the spatial and 
temporal grids in accordance with the current size of the 
solution. The underlying aim is to achieve uniform accuracy 
as t approaches t,,,. Such procedures appear to be useful, 
although it is fair to say that they owe more to heuristic 
considerations regarding the structure of the solution of the 

TABLE III 

Local Estimates of the Exponent tl 

Fit between ah 

‘a lh DFP GMM 

0.01000 0.02000 0.31 0.31 
0.02000 0.03000 0.46 0.46 
0.03000 0.03428 0.53 0.54 
0.03200 0.03428 0.53 0.55 
0.03400 0.03428 0.52 0.58 
0.03410 0.03428 0.52 0.59 
0.03420 0.03428 0.52 0.62 

PDE, than to actual facts obtained from a numerical 
analysis. (Cf., however, the interesting result of Nakagawa 
[22]). An alternative approach will be considered in the 
next section. 

5. A RELIABLE PROCEDURE FOR THE CALCULATION 
OF THE BLOWUP PARAMETERS 

The procedure which we shall discuss in this section is 
based on the simple observation that it is not necessary to 
compute all the way up to t,,, in order to obtain estimates 
of the blowup parameters. For example, take M “large,” 
then calculate and sample the discrete solution in the range 

xh and tk,, can then be obtained via a nonlinear least- 
square fit. More precisely, if the discrete solution is sampled 
at the time levels t,,, i = 1, . . . . N,, then it suflices to minimise 

with respect to log C h (where C h is an estimate of the under- 
lying proportionality constant in (4.2)), ah, and tk,, to 
obtain estimates of the blowup parameters. Note that those 
estimates now depend not only on h and At, but also on M. 
Since our numerical methods are convergent in compact 
intervals contained in [0, t,,,[, it follows that ah and tk,, 
should also convergence in the following sense: given E > 0, 
there exists M, such that for all M> M,, we can find h,,, 
and At M,E which have the property that 

la--‘1 + IL,,-t&J <E 

for all h < h, E and At < At,,,. 
In our opiiion, this procedure has the merit of making a 

distinction between two separate aims: the first aim being to 
estimate the blowup parameters in a reliable way; the 
second aim being to design spatial and temporal grids which 
will afford an economical computation. For each value of 
M, we have the freedom of choosing and adapting the grids 
according to error-control requirements, and there is no 
need to build in any a priori information on the nature of 
the singularity. 

It is not the purpose of this paper to discuss mesh 
adaption, and we have therefore opted for the simplest 
refinement strategy consistent with the convergence proper- 
ties of our two discretisations. As far as the spatial grid is 
concerned, it is natural to select a mesh which is fine near 
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r = 0 and then gradually coarsens as r + R. For example, let 
h and h be given parameters and define 

ri+l =ri+h(l-s)+hs, i=l,..., n (5.1) 

We require rn + , z R. Take n = [2R/(h + h)]. The recursion 
(5.1) then defines a partition of the interval [O, R,,], where 
R,=i(h+h)n. Note that R,=R+O(h). 

In the numerical experiment which we shall describe 
below, we have used h = h312 in the case N = 2 and h = h514 
in the case N = 3. This choice is permitted by condition (3.3) 
and allows the ratio h/h to increase without bound as h + 0. 

Regarding the choice of time step, we have opted for a 
simple (and common) error control strategy (cf. [9]). 
Observe that both the GMM and DFP schemes are second- 
order accurate time-discretisations of appropriate systems 
of ODES. In order to estimate the error for a given step (say 
At), it suffices to carry out two calculations from the 
previous time level: one with a full step of length At and one 
by taking two steps of length At/2. From those two calcula- 
tions, it is simple to obtain an estimate of the local error. If 
this error exceeds a given tolerance TOL or if the fixed-point 
iterative procedure fails to converge, then the calculation 
should be carried out with a reduced time step. Otherwise, 
the calculation is deemed acceptable and we can proceed to 
the next time level. 

In summary, we have the following algorithm for the 
calculation of the blowup parameters: 

l For A4, h, and TOL given, calculate ~7 in the range 

TABLE IV 

N=3,u(x,0)=6,,he-94=100 

GMM DFP GMM DFP 

TOL 

\ 
h 

lo-lo lo-l2 

TABLE V 

N=3,u(~,0)=6fie-‘~,M=200 

GMM DFP 

TOL 

\ h 
10-‘O lo-l2 

\ 
0.01 0.025269411 0.022687745 0.020852332 0.022247586 

0.52986332 0.53016879 0.53030770 0.53011999 
0.034304188 0.034301500 0.34293817 0.034297934 

0.005 0.058120525 0.057017115 0.056760725 0.055795459 
0.52545817 0.52558128 0.52559532 0.52569607 
0.034305357 0.034302615 0.034296605 0.034300806 

0.0025 0.063651301 0.062445358 0.061639751 0.064939091 
0.52472238 0.52485770 0.52495593 0.52454372 
0.034305758 0.034303018 0.034297357 0.034301508 

0.00125 0.067140219 0.063122425 0.062421315 0.062168475 
0.52428620 0.52476571 0.52485429 0.52486591 
0.034305804 0.034303129 0.034297532 0.034301713 

l Obtain ah and tk,, by a nonlinear least-square ht. 

l Reduce h and TOL until ah and t&,, converge. 

l Increase A4 and repeat the above steps. 

In order to illustrate the effectiveness of this procedure, 
we return to the example discussed in Section 4; i.e., we 
consider the cubic Schrodinger equation in the case N = 3 
with the initial condition (4.1). 

In Tables IV to VI, estimates of the blowup parameters 
computed by the GMM and DFP schemes are displayed. 
For each value of h, TOL and A$ there are three entries: the 
top, middle, and ,bottom entries correspond respectively to 
log Ch, txh, and ti,,. 

TABLE VI 

TOL 

\ h 
lO-‘O lo-l2 lO-‘O lo-l2 

0.01 -0.019270447 -0.019132797 -0.017110775 -0.018221558 0.01 -0.0089738938 -0.0089480197 -0.078869320 -0.075702874 

0.53571370 0.53567437 0.53532158 0.53546687 0.53356678 0.53357043 0.54110480 0.54077583 

0.034306245 0.034303449 0.034295642 0.034299875 0.034304430 0.034301704 0.034294543 0.034298679 

0.005 -0.013431050 -0.013626867 -0.012178652 -0.013273416 0.005 0.11368666 0.11428648 0.11481839 0.11362816 

0.53480179 0.53481071 0.53458869 0.53473497 0.51918448 0.51912796 0.51904806 0.51915906 

0.034308516 0.034305733 0.034299620 0.034303900 0.034304714 0.034301967 0.034295948 0.034300134 

0.0025 -0.012550037 -0.012785942 -0.011544996 -0.011241855 0.0025 0.14098567 0.14360978 0.14438745 0.14444877 

0.53466680 0.53468150 0.53449873 0.53444771 0.51604887 0.51578260 0.51569548 0.51567775 

0.034309107 0.034306327 0.034300549 0.034304732 0.034304913 0.034302156 0.034296478 0.034300688 

0.00125 -0.012447952 -0.012647548 -0.011456959 -0.012046088 0.00125 0.14941938 0.14892463 0.14840193 0.14491961 

0.53465159 0.53466092 0.53448690 0.53456033 0.51512993 0.51518122 0.51523484 0.51557946 

0.034309249 0.034306465 0.03430075 1 0.034304985 0.034304970 0.034302225 0.034296621 0.034300803 
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There are two points worthy of notice: First, for each 
value of M, both methods produce estimates which agree 
closely as h and TOL are reduced. As one would expect, 
larger values of M require smaller values of h and TOL in 
order to eliminate the discrepancy between the two numeri- 
cal methods (M = 400 was the largest value which could be 
attempted in the computer environment used in this pro- 
ject). Second, with h and TOL reduced according to M, the 
estimates appear to converge to a limit as M increases. Both 
methods suggest that u is close to f and that t,,, is close to 
0.03430. This supports the conjecture of McLaughlin et al. 
[21] (cf. Table I). 

To conclude this section, let us mention that we have also 
carried out calculations in the case N = 2. In this case also, 
both discretisations agree closely. The results indicate that 
the conjecture of Zakharov and Synakh [35] and Sulem 
et al. [26] should be discarded. The blowup rates predicted 
by Kelley [16], Vlasov et al. [30], LeMesurier et al. 
[18, 191, and Landman et al. [ 171 (cf. the discussion 
pertaining to Table I) are all plausible. Since they only differ 
in a logarithmic factor, it has not been possible to decide 
between them numerically. 

6. DISCUSSION 

So far, our attention has been centered exclusively on the 
radial CSE. However, it is clear that both the “naive” 
approach of Section 4 and the procedure of Section 5 can be 
used for any ODE or PDE featuring finite-time blowup. The 
purpose of this section is first to broaden the scope of our 
discussion and, second, to gain further insight into the 
behaviour of discretisations near a singularity. 

As indicated earlier, the failure of the “naive” approach 
presented in Section 4 reflects the obvious fact that dis- 
cretisations on fixed meshes cannot maintain a uniform 
!evel of accuracy over the whole of [0, t,,,[, however small 
h and At are. In the ODE case, Sanz-Serna and Verwer [24] 
have presented a detailed study of the Euler rule for the 
simple model problem 

dy 
z= Y2, Y(O) = 1 

which admits the solution 

Y(t) = (4n,, - t)-‘2 t,,, = 1. 

They show that the time t;,, by which the numerical 
solution overflows differs by O(z) from t,,,. However, the 
behaviour of the numerical solution prior to t,,, is quite 
different from the true behaviour. In fact, at the grid point 
t max - t, the relative error in the numerical solution tends 
to 1. This demonstrates that the approach of Section 4 is 

doomed to fail even for the simple problem (6.1). By con- 
trast, the procedure which we advocate yields convergent 
estimates of the blowup parameters. Further relevant 
material on the behaviour of the 8 method for a related 
problem can be found in [25]. 

In the PDE case, it is perhaps illusory to hope for such a 
sharp analysis near t,,,. Nevertheless, some insight into the 
behaviour of discretisations can be gained via the method of 
modified equations [15]. Loosely speaking, one expects 
that the discrete solution is in fact closer to the solution of 
a modified equation with added terms which might either 
oppose blowup or at least change the nature of the 
singularity. It is this phenomenon which is presumably 
responsible for the conflicting claims, based on the results 
obtained by different numerical methods which have been 
made in the literature. 

To illustrate this, let us consider the one-dimensional 
nonlinear Schrodinger equation 

i$+$+f(+O, (6.2) 

where now the nonlinearity is of the form f(u) = IuI JJ u, 
~24. Given a regular initial condition, the solution of 
Eq. (6.2) exists up to some time tmax > 0 [33 and satisfies the 
invariance properties 

P= 
s 

\u(x, t)12 dx=const for t>O, (6.3) 
IR 

E=.l {I ,R g (x, t)12-j& ,4x, t),p+2} dx 

=const for t 20, (6.4) 

which are the obvious analogs of (2.2) and (2.3). 
Generalising the result of Zakharov to the case where 
p # 3 and N # 2, 3, Glassey [ 1 l] showed that E-c 0 
implies t,,, < co. The solution then becomes unbounded. 
Thus, Eq. (6.2) exhibits features analogous to the higher- 
dimensional radial CSE. 

Suppose now that we discretise the spatial variable by 
means of a Galerkin method with piecewise linear elements 
and product approximation for the nonlinear term. On a 
uniform spatial grid, the nodal values Vi= U(xj, t) of the 
discrete solution satisfy the differential equation 

where the dot indicates differentiation with respect to time 
and h denotes the spatial gridsize. The consistency of 
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this spatial discretisation can be determined by Taylor- 
expanding the solution u of Eq. (6.2) about xj. We find that 
(we write u(x,) instead of u(xj, t)) 

+ $ C"txj- 1) - 2u(xj) + u(xj+ 1)) 

= i g (Xj) + 2 (Xj) + f(u(x,)) 

+h2S $-J,,+gJx,) (. 
+ i f("(xj)) 

> 
+ OCh4) 

= i $ txj) + 2 lxj) + ft”txj)) - 12 ax4 
E!  (xj) 

+T$ i$(Xj)+$(Xj)+f(U(Xj)) 
( 

-; 2 (,,) + O(h4). 

This expansion shows that the scheme (6.5) is, on the one 
hand, consistent to second order with Eq. (6.2) and, on the 
other hand, consistent to fourth order with the modified 
equation 

.au, a2uh 
'at+ ax* 

-+j-(uh)-g‘+o. (6.6) 

Consequently, the discrete solution defined by Eq. (6.5) 
although it was designed to approximate u, might well be 
closer to u,,. One should immediately add, however, that 
this statement is not necessarily correct since, as the 
notation emphasizes, u,, obviously depends on h (cf. [ 151). 
A discussion of Eq. (6.6) is nonetheless enlightening. 

We proceed to show that the added dispersion term in 
Eq. (6.6) which may be thought of as a distortion inherent 
in the numerical method, opposes blowup if p < 8. Let us 
suppose that u,, and its first spatial derivative vanish at the 
boundary of 0. If we multiply Eq. (6.6) by U,, integrate over 
Q, use integration by parts to deal with the spatial 
derivatives, and retain the imaginary part, we find 

P = 
J Iu,Jx, t)l* dx = const. (6.7) R 

If we then multiply the equation by &,/at and take the real 
part after integration, we obtain 

+gjQ 19(x, f)12dx=const. (6.8) 

The solution of Eq. (6.6) therefore satisfies two invariance 
properties closely related to (6.3) and (6.4). However, the 
additional term in (6.8) ensures the boundedness of uh if 
p < 8. Indeed, the Sobolev-Gagliardo-Nirenberg inequality 
[7] and (6.8) imply 

h* a%, 
6 Jl 

R 3 (x, t) * dx 

d iEhEhi + --&i*, i”htx, t)lp+’ dx 

2 
< I& +- 

P+2 
c,P(p+4)/8 ( ja 1% (x, 1)12 dx)D-l. 

Using now another Sobolev inequality [2, p. 1951 which 
states that 

(s > 
112 

X I”hcx, t)i2 dx 
R 

there follows 

h* ah, 
6 R ax* jl 

-(x, t) *d.x<lE,I +LC C$‘4Pp’4+1’2 
p-t2 L 

Hence, if p < 8, we have 

JQ 1% (x, t)i2 dx < Ch 

which implies the boundedness of u,,. 
This suggests that the discrete solution U defined by 

Eq. (6.5) will also remain bounded if p < 8, even if the 
solution u of Eq. (6.2) does not. This prediction has been 
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t=.o863 

0. 1 ! f 
0. .l .2 

FIG. 2. Evolution of the amplitude of the discrete solution obtained 
with the GMM scheme for Eq. (6.2) and the initial condition u(r, 0) = 
2~~“~; p = 4, h = $, and Ai = 10m4. 

confirmed numerically (cf. Fig. 2) in an experiment with 
Eq. (6.2), p = 4, and the initial condition 

24(x, 0) = 2epx*. 

For this initial condition, E ~0 and Glassey’s theorem 
predicts blowup. We have used the GMM scheme with 
piecewise linear elements, h = 0.02, R = 5, and At = 10p4. 
This time step is so small that the spatial error dominates. 
We are in effect computing the discrete solution U of 
Eq. (6.5) and overflow does not take place. If we use 
At = 10p3, then overflow occurs at t = 0.087. (Incidentally, 
we note that, for this example, the discretization in space 
has a saturating effect on the solution [ 19, 353 and it could 
perhaps be argued that, on physical grounds, the discretisa- 
tion (6.6) is a more realistic model than Eq. (6.2)!) 

It is more difficult to derive modified equations in the 
radial case, owing to the presence of the curvature term. 
However, an obvious example of numerical distortion arises 
as a result of discrete invariance properties. Given that the 
L2 norm of the discrete solution defined by the DFP method 
remains the same for all time levels and given that S, is 
finite-dimensional, it follows either that the DFP scheme is 
unsolvable for t, + i 3 t,,, or else that uy remains bounded 
for h fixed. The former eventuality is excluded for small 
enough At [27]. This shows that discrete invariance proper- 
ties are no safeguard against spurious behaviour near t,,, . 

These simple examples help to explain why the naive 
approach presented in the previous section fails to reveal the 
nature of the singularity. 

7. CONCLUDING REMARKS 

In this paper, we have discussed the use of numerical 
methods in the investigation of blowup phenomena. The 
spurious behaviour of discretisations as t + t,,, as been 
illustrated for a nonlinear Schrodinger equation and we 
have examined a simple procedure to obtain reliable results 
in the presence of a singularity: 

Given spatial and temporal grids and given a “large” 
number M, calculate the discrete solution in the range 

l Obtain estimates of the blowup parameters by a 
nonlinear least-square tit. 

l Refine the grids until those estimates “converge.” 
l Repeat the above steps with increasing values of M. 

This procedure should yield correct results because it relies 
on the convergence properties of the numerical method in 
compact time intervals which exclude t , , , .  Naturally, it 
may well be that for individual equations more powerful 
algorithms can be designed by exploiting the peculiarities of 
the problem. However, if the basic approach advocated here 
is combined with an adaptive strategy based on error 
control, then the resulting code should prove both efficient 
and reliable. 
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