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Symplectic Runge-Kutta and related methods: recent results 
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Symplectic algorithms are numerical integrators for Hamiltonian systems that preserve the symplectic structure in phase 
space. In long time integrations these algorithms tend to perform better than their nonsymplectic counterparts. Some 
symplectic algorithms are derived by explicitly finding a generating function. Other symplectic algorithms are members of 
standard families of methods, such as Runge-Kutta methods, that just turn out to preserve the symplectic structure. Here 
we survey what is known about the second type of symplectic algorithms. 

1. Introduction 

The recent literature, both in physics and in 
numerical analysis, has given much attention to 
the numerical integration of Hamiltonian systems 
of differential equations by means of symplectic 
integrators. The list of references at the end of 
this paper contains more than thirty items and is 
far from exhaustive. For simplicity, we only con- 
sider autonomous systems with finitely many, say 
d, degrees of freedom: 

d p i / d t  = -OH/aqi  , dq i / d t  = aH/api , 

l<_i<_d, (1) 

where H = H ( p  1 . . . . .  Pd; ql . . . . .  qd ) is a smooth 
real function defined in an open domain /2  of the 
(p ,q )  Euclidean space [1, 2]. (Extensions are 
possible, see e.g. refs. [3-5].) The flow 4, t of (1) is 
a canonical or symplectic transformation [1], i.e. 
it preserves the differential two-form dp A dq. In 
other words, for each time t and each two-dimen- 
sional surface ~ in /2, the sum of the oriented 
two-dimensional areas of the projections of 
onto the d planes (Pi, qi) is the same as sum of 
the oriented areas of the projections of &t(Z) 
onto those planes. Recall that, by definition, 
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~bt(P0, q0) -- (P, q) if (p, q) is the value at time t 
of the solution of (1) that at time t = 0 takes the 
value (Po, qo). Most qualitative properties of 
Hamiltonian systems, including preservation of 
volume, absence of asymptotically stable equilib- 
ria, Poincar6 recurrence, etc., can be directly 
derived from the symplectic character of the flow 
[1, 2]. If /2 possesses a trivial topology, a vector 
field in /2 is Hamiltonian if and only if the 
corresponding flow is symplectic, so that, in this 
respect, symplecticity provides a complete charac- 
terization of Hamiltonian systems. 

Each one-step numerical method for the inte- 
gration of (1) is given by a mapping ~bt in phase 
space that effects the transition 

( P n + l ,  q n + l )  = ~lh(Pn, qn) (2) 

from the numerical approximation (Pn, qn) at time 
t n to the numerical approximation at the next 
time level tn+ 1 = tn + h. For an r th  order method 
Ct differs from 4, t in t~'(t r + l )  t e r m s .  For explicit 
Runge-Kut ta  methods and many other standard 
methods, it turns out that the transformation Ct 
in (2) is not symplectic. By implication, the long- 
time dynamics of the numerical solutions is then, 
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so to speak, non-Hamiltonian, even if the method 
is of high order and provides very accurate simu- 
lations over short time intervals. It is therefore 
reasonable to look for numerical algorithms that 
result in symplectic approximations ~'t to ~b t. 
These algorithms are called symplectic [6, 7] or 
canonical [8]. Numerical experiments (see e.g. 
refs. [9, 10]) and theoretical considerations (see 
e.g. ref. [11]) have revealed that, in long time 
integrations of Hamiltonian systems, symplectic 
integrators perform better than their noncanoni- 
cal counterparts. This enhanced performance is 
felt not only in the qualitative behaviour of the 
numerical solution, but also quantitatively. 

Many symplectic integrators are now available 
in the literature. Broadly speaking, there are two 
large groups of symplectic methods. On the one 
hand, it is well known [1] that a canonical trans- 
formation can be expressed in terms of a (scalar) 
generating function S. Therefore numerical sym- 
plectic methods can be constructed [6, 7, 9, 12, 
13] by identifying a suitable generating function 
St for qJt. Of course St should be an approxima- 
tion to the generating function of the true flow 
~b t, so that S t should be an approximate solution 
of a Hamilton-Jacobi equation [1]. This method- 
ology leads to algorithms that use high derivatives 
of H and are reminiscent of standard Taylor 
series methods for ordinary differential equations 
(ODEs). The second large group of symplectic 
integrators consists of algorithms that belong to 
conventional classes of numerical ODE methods, 
such as Runge-Kutta or Runge-Kutta-Nystr6m 
methods. The integrators of the second group, 
unlike those explicitly based on generating func- 
tions, can be applied to general (i.e. not necessar- 
ily Hamiltonian) systems of ODEs. In particular, 
they can be applied to small dissipative perturba- 
tions of Hamiltonian problems. Furthermore, the 
algorithms in the second category only require 
the evaluation of the vector field components 
OH/Opi and aH/bqi, so that higher derivatives of 
H are not needed. Finally, in the analysis and 
implementation of the methods of the second 
group, use can be made of the vast body of 

available knowledge in connection with Runge- 
Kutta and related methods. It is our feeling that, 
even though algorithms of the first group may be 
advantageous when dealing with specific individ- 
ual problems, the algorithms of the second group 
are more promising when it comes to designing 
general purpose software for Hamiltonian prob- 
lems. In this paper we are only concerned with 
the second group of symplectic integrators. We 
successively consider Runge-Kutta, Runge- 
Kutta-Nystr6m and Partitioned Runge-Kutta- 
Nystr6m methods. For symplectic multistep 
methods see refs. [14-16]. 

2. Symplectic Runge-Kutta methods 

Let us consider a general system of D differ- 
ential equations 

d y / d t  = F ( y ) ,  (3) 

of which (1) is of course a particular case. An 
s-stage Runge-Kutta (RK) method [17, 18] for 
the integration of (3) is specified by an (s + 1) × s 
tableau of real constants 

q 

a l l  a 1 2  • . .  als 

a 2 1  a 2 2  • . .  a 2 s  

asl as2 • . .  ass 
bl b2 • . . b s 

(4) 

The time-stepping from t n to t.+ 1 is given by 

Yn+l =Yn +h ~ biF(Yi) ,  (5) 
i = 1  

where the vectors Y~ are the so-called internal 
stages. (The Y/'s depend, of course, on n, but this 
dependence is not reflected in the notation.) The 
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internal stages are determined by the relations 

Yi=Y.+h ~"~ai, F(Yi), l<_i<s. (6) 
j=l 

If aij = 0 whenever i <j,  eqs. (6) provide a recur- 
sion for explicitly computing each Y~ in terms of 
the preceding stages. The method is then called 
explicit. The computation of one step wi~h an 
explicit RK method thus requires s evaluations of 
the vector field F. Explicit RK methods have of 
course been the most used one-step algorithms in 
numerical ODEs. When the method is not ex- 
plicit, (6) provides a coupled system of s × D  
nonlinear algebraic equations that must be itera- 
tively solved for the stages. Since the computa- 
tional cost per step of an implicit RK method is 
definitely higher than that of an explicit RK 
method, implicit formulae have only been used 
for stiff [19] problems, where their better stability 
properties make up for the computational cost. In 
a stiff situation, simple functional iteration does 
not work and (6) must be solved by a Newton 
procedure. A common strategy is as follows [20]. 
If J is an approximation to the Jacobian matrix of 
F at Yn, then J =  I -  hA ®J is an approximate 
Jacobian for the system (6). Here A is the matrix 
with entries aii and ® denotes Kronecker prod- 
uct [19]. When Or is used as an approximate 
Jacobian for Newton's iteration, the linear sys- 
tems to be solved are of the form 

J x  = z .  (7 )  

A particular class of implicit methods, called 
diagonally implicit methods, occurs when the ma- 
trix A is lower triangular (aii -- 0 for i <j).  Then 
the solution of (6) requires the successive solution 
of s D-dimensional nonlinear systems, which is of 
course far less demanding than the solution of 
the s × D system one would find with a general 
implicit method. 

Let us assume that the system (3) being inte- 
grated is of Hamiltonian form. Then the present 
author proved [21] that the method (5), (6) would 
be symplectic provided that the following rela- 
tions hold: 

biaij +bjaii-bibj=O, l <.i,j <s. (8) 

This condition was discovered later and indepen- 
dently by Lasagni [22] and also by Suris [23]. 
Furthermore Lasagni showed that, except for 
unimportant methods with redundant stages, (8) 
is also necessary for (5), (6) to be symplectic. The 
proof of this result has not been published. How- 
ever the necessity of (8) can be concluded by 
considering the RK method to be a particular 
case of partitioned Runge-Kutta method and 
then applying theorem 5.1 in ref. [24]. 

It is easy to see that condition (8) cannot be 
satisfied by any explicit Runge-Kutta method. 
On the other hand, for each s, the Gauss- 
Legendre method with s stages, i.e. the unique 
s-stage method that achieves the maximal order 
2s, is symplectic [21]. For s = 1 the Gauss- 
Legendre method is the well-known implicit mid- 
point rule 

If A has eigenvalues A i, 1 < i < s and a complete 
set of eigenvectors, it is easy to see that (7) can be 
transformed into s uncoupled system of D- 
dimensional linear systems with matrices I -  
hAiJ. If a Ai is complex the corresponding linear 
system is of course complex and complex arith- 
metic must be used in the implementation. Alter- 
natively the two complex systems with matrices 
I -  hhiJ and I -  hA*J can be combined into a 
single 2D-dimensional real system. 

= y o  + + (9) 

which has traditionally been much used in the 
time-integration of Hamiltonian systems that arise 
from the space discretization of Hamiltonian par- 
tial differential equations. The two-stage, fourth 
order Gauss method has been successfully used 
by Pullin and Saffman [25] for the integration 
of the four-vortex motion. Much work remains to 
be done in the practical implementation of 
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the Gauss-Legendre methods, particularly in 
studying how to get good initial guesses for the 
solution of the nonlinear equations and which 
iterative procedure to use. Work in this direction 
is being done by J.M. Hyman. Since the problems 
of interest are not necessarily stiff, current strate- 
gies [26], designed for the stiff case, may well be 
far from optimal. At any rate, it is most likely that 
the cost per step of a Gauss-Legendre method, 
even when efficiently implemented, will turn out 
to be higher than that of ah explicit RK method 
of the same order. In long time integrations of 
Hamiltonian systems, the symplecticness of the 
Gauss-Legendre is expected to make up for the 
extra cost. Furthermore, if (1) happens to be stiff, 
then explicit RK methods are out of the question, 
while Gauss-Legendre methods have excellent 
nonlinear stability properties and can use long 
time steps. 

Diagonally implicit symplectic RK methods do 
exist. These have tableaux 

(10) 

b l / 2  0 " • 0 

b I b 2 / 2  ' ' "  0 

b 1 b 2 " "  b f f 2  

b 1 b 2 • • • b,  

and hence with s stages provide s free parame- 
ters. When s = i the requirement that the method 
has at least order r = 1 leads to b 1= 1 and we 
recover once more the implicit midpoint rule (9). 
More generally, a step of length h with (10) is 
simply a concatenation of s implicit midpoint 
steps with lengths bih .  Hence the family (10) is 
very easily implementable and is particularly ap- 
pealing for the time integration of space-discreti- 
zations of partial differential equations and other 
large stiff systems. A method of the family (10) 
with s = 3 and order r = 4 was constructed in ref. 
[27]. This method has been tested in ref. [28] in 
the time integration of the Korteweg-de Vries 
equation. Furthermore, by using concatenations 
similar to those in ref. [29], it is not difficult to 

prove that the family (10) includes methods of 
arbitrarily high order. 

Iserles [30] has constructed a three-stage, 
fourth-order, fully implicit symplectic RK method 
for which the matrix A has real eigenvalues and 
a complete set of eigenvectors. As explained 
above, for such a method the linear algebra to be 
carried out in the Newton iteration consists of the 
solution of D-dimensional systems. This method 
has not been tested in practice. 

3. Symplectic Runge-Kutta-Nystr6m methods 

A second family of conventional ODE methods 
that includes symplectic scheme is provided by 
Runge-Kutta-Nystr6m (RKN) methods [18]. 
These are methods for systems of the special 
form 

d p / d t = f ( q ) ,  d q / d t = p ,  (11) 

with p and q d-dimensional vectors, or, equiva- 
lently, for second order systems d 2 q / d t  2 =f(q) .  
Note that (11) is a Hamiltonian system if f is the 
gradient of a scalar function - V and then 

H = (½)p¢.  + v ( q ) .  (12) 

Each RKN method is specified by a tableau of 
real constants of the form 

T 1  0/11 ¢X12 " " " 0 / l s  

')t2 O/21 0/22 " " " 0 /2s  

° . 

~s 0/sl 0/s2 " " " 0/ss 

b l  b z  • . .  b s 

(13) 

The time-stepping is effected by the formulae 

s 

Pn+l  = P n  + h  ~ b i f ( Q i ) ,  
i=l  

qn+l = qn + hPn + h2 ~ f l i f ( Q i ) ,  
i = 1  
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where now the internal stages Qi are defined by 

$ 

Qi = qn + hYiPn + h2 E aiyf(Qj). 
jr1 

The method is explicit if aij  = 0 for i _<j. Explicit 
RKN formulae are state of the art methods for 
the integration of systems of the form (11). 

When (11) is Hamiltonian, Suris [23] has shown 
that the conditions 

f l i=bi(1- 'Yi) ,  l <i <s, (14) 

and 

b i ( ~ j - o t i j ) = b j ( f l i - o l j i ) ,  l < i , j  <s, (15) 

ensure symplecticness. An alternative proof can 
be seen in ref. [31]. Furthermore for methods 
without redundant stages (14), (15) are also nec- 
essary for symplecticity [32]. 

There are explicit RKN methods that are sym- 
plectic. These have the tableau 

7 2  

7s 

0 0 ' "  0 

b l ( T 2  - T 1 )  0 ~ ' "  0 
: : ' . .  : 

b l ( T s  - T I )  b 2 ( T s  --  T 2 )  ' ' "  0 

bx b2  - . .  b s 

b , ( 1  - " /1)  b 2 ( 1  - Y2)  " ' "  bs(1 - Y,) 

(16) 

optimal method within this family has been 
obtained by minimizing the error constants. Nu- 
merical comparisons with an optimized nonsym- 
plectic formula due to Dormand et al. are given. 
Similar work for higher order methods is under 
way. 

Okunbor and Skeel [31] show that an explicit 
RKN method is canonical if and only if its adjoint 
method is explicit. Recall that the adjoint of a 
one-step numerical method (2) is, by definition 
the method ~t such that g¢71= ¢ - r  In other 
words, a step of length - h  < 0 with the adjoint 
method undoes a step of length h with the given 
method. The result by Okunbor and Skeel could 
be employed, in conjunction with an idea used in 
ref. [10], as follows. Suppose that, for n even, the 
step t, ~ t n +1 is taken with an explicit symplectic 
RKN method q't, while for n odd the step is 
taken with the adjoint method. The overall algo- 
rithm is explicit and symplectic. However each 
step cancels all the coefficients of the even pow- 
ers of h in the expansion of the local error at the 
preceding time step. If Ot has odd order r, then 
the leading N(t r+l) term in the truncation error 
is annihilated by the next step, so that the algo- 
rithm just defined has global order of accuracy 
r + 1 at all grid points. In this way one may have, 
say, sixth-order integrations while employing 
fifth-order formulae for each step. 

and hence, with s stages include 2s free parame- 
ters. Okunbor and Skeel [33] have noticed that 
the method (16) can be implemented with the 
minimal conceivable storage, namely with only 
two d-dimensional vectors. The idea is to refor- 
mulate (16) as a partitioned Runge-Kutta method 
(see below). 

In ref. [34] M.P. Calvo and the present author 
have considered the family of fourth-order, five- 
stage methods of the form (16) that effectively 
require four evaluations of f per step due to the 
fact that the last evaluation in the current step 
provides the first evaluation for the next step. An 

4. Symplectic partitioned Runge-Kutta methods 

The third and final class of standard methods 
considered here is not as widely known as those 
of RK and RKN methods. Partitioned Runge- 
Kutta (PRK) methods are methods for the inte- 
gration of systems of ODEs where the dependent 
variables have been divided into two groups and 
different RK tableaux are used for the two groups. 
PRK methods are of interest, for instance, when 
the given system includes a group of stiff equa- 
tions and a group of nonstiff equations. For the 
purposes of this paper, it is enough to consider 
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systems of ODEs of the form Hamiltonians (18) if 

dv/dt=f(q) ,  dq/dt=g(p),  (17) biAij+Bjayi-biBj=O, l <i,j<s. (20) 

with p and q d-dimensional vectors. The system 
(17) is Hamiltonian if f and g are gradients of 
scalar functions - V and T respectively and then 
the Hamiltonian is given by 

H= r(p) + V(q). (18) 

Hamiltonians of this form are called separable• 
A PRK method is specified by two tableaux of 

real constants 

a l l  a 1 2  • . .  

a 2 1  a 2 2  • . . 

as1 as2 • . .  

bl b 2 • . . 

CAll A12 --.  

A 2 1  A 2 2  • . . 

A~I As2 . . .  

B1 B2 " • " 

i 

als 

a2s 

ass 

bs 

Als 
.42s 

Ass 

Bs 

(19) 

The formulae for the computation of a step are 

Pn+l =Pn + h ~ bif(Qi), 
i = 1  

qn+l =qn + h  ~ n i g ( e i )  , 
i = 1  

with the stages Pi and Qi defined by 

Pi=pn + h ~ aiff(Qj), 
j = l  

$ 

Qi=qn + h  E A i j~ (Pj ) ,  
j = l  

l ~ i ~ s .  

The method (19) is symplectic for all separable 

This result was announced by the present author 
at the 1989 London Numerical ODE conference 
and was independently discovered by Suris [35]. 
Furthermore (20) is also necessary for symplectic- 
ness if the method has no redundant stages [24]. 

While (20) is similar to (8), we have now two 
tableaux instead of one and it is possible to 
achieve symplecticity with an explicit algorithm. 
Namely the methods with 

b 1 0 . . .  

bl b2 • . .  

b l  b 2  • . .  

bl b2 . . .  

0 

0 

i, 
bs 

bs 

0 0 

B~ 0 

BI B2 
BI B2 

" ' "  0 

" •  • 0 

• " • 0 

• ' '  n S 

(21) 

satisfy (20) and are effectively explicit. (It is clearly 
possible to change the roles of p and q and use 
the strictly lower triangular coefficient matrix for 
the p equations and the matrix with nontrivial 
diagonal for the q equations.) The method with 
array (21) can be implemented while only storing 
two d-dimensional vectors: Q~ is nothing but 
qn, P1 can be overwritten on Pn, Q2 can be over- 
written on Q1, etc . . . .  Note that the number 2s 
of free parameters in (21) is the same as the 
number of free parameters for an explicit s-stage 
RKN method (16). On the other hand, (21) is 
symplectic for all separable Hamiltonians (18), 
whilst (16) only caters for the case where the 
kinetic energy T is a sum of squares• At first, it 
may be concluded that explicit PRK methods 
should be preferred to RKN method. However 
this is not necessarily the case: since PRK meth- 
ods can integrate systems of ODE of the form 
(17), while RKN methods only accommodate sys- 
tems of the simple form (11), the number of 
equations that must be imposed on the method 
coefficients for a PRK formula to have order > r 
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is higher than the corresponding number for an 
RKN formula. Hence RKN formulae make up 
for their more limited applicability by requiring 
less stages to achieve a given order (see section 6 
below). Since most separable Hamiltonians that 
arise in applications are in fact of the form (12), it 
seems that the class (21) is of limited interest. 
However symplectic PRK formulae have so far 
received more attention than symplectic RKN 
formulae. 

The family of methods (21) was first introduced 
by Ruth [8], in one of the very first papers on 
symplectic integrators. Ruth considered methods 
with s = r = 1, 2, 3. Later a method with s = r = 4 
has been independently constructed by several 
authors [36-38]. Yoshida [29] has shown that the 
family (21) includes methods of arbitrarily high 
order. Furthermore he has constructed several 
high-order methods. 

In (23), Y/= (Pi T, QT)T are the stages defined in 
(5) and Hp, Hp are gradients, row vectors of 
partial derivatives. Of course here the Y/ should 
be seen as functions of p,,  qn+l and h defined 
implicitly by the relations (5), (6). The implicit 
function theorem shows that this interpretation is 
possible at least for h sufficiently small. On the 
other hand note that S exists globally in phase 
space. 

For symplectic RKN and PRK methods the 
expressions for the generating function can be 
seen in refs. [39] and [24], respectively. 

6. Order conditions 

Let us first consider the, not necessarily sym- 
plectic, RK method (4). The conditions that en- 
sure that (4) has order > r are well known. For 
instance, for order > 1 we impose 

5. Generating functions 

Even though the symplectic methods consid- 
ered so far are not derived from a generating 
function, they must possess generating functions, 
as any other canonical transformation in phase 
space. Here we consider generating function of 
the second kind S(pn, qn+ 1; h) that define canoni- 
cal transformations via 

Pn + 1(i) -~ OS/OPn + 1(i) ,  qn(i) = OS/OPn(i) ,  

1 _<i _<d. (22) 

(Subscripts in brackets denote components.) 
Lasagni showed (cf. ref. [27]) that for an RK 
method subject to the simplecticness condition 
(8), the generating function is given by 

S(Pn, qn+l; h) =pTqn+l -- h ~_~bin(Yi) 
i 

2 T - h  ~_,biaiyHp(Yi)H,(Yj).  
ij 

(23) 

~_, b i = 1, (24) 

for order > 2 we impose (24) and 

E bi ai j =~,l (25) 

for order _ 3 we further add 

~,biaijaik = 5,1 ~_~biaijay k =~.1 (26) 
ijk ijk 

It is important to emphasize that these order 
conditions can be easily written in a systematic 
way [17, 18] by using some simple graph theory. 
The second column in table 1 gives the number of 
order conditions that must be imposed to ensure 
order > r ,  r =  1 , . . . ,8 .  

It is in principle conceivable that the order r* 
of (4) when applied to the restricted class of 
Hamiltonian problems (1) would be higher than 
its standard order r, which refers to systems (3) 
with arbitrary F. However this is not the case, 
because each differential system with D equa- 
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Table 1 
Number  of order conditions for order > r 
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r General  Symplectic R KN subject Symplectic General  Symplectic 
RK R K to (14) RKN PRK PRK 

1 1 1 1 1 2 2 
2 2 1 2 2 4 3 
3 4 2 4 4 8 5 
4 8 3 7 6 16 8 
5 17 6 13 10 34 14 
6 37 10 23 15 74 24 
7 85 21 43 25 170 46 
8 200 40 79 39 400 88 

tions can be embedded in a Hamiltonian system 
with 2D equations. Hence r = r* and when refer- 
ring to order it does not matter whether the 
underlying system is Hamiltonian or otherwise. 

The order conditions are independent if the 
coefficients in the tableau (4) are seen as inde- 
pendent variables. For instance, in (24)-(26) no 
equation is implied by the others. However, if the 
method (4) under consideration satisfies the sym- 
plecticity condition (8) the coefficients b i and aij 

are no longer independent and it is conceivable 
that some of the order equations may be redun- 
dant. This is actually the case. For instance, it is 
not difficult to see that, when (8) holds, (25) is a 
consequence of (24) and that, when (8) and (24), 
hold the two equations in (26) are mutually equiv- 
alent. In ref. [27] a procedure is given to system- 
atically eliminate the redundant order conditions 
for symplectic RK methods. Equivalently, ref. [27] 
shows how to systematically write a subset of the 
standard order conditions that, together with (8), 
ensure order > r. The third column in table 1 
provides the number of order conditions that 
must be imposed when the  symplecticness condi- 
tion (8) holds true. 

Similar considerations apply for RKN methods. 
Once more there is no difference between the 
standard order r and the order for Hamiltonian 
problems r*. Furthermore the symplecticness 
conditions (14) and (15) induce some redundancy 
amongst the standard order conditions. The 
fourth column in table 1 gives the number of 

order conditions for a general RKN formula sub- 
ject to (14) (RKN methods that do not obey (14) 
are seldom used in practice). The fifth column of 
the table corresponds to symplectic methods sat- 
isfying both (14) and (15). The prescriptions for 
the systematic construction of the order condi- 
tions for symplectic and nonsymplectic RKN 
methods can be seen in ref. [39]. 

For PRK methods once again r = r* and the 
symplecticness condition makes it possible not to 
consider some of the standard order conditions. 
The number of order conditions for the general 
and symplectic cases can be seen in the last two 
columns of table 1. The prescriptions for the 
systematic construction of the order conditions 
for symplectic and nonsymplectic PRK methods 
can be seen in ref. [24]. 

7. Canonical theory of the order 

In the special case where a sympectic RK, 
RKN or PRK method is used to integrate a 
Hamiltonian system, it is possible to derive the 
conditions for order > r not by looking at the 
Taylor expansion of the local error, but rather 
[27] by Taylor expanding a scalar" function F 
derived from the generating function S consid- 
ered in section 5 above. Essentially, this approach 
measures by how much the generating function of 
the numerical algorithm fails to be a solution of 
the Hamilton-Jacobi  equation [1]. For RK, RKN 
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and PRK methods the computation of the Taylor 
expansion of F can be systematized by using 
graph theory. When using this approach the or- 
der conditions appear in a form somewhat more 
complicated than that found in the standard 
derivation discussed in the previous section. On 
the other hand, this approach results in a set of 
order conditions where the redundancies due to 
symplecticity are automatically filtered out. For 
instance, in the RK case and for order > 3, the 
canonical approach yields eqs. (24) and 

3 ~. ,biai jaik - 6 Y'~biai/ajk = O. (27) 
ijk ijk 

The superfluous condition (25) does not turn up 
here and rather than having the two equivalent 
equations in (26) we get the single one (27), which 
is clearly equivalent to (26). Further details can 
be seen in refs. [27, 24, 32]. 

One of the referees has pointed out that a 
connection between graph theory and Hami l ton-  
Jacobi equations, vaguely reminiscent of that 
mentioned in this section, has been considered in 
ref. [40]. 

mented in a code with error estimation/variable 
step-size facilities? These questions have been 
addressed in ref. [34]. The answer to (1) is posi- 
tive (of course with some qualifications). This 
implies that there is something to be gained by 
further exploring the idea of symplectic integra- 
tors. On the other hand, the experiments in ref. 
[34] unambigously show that when a symplectic 
formula is implemented with variable step-sizes, 
its performance is that of a nonsymplectic (vari- 
able step-size) algorithm. In other words, the 
benefits of symplecticity and variable step-sizes 
cannot be combined. 

It thus seems that the key feature in symplectic 
integration is to find iterates ~O~ of a single sym- 
plectic transformation ~0 h approximating the true 
flow 4, h. In a variable step-size environment, the 
initial condition is advanced by a symplectic com- 
position ~,h ~bh,_l...~bh. The long-time dynamics 
of such compositions appear to differ substan- 
tially from the long times of iterates ~b~ of a 
single symplectic map. A more detailed discus- 
sion can be seen in ref. [41]. 

8. Variable steps 

Standard numerical ODE methods were first 
derived and analyzed in a constant step-size mode, 
but nevertheless should be used in the far more 
efficient variable step-size implementations. In a 
similar vein the development of symplectic algo- 
rithms has started with constant step-size imple- 
mentations and the numerical tests available in 
the literature involve the comparison, for Hamil- 
tonian problems, of symplectic, constant step-size 
formulae against standard constant step-size al- 
gorithms. The results of these comparisons clearly 
favour symplecticity. However, two questions 
arise: (1) Can the constant step-size symplectic 
algorithms now available in the literature im- 
prove on a modern standard variable step-size 
code? (2) Can symplectic algorithms be imple- 
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