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Abstract. 

We are concerned with Runge-Kutta-Nystr6m methods for the integration of second order systems of 
the special form d2y/dt 2 = f(y). If the function f is the gradient of a scalar field, then the system is 
Hamiltonian and it may be advantageous to integrate it by a so-called canonical Runge-Kutta-Nystr6m 
formula. We show that the equations that must be imposed on the coefficients of the method to ensure 
canonicity are simplifying assumptions that lower the number of independent order conditions. We 
count the number of order conditions, both for general and for canonical Runge-Kutta-Nystr6m 
formulae. 
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1. Introduction. 

The recent literature contains many items devoted to the numerical integration of 
Hamiltonian systems of differential equations by means of canonical or symplectic 
methods (see, among others, [1, 6-9, 12, 14-23]). Recall that Hamiltonian systems 
are of the form 

(1.1) dpl /d t  = - S H / g q  I, dql /d t  = 8 H / d p  ~, 1 < I < d, 

where the integer d is the number of degrees of freedom and the Hamiltonian 
H = H ( p  1 . . . . .  pa, q l  . . . . .  qa) is a sufficiently smooth, real function of 2d real variables. 
The main qualitative property of Hamiltonian systems is the preservation, by the 
corresponding flow, of the so-called symplectic structure in phase-space (i.e. in 
(p,q)-space) [2]. A one-step numerical integration method for (1.1) is said to be 
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canonical or symplectic if it preserves this symplectic structure. Therefore canonical 
integrators mimic important qualitative features of (1.1) and can be expected to be 
better suited to the integration of Hamiltonian systems than their non-canonical 
counterparts [6, 12, 15, 19, 20]. 

In many applications, the Hamiltonian function has the form 

(1.2) H = H(p,q) = T(p) + V(q), 7(p) = ½pTp, 

with V a given function of d variables. In mechanics, the q variables represent 
Lagrangian coordinates, the p variables the corresponding momenta, T is the 
kinetic energy, V the potential energy, and H the total energy. When the Hamil- 
tonian is given by (1.2), the equations of motion (1.1) take the simple form 

(1.3) dpt/dt = _t3V/dql,  dqX/dt = pl, 1 <_ I < d, 

a 2d-dimensional first order system equivalent to the d-dimensional second order 
system 

(1.4) d2qt/dt2 = - ~ V / ~ q  x, 1 < I < d. 

For numerical purposes, second order systems of the special form 

(1.5) dey/dt 2 = f(.v), y = [yl . . . . .  yd]T, 

can always be written in first-order form and integrated by, say, a standard Runge- 
Kutta formula. However, it is often advisable, on efficiency grounds, to retain the 
second-order formulation (1.5) and use a method for second-order problems (see e.g. 
[11], Section II. 13). In this paper we are concerned with Runge-Kutta-Nystr6m 
(RKN) methods, of the form (a dot represents differentiation with respect to t) 

(1.6) Yi = Yn + hT'~n + h 2 ~ ~ijf(Yj), 
j = l  

y.+~ = y .  + h ~ bi f (Yi) ,  
i=1  

y,+~ = y~ + h¢~ + h 2 ~, f l , f (Y,) .  
i = l  

Here the subscript n numbers the steps and the vectors Y~ represent the s internal 
stages. 

Suris [22] showed that the method (1.6) is canonical if 

(l.7a) fli = b~(1 - ),~), 1 < i < s, 

(1.7b) bi(flj - -  O~ij ) : bi(fli - -  o~j i ) ,  1 < i,j < s, 

(see also [16]). On the other hand, for methods wihout equivalent stages, (1.7) is also 
necessary for (1.6) to be canonical: a rigorous proof of this necessity can be found in 
[4] (cf, [1], Section 5). Recall that two stages Yi, Yj of an RKN method are said to be 
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equivalent if Yi = Yj for sufficiently small h for all problems (1.5). A method with 
equivalent stages gives the same results as a method without equivalent stages where 
the redundant stages have been suppressed. In the remainder of this paper we shall 
use the expression "canonical RKN method" to refer to RKN methods that satisfy 
(1.7). 

The condition in (1.7a) is well known from the standard theory of RKN methods: 
it is a simplifyin9 assumption that lowers the number of relations that must be 
imposed on the method coefficients bi, fli, ~i, ~ij to ensure order of consistency > p 
([11], Chapter 2, Lemma 13.13). The main purpose of the present contribution is to 
show that the second condition (1.7b) is also a simplifying assumption. Section 
2 contains the main result. Section 3 is devoted to counting the number of order 
conditions that are made redundant by the introduction of the canonicity condition. 
In particular, we give the number of order conditions that must be imposed for 
a 9eneral (i.e. not necessarily canonical) RKN method to have order _>p, a result 
that does not seem to be available in the literature. 

2. Main result. 

We consider the application of the RKN method (1.6) to the system (1.5). Note 
that this system is not assumed to be Hamiltonian, i.e. we do not suppose that f is 
the gradient of a scalar function - V. Let us briefly recall the corresponding theory of 
order conditions, as given by Hairer et at. [11] (note however that our notation is 
sometimes different from that used in [11]). The theory uses so called special 
Nystr6m rooted trees. A special Nystr tm rooted tree trvpz has vertices of two kinds, 
fat and meagre, that obey the following rules: 
(i) The root is fat. 
(fi) A fat vertex has only meagre sons. 
(iii) A meagre vertex has, at most, one son and this son is fat. 

Figure 1 depicts the avpz's with order (i.e. number of vertices) N(avpz) < 5. The 
vertex that plays the role of root has been indicated by attaching a cross to it. In this 
paper, we handle graphs by means of pictorial representations; a more rigourous 
treatment, like that in [21], is, of course, possible (but boring). 

For (1.6) to have order of consistency >p, it is necessary and sufficient to impose 
simultaneously the following two sets of conditions ([11], Chapter II, Theorem 
13.12). 
I. For each avpz with order <p  

(2.1) ~(avpz) = 1/~(avpz), 

whereT(trvpz), the density, is an integer associated with ~rvpz and q~(trvpz) is the 
corresponding elementary weight. The density is defined recursively and ignor- 
ing the distinction between fat and meagre vertices. By definition, the density of 
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(~ ovp't 1,1 

(~ avP'c2,1 

y ~V1:),=3,1 

OVp,l:3, 2 

"N~  OVp~4,1 

ov~5,1 

Fig. 1. Special Nystr/Sm rooted N-trees, N = 1, 2, 3, 4, 5. 

a rooted tree with only one vertex is 1, and the density of a rooted tree with more 
than one vertex is the product of its order and the densities of the rooted trees 
that arise when the root is chopped off. On the other hand, the elementary 
weights are polynomials on the method coefficients. For  instance for avpzs ,  3 in 
Figure I, we have 

¢)(avp%, 3) = ~ , i =  1 bD'?cto. 

The general rule is that there are as many summation indices as fat vertices; if i is 
the summation index associated with the root, then to the (fat) root there 
corresponds to a factor b~; to a fat vertex with summation indexj and r terminal 
meagre sons there corresponds a factor 7~; finally, to a fat vertex with indexj that 
has a fat grandson with index k there corresponds a factor 0~jk. 

II. For  each trvp'r with order N(trvpz) < p - 1 

(2.2) ~(avpz )  = [(N(avp'r) + 1)'7(avpz)]- 1 
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Here the density ~ appears again while qJ is a second elementary weight obtained 
from ¢ by changing the factor bi, associated with the root, into a factor fli. 

It is known ([11] Chapter II, Lemma 13.13), that (1.7a) is a simplifying assump- 
tion: when (1.7a) holds, set II of order conditions above is a consequence of set I, so 
that equations (2.2) need not be explicitly imposed. We are going to show that if, in 
addition to (1.7a), (1.7b) holds, then some of the conditions in set I above can be 
dispensed with. 

We say that two different special Nystr6m rooted trees are equivalent if they have 
the same fat vertices and the same meagre vertices, connected by the same edges, so 
that they only differ in the choice of root (in the pictorial representation the cross is 
attached to different fat vertices). For  instance, in Figure 1, o'vp'¢4, 3 are equivalent, 
and so are the pairs ~vpzs, 2 and avpzs, a and the pairs avpzs,4 and avpzs, 5. We are 
now in a position to give the main result of this paper. 

THEOREM 2.1. Assume that the R K M  method is canonical and has, at least, order of 
consistency p - 1. Let crvpz* be two special Nystr~m rooted trees of order p that are 
equivalent in the sense just defined. Then the order conditions (2.1) corresponding to 
avpz and evpz* are equivalent. 

¥ ¥ 

a v ~  avp~* 

avp~ avp~ i 

/ 
avp~ I avp~ J 

Fig. 2. P r o o f  of Theo rem 2.1. 

PROOF. We first carry out the proof in the particular case where the vertices that play 
the role of roots in avpz and o'vp~* are joined to each other via a meagre vertex v, as 
in Figure 2. Let us label the fat vertices of avpz and ~pz*  with summation indices 
i,j, k, . . .  (see Figure 2) and suppose that the root of o-rpx has index i and the root of o'vp~* 
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has index j. Furthermore, let us consider four special NystrSm rooted trees as 
follows. We denote by trvpzi (resp. avpz~) the special NystrSm rooted tree arising by 
removing from avpz  (resp. avpz*) all the vertices that can be joined to i (resp. j) 
through a path containing the meagre vertex v. Let trvpr x (resp. trvpz J) be the special 
NystrSm rooted tree obtained by grafting in the root ofavpz i  (resp. avpzi)  a (meagre) 
son (see Figure 2). 

After these preliminaries, note that, by definition of elementary weight, 

~(trvpz) = ~ bi~ijH(i)H(j),  

where the summation is extended to all the summation indices we have introduced. 
Here II(i)  and I I ( j )  are abbreviations for products of RKN coefficients. The factor 
l I( i)  contains the contributions arising from the nodes that belong to trvpzi and H(j )  
contains the contributions arising from the nodes that belong to trvpzj. In a similar 
manner 

so that 

(2.3) 

~(trvpz*) = ~, bjctjiFl(i)H(j), 

cP(avpz) -- ~(avpz*)  = ~,  (bio:ij - b~aji)II(i)II(j). 
Now, on taking (1.7a) into (1.7b), we can write 

biaii - blcti, = b,bj()'i - ~1), 1 _ i , j  _< s, 

an equality that combined with (2.3) yields 

~(trvpz) -- ~(avpz*)  = ~ (bwi l l ( i ) ) (b jH( j~  - ~ (bilI(i))(bj?jH(j)) 

= ~P(trvpzl)qb(avpzj) -- q~(trvpzi)~(trvpzJ). 

Since the method is at least of order p - 1, we conclude 

1 1 1 1 
(2.4) ~(trvpz) - ~(trvp'c*) = y(trvpzl) y(avpzj) 7(avpzi) 7(avpzS) " 

On using the definition of ? given above, some easy manipulations reveal that the 
right hand side of(2.4) equals 1/y(trvpz) - 1/y(avpz*), and this proves that the order 
conditions for avpz  and trvpz* are equivalent. 

The general case where the roots of avpz  and avpz* are not necessarily joined 
through a single meagre vertex follows by induction from the particular case where 
the roots are joined via a single meagre vertex. For instance, in Figure 2, the order 
conditions for the trees with roots at vertices k and j are equivalent because each of 
them is equivalent, via the previous argument, to the order condition for the tree 
rooted at i. 

The fact that the conditions for canonicity for RKN methods provide simplifying 
assumptions should not be surprising. In [21"1 and [1] similar results were proved 
for Runge-Kutta and partitioned Runge-Kutta methods respectively. The deep 
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reason for the reduction in the number of order conditions that occurs for canonical 
methods lies in the canonical theory of the order. It was shown in [21] that for any 
canonical one-step method, applied to Hamiltonian systems, consistency can be 
investigated in terms of the Taylor expansion of a suitable scalar function F, rather 
than in terms of the (vector-valued) standard local error. Now, the number of terms 
that arise when expanding F is lower than the number of terms that arise in 
a standard expansion of the local error. This explains why the number of indepen- 
dent order conditions for a canonical one-step method is smaller than the corre- 
sponding order for its non-canonical counterparts. The papers [21] and [1] men- 
tioned above contain the canonical theory of the order for Runge-Kutta and 
partitioned Runge-Kutta methods respectively. The theory for RKN methods 
appears in [4] and for brevity is not reproduced here. However, it is perhaps useful 
to note that, if (1.6) is canonical, then the corresponding generating function ([2], 
[21]) is given by 

S(p,,, q,, +1; h) = pT q,, +1 -- h ~ ~=1 b, v(Q,) - (h/2)pr~p,, 

h 3 2 + ( / ) E i . j = I  bi(~j - o~ i j ) f (Qi )T f (Qj ) ,  

where Qi are the internal stages. We recall that the generating function is the key 
ingredient in the computation of the function F required in the canonical theory of 
order conditions. 

3. Counting the number of order conditions. 

In this section we investigate how many order conditions can be dispensed with 
when (1.7) holds. We begin by studying the number of order conditions that must be 
imposed on general RKN methods to have order of consistency _>p. Strangely 
enough this number does not appear to be available in the literature ([3], [10]). 

It is dearly sufficient to find the number mN of special Nystr6m rooted trees of 
order N, N = 1, 2 . . . .  Consider a special Nystrfm rooted tree trvpz with N vertices 
and remove the root. This gives rise to, say,j1 graphs with one vertex, j2 graphs with 
two vertices, etc. For k > 2, each among the jk graphs with k vertices consists of 
a meagre vertex (that was a son of the root in the original avpz) followed by a special 
Nystr6m rooted tree of order k - 1. Hence, for k > 2, the jk graphs with k vertices 
can be chosen in 

different ways. There is only one way of choosing the Jl graphs with one meagre 
vertex and therefore 
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(3.1, rnu= ~ ( m i + j 2 - 1 ) ( m 2 + j 3 - 1 ) ( m k - ~ + j k - -  1) 
Jl + 2j2 + . . .  +kjk = N -  1 J2 J3 Jk 

a formula that makes it possible to compute mN recursively. 
Let us introduce the generating function M of mu 

This satisfies 

(3.2) 

M ( z ) :  = Y ~ ° l  mNz N. 

Z M(z) = 
(1 -- z)(1 -- z2)" ' . . .  (1 -- Zk)"k-'.. .  

TO check (3.2) first expand each factor in the right hand side of(3.2) with the help of 

, 

(1 z ' ) "  - . z~', 
- -  j = 0 , ,  J 

and then combine equal powers of z. 
It is still possible to write the infinite product in (3.2) as the exponential of a series. 

This yields, after some algebra, 

( z2 z k ) 
(3.3) M(z) = zexp z(1 + M(z)) + -~-(1 + M(z2)) +.. .  + -~-(1 + M(zk)) + . . . .  

an equation satisfied by M that allows recursive computation of mN. The values of 
mN for N < 9 are displayed in Table 1. 

Table 1. 

N 1 2 3 4 5 6 7 8 9 

mN 1 1 2 3 6 10 20 36 72 
m* 1 1 2 2 4 5 10 14 27 

Let us now turn the attention to the number of order conditions for canonical 
RKN methods. After Theorem 2.1, the key quantity is the number m* of equivalence 
classes of special Nystr6m rooted trees (under the equivalence relation introduced 
above). From Figure 1, we see that m~' = 1, m* = 1, m* = 2, m~ = 2, m~ = 4. To find 
the expression of m* for general N, note that all the special Nystr6m rooted trees in 
a given equivalence class have the same centroids (see [13], Section 2.3.4.4 and [21]). 
Figure 3 depicts the equivalence classes for N < 5; the centroids have been indicated 
by attaching a star. For  fixed N, the equivalence classes fall into the following 
disjoint cases. 
(i) There is one centroid and it is meagre (in Figure 3, classes %,1, c5,4). By 

chopping of the centroid, we obtain two special Nystr6m rooted trees (for ca. 1 
we obtain two copies of trvpzx, 1; for cs,4 two copies of avp'c2.1). By definition of 
centroid, the special Nystr6m rooted trees obtained must have the same orderj.  
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(.~ CI,1 

C2,1 

C3,1 YC3,2 

"•C4, I ~Q~e4,2 

Fig. 3. Equivalence classes of special Nystr6m rooted trees. 

Hence, in this case N must be odd and j = (N - 1)/2. Furthermore, when N is 
odd, there are 

(m,n-1;/a + 1)=½mtn_ l ) /2 (m ,N_ l , / 2  + 1) 

equivalence classes included in this case. 
(ii) There are two centroids (in Figure 3, the classes c2,1, c4,2). These are necessarily 

adjacent and one of them fat and the other meagre. Furthermore N is even. We 
now chop off the meagre centroid, to get a special Nystr6m rooted tree of order 
N / 2  and a special Nystr6m rooted tree with order N / 2  - 1. Therefore this case 
comprises mn/2mN/2 _ 1 equivalence classes. 

(iii) There is one centroid and it is fat (in Figure 3, classes cl. 1, c3,2, c4,1, cs. 1, c5.2, 
c5.3)- By choosing the representative of the class that is rooted at the centrpid, 
we see that there is a one-to-one correspondence beween equivalence classes in 
this case and special Nystr6m rooted trees whose root is the only centroid. The 
number of such special Nystr6m rooted trees can be found to be, for N even, 

mN - ( m l m n - 2  + m2mN-3  + . . .  + mn/2-1mm2)  - m m 2 m m 2 - 1  

and, for N odd, 

m s  - ( m l m N -  2 + rn2mn - 3 + . . .  + mtN- 1)/2rn(N - 1)/2). 

These formulae can be proved by an argument similar to that used to obtain 
formula (8) in [13], Section 2.3.4.4: from the total number mN of special 
Nystr6m rooted trees of order N we subtract the number of those for which the 
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root is not a centroid, and, if N is even, also the number of those with two 
centroids. 
On combining these results we find, for N even, 

(3.4a) 

and, f or N odd, 

(3.4b) 

m~v = mN - -  ( m l m N - 2  -Jr" m 2 m N - 3  q- . . .  d- m N / 2 _ l m N / 2  ), 

m ~  = m N - ( m l m  N _  2 -~- " ' '  -~ re(N-3) /2rr t (N + 1)/2) 

m ( N  - l ) / 2 m ( N  - 1)/2 i - -  + : r e ( N -  1)/2. 

In terms of the generating functions, (3.4) reads 

(3.5) M * ( z )  = M ( z )  - ½z(M(z)  2 - M(zZ)) .  

The number of equivalence classes for N < 9 is given in Table 1. 
For canonical methods, the advantages that derive from the reduction in number 

of order conditions are of course partly offset by the fact that one has to satisfy the 
equations (1.7). In order to gain some understanding of this point, we shall next 
consider in detail the case of exp l i c i t  RKN methods. Assume that, following 
a standard practice, we restrict our attention to methods that satisfy the simplifying 
assumption (1.7a). Then, with s stages, we have, as free parameters, s coefficients bi, 

s coefficients Yi and s(s - 1)/2 coefficients ctij (the fit's are determined by (1.7a)). For 
order >_p, there are ml + .. .  + rnp equations to be satisfied, so that the difference 
between the number of parameters and the number of equations is 

s 2 3s 
F(p,  s) = - ~  + - ~  - m l  - - . . .  - mp. 

The function F(p,  s) is tabulated in Table 2a, where the entries corresponding to 
negative values of F have not been given. 

Let us now consider explicit canonical RKN methods. Ifa method of this kind has 
a coefficient b~ = 0, then, by (1.7a), the corresponding fl~ also vanishes, and, by (1.7b), 
b j ~ j  = 0 for eachj. Therefore the i-th stage plays no effective role in the computation 
and the method is equivalent to a method with fewer stages. Hence we may assume 
that b~ ~ 0 for all i. Then (1.7b) reveals that ~ij = b~(y~ - yj) for i > j, so that we have 
s values b~ and s values ),~ as only free parameters. For  order > p  there are 
m~' + ... + me* equations, and the difference "parameters-equations" is now 

F*(p ,  s) = 2s - m*  - . . .  - me*. 

The function F* is tabulated in Table 2b. A comparison between F and F* reveals 
that the class of explicit canonical RKN methods is just a small subclass of the family 
of explicit RKN methods. Nevertheless, we should stress that this is better than the 
situation for Runge-Kutta formulae, where the class of explicit methods contains no 
canonical formula. 
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Table  2. The fimctions F(p, s) (a) and F*(p, s) (b) 

141 

( a )  

p/s 1 2 3 4 5 6 

1 4 8 13 19 26 
0 3 7 12 18 25 
- 1 5 10 16 23 
- - 2 7 1 3  2 0  

- - - 1 7 14 
. . . . .  4 

(b) 
1 3 5 7 9 11 
0 2 4 6 8 10 
- 0 2 4 6 8 

- - 0 2 4 6 

. . . .  0 2 

As an  example  of  the use of  (1.7b) as a s implifying a s sumpt ion  let us consider  the 

cons t ruc t ion  of  explicit ,  canonica l  R K N  me thods  of  o rder  4. (Note  that  4 is the 

m i n i m u m  value of  p for which  m p >  m*.) U p o n  choos ing  s = 5, Table  2 shows tha t  

there  are  4 free pa rame te r s  after impos ing  the o rde r  condi t ions .  A good  way of 

d i spos ing  of  two of  the free pa rame te r s  is to set Vl = 0 and  V5 = 0: this ensures that  

the fifth stage of  the cur ren t  s tep is equal  to the first s tage in the  next  s tep (FSAL),  so 

tha t  effectively the m e t h o d  requires  four  funct ion eva lua t ions  per  step. The  two 

rema in ing  free pa rame te r s  can be used to  minimize  the e r ror  cons tan ts  in the local 

t r unca t ion  error:  this has been done  in [5]. 
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