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1 Introduction

We study methods for the numerical integration of ordinary differential
equations specifically aimed at the important family of Hamiltonian sys-
tems. Algorithms are presented which preserve all Poincaré integral invari-
ants and therefore mimic relevant qualitative properties of the theoretical
solutions. The emphasis is on Runge-Kutta schemes. Numerical illustra-
tions are provided.

In ordinary differential equations (ODEs), the most general initial value
problem (IVP) can be easily written down in the form

dy/dt = ¢(y),  y(0) =9, (1.1)

with ¢ a given R?-valued function and 7n a given vector in R%. This is in
sharp contrast with the situation in partial differential equations, where the
problem specification is necessarily involved (domain, boundary conditions,
differential operator, etc....). The simplicity of the format above has made
1t possible to formulate, analyse and implement numerical methods aimed
at the ‘general problem’ (1.1). On the one hand, such a generality should
be viewed positively. In the analysis of numerical methods for (1.1) a few
simple and comprehensive hypotheses can be made under which powerful
and elegant results are possible (see e.g. [8]). General purpose, versatile
codes have been developed (e.g. [21]) where each IVP in ODEs can be
accommodated by simply providing 5 and a subroutine for the evaluation
of the right hand side function ¢. On the other hand, it is clear that
generality is not a feature without drawbacks. A ‘general method’ cannot
possibly be optimal when applied to all individual cases. Stiff problems (2]
provide a well-known instance of an important family of IVPs which cannot
be integrated (or at least cannot be integrated efficiently) with a general
method. The goal of the present contribution is to consider numerical ODE
methods specifically aimed at the class of Hamiltonian systems of ODEs
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2 Hamiltonian Systems

Hamiltonian systems are of the form (see e.g. [1])

dp/dt = f(p, q), dq/dt = g(p, q), (2.1)

where p, ¢ are vectors p = (p(» (9)

b 3 - NU v...nﬁ.ﬂvu Q”AQAHV‘...uQA.ﬁvu mm Hr
number of Q.mmnmmm of freedom) and the components f(*) ¢(i) of W.rmw <wnnow
valued functjons f and g are given by .

IO = —om/8¢6), 9V = 0H/5p), 4 Sigy, (2.2)

MMMM% H.W\@.AC. . .ﬁ.@v“ gV, . 99) a real function of 2g real variables
mo HM:E. ﬁMEw: function). Clearly (2.1) is a particular case of the system
! m_um. ) S;r ¥=(p,q),d= 29,4 = (£,9). Non-autonomous Hamiltonian
<«r._5m, Where H, f, ¢ depend explicitly on t, also arise in applications.
1le most of the contents of this paper may easily be extended to the

Mmﬂﬂwwm%nmwnwzmﬁ. In applications H often corresponds to the physical energy
ok Hrwo%mro.:ﬁ the paper we assume that ¢ (the vector of coordinates)
€S values in an open subset Q of RY, that p takes values in the whole

of RY and that ¥ is a smooth function defined ip X = R9 x Q, the phase
space. For real ¢, we denote by F, the t-flow of (2.1),ie F,is ﬁr‘m Em”?:m
m X that S.wsmwoZ:m each point (Po,qo0) into the point (p,q) = Fi(po, 90)
N_&Qm (P, q) is the value at time ¢ of the solution of (2.1) with initial mm_%m
m”m_mowww“% Mwo_i .m.o~ a given (py, qo), Fy (Po, 90) is well defined at least for
X nma,:_:oEm: systems possess a number of features that are not shared
¥ the “general problem’ 1.1). It has become increasingly clear that all such
specific mo.ma::wm derive from a single geometric property, namely from the
conservation by the Hamiltonian flow F; of the m.S:qum? structure [1] of
.ﬁrm Urmm.o Space X. Some appreciation of the meaning of this conservation
1s essential in what follows and, accordingly, indications in this connection

We mw.mﬂ consider the one degree of freedom case 9 = 1. Then the phase
Space X is,a subset of the two-dimensional plane (p,q) and each open,
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symplectic structure means that F} preserves the orientation of the plane
and that S(Y) = S(F,(Y)) for each open, bounded subset Y of X, and
for each real ¢ (more precisely, for each real ¢ small enough for Fy(Y) to
be defined). Upon writing the area as an integral, it is easily seen that an
equivalent formulation states that the determinant of the Jacobian 9 F; of F,
with respect to (p, g) is identically 1. Note that, in particular, this implies
that if Fy is linearized near an equilibrium of (2.1) then the eigenvalues
A1, Az of the linearization satisfy A\; A2 = 1, which in turn guarantees that,
generically, the equilibrium is a centre (A1, A2 complex conjugate with unit
modulus) or a saddle (real eigenvalues with [A1] < 1 < |As]). Thus, the
stable spiral equilibria found in dissipative systems are ruled out here.
Before leaving the case ¢ = 1, it is convenient to note that the property
of conservation of area, i.e. the property det(0F;) = 1, can be expressed in
a third alternative manner. In fact, the oriented area of Y is nothing but
the integral over Y of the differential form dp A dgq, so that conservation of
oriented area is equivalent to the property that F leaves invariant the form
dpAdq. In geometric terms the form dp A dg introduces a symplectic struc-
ture in X, just as ((dp)? + (dg)?)!/? defines a metric or Riemannian struc-
ture. In symplectic geometry, the capability of measuring two-dimensional
areas plays the role that is played by the measurement of lengths in metric

geometry.
In the case g > 2, conservation of the symplectic structure means that

F; preserves the differential form
w=dpAdg=dpAdg + o4 dpl9) A dgl9) (2.3)

Thus, if for each bounded, open subset Y of X, we denote by S5*(Y) the
result of adding the oriented two-dimensional areas of the g projections of
Y onto the planes (p(1),¢(1)) . (P19, ¢(9), then S*(Y) = S*(Fy(Y))
for each Y. This property can also be expressed in terms of the Jacobian
matrix of F; (not just in terms of the Jacobian determinant); for the details

see e.g. [6].
The conservation of w entails the conservation of the exterior powers
w = wAw,wd =wAwAw,... whose integrals are the classical Poincaré

invariants [1]. In particular, the invariance of w9 under the Hamiltonian
flow means that the (2g-dimensional) oriented element of volume in the
phase space X is an invariant. This is the well-known Liouville theorem
(1] which leads to the Poincaré recurrence property.

3 Canonical Integration Methods

A transformation ® : X — X is said to be canonical if it preserves the
differential form w in (2.3). With this terminology, the main property of
the Hamiltonian flow may be expressed by saying that, for each t, F; is a
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nm:o:._nm_. mapping. Each one-step method for the numerical integration of
(2.1) is given by a mapping ( +4) = Gr(po, go) that advances the solution
over a j:.m step of length . For a p-th order method, G, differs from the
flow F} in terms O(hP*1). Since the structure of the Hamiltonian flow F), is
.mmnoﬂsmzoa by its canonical character, it may seem advisable to use numer-
ical methods for which G, is also a canonical mapping (for each real step
h m:m. each Hamiltonian function H). Such numerical methods are called
canonical or symplectic [6], [11]. Unfortunately, standard numerical meth-
ods, such as explicit Runge-Kutta methods, are not canonical. A survey
of the available canonical methods will be given in Sections 5-7 below and
We now examine the benefits that may be expected from switching from
standard integration methods to their canonical counterparts.

F short time computations, that Gy approximates F}, ensures, via the
classical error bound (8], that the computed points G (po, qo)
Gr(Gh(po, 90)),... will remain close to the exact points ﬁiﬁo‘nov“
ﬁiﬁino.movv, ... . In this sort of computation, switching to a nm:ho:m.,
cal scheme is likely to be of secondary importance when compared with
the advantages to be gained by using higher order standard methods or
smaller values of h. However in situations where a very high number of
mamvmsa.cmn be computed, the accuracy of any method necessarily drops. If
w.gzcs_n& method is used, the numerical solution will retain some qualita-
tive features possessed by the exact solution. If a non-canonical method is
used, the computed solution s likely to be meaningless, since the dynamics
of Fj and G, may be entirely different.

>.: m;ﬁ:ma?m wording of the previous observation may be given. A
mm5~_.ao€m: system Sy, is a mathematical model for the physics of a
.A:o:a_mm_vmsfwv system Sps. When using a numerical method, Sy, is
In turn :.%_mnma by a system Syum. If the method is canonical, Sy,
may vo.SmSma (backward error analysis) as an eract model of a physical
.m%mﬁoa in the neighbourhood of Sphr. For noncanonical methods such an
Interpretation is not possible as SNum does not possess a number of features
that are always present in actual physical problems. This issue is discussed
further in [3].

In a different vein, F. Vadillo and the present author [17], [18] have
shown how the canonical character of a discretization can be used, in con-

g.::n.s.o: with the Kolmogorov—Arnold—Moser theory [1], to derive useful
stability results.

4 Conservation of Energy

For autonomous mm:.z:oims systems (2.1), the Hamiltonian or energy H
is a nOJmm?mm.@:wi;% Le. H(F(po,qo0)) = H(po, go). It has often been
argued in the literature that exact conservation of energy H (G (po, q0)) =
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H(po, qo) is a desirable feature for a numerical method to possess. Claims
in that direction were made by the present author in [12], [13], [16]. Before
we critically discuss this issue, we would like to observe that, if we fix an in-
dividual initial point (po, ¢o) and advance it in time by a numerical method
to get Gr(po, ¢o), then it is possible to compare the energy H(Gx(po, 90)),
after the step with the initial energy H(po,qo) to see whether conserva-
tion has occurred. This is not the case for the conservation of w, whose
checking ipvolves the knowledge of the transformation G rather than the
mere kn'  ledge of the transformed point G (po, go0). This is in line with a
deeper remark: the conservation of a symplectic structure imposes strong
constraints on the dynamics of a system; conservation of energy only re-
stricts the dynamics by forcing the orbits to be in the (2g — 1)-dimensional
surface Eo = {(p,q) : H(p,q) = H(po, q0)}, while leaving them entirely free
within this surface. Thus energy-preserving schemes cannot be expected
to capture all the relevant qualitative properties of the continuous system.

Numerical experimentation [15],[19] has now convinced the author that
the fact that a scheme preserves energy exactly is neither necessary nor suf-
ficient in order to guarantee a good practical performance. Furthermore, a
surprising result of Ge and Marsden [23] ensures that for a general Hamil-
tonian system, if a mapping G is symplectic and conserves H exactly,
then G, coincides with F}, after a suitable reparametrization of time. Thus
energy conservation and canonicity cannot hold simultaneously. Further
references on conservation of energy are [14] and [20].

5 Constructing Canonical Integration Methods

The hic sry of the development of canonical integration methods is sur-
veyed in [3]. For our purposes, it is enough to note that the first occur-
rences of symplectic schemes in the open literature are due to Ruth in 1983
[11] and Feng in 1985-1986 [5], [6]. Most available methods (see [3]) have
been constructed from the point of view of Classical Mechanics by using
generating functions. In fact, every canonical transformation G} of the
phase space X can be obtained via a corresponding scalar-valued generat-
ing function Sy. The 2g scalar components of the vector-valued mapping
G are simple linear combinations of the 2g partial derivatives of S;, with
respect to its arguments [6]. Feng and his co-workers have obtained sym-
plectic methods of arbitraily high order of accuracy. Unfortunately these
methods employ higher and higher derivatives of the functions f and g
in (2.1), a feature that makes them not very useful in the development of
a code aimed at arbitrary Hamiltonians. The paper [3] by Channell and
Scovel gives further examples of the construction of symplectic schemes via
generating functions. Often, the methods in [3] are not completely numer-
ical and symbolic manipulation has to be resorted to in order to generate
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the wnm:&.w_molga. Again, it is clear that such techniques are not very
appealing in connection with the design of a general Hamiltonjan code.

In the course of a visit to Prof. Feng’s institute in Beijing in 1987, the
present wcnre. was led to consider the question of whether the familiar m_mmm
of (implicit) Runge-Kutta (RK) methods contains symplectic schemes. Re-
call that an s-stage RK method, as applied to the ‘general problem’ (1.1)
can be described as follows. Let y, be the approximation at the oczo:m

step. Compute s internal vectors Yi,...,Y, by solving the system
s
Yi=ya+) ajhé(V;), 1<i<s. (5.1)
Jj=1

Then compute the approximation y, ., at the advanced time level as

Ynt1 = Yo + ) bihg(Y;). (5.2)

i=1

The coefficients a5, b; define the method. Here and later A may depend on
n.

Theorem 5.1. [14] If for each L,j=1,...,s
biaij + bjaj; — b;ib; =0, (5.3)

then the RK method (5.1-5.2) is symplectic.

Classes of RK methods for which (5.3) holds had been studied by
Cooper [4]. In particular, for each s, the method based on Gauss-Legendre
quadrature with maximal order 2s, due to Butcher, is symplectic. Theorem
5.1 has also been discovered by Lasagni [10] and Suris [22).

6 Partitioned Canonical Runge-Kutta Methods

The .mwﬁ. Z.Sa the mp:.waoum (2.1) fall naturally into two groups leads to the
noamionweos.Om partitioned RK methods (8], where the p and ¢ equations
are treated with different coefficients. With a self-explanatory notation

3 3
N.H?+MU§.>N: Zi=qn+ ) Aijhg;, 1<i<s, (6.1)
Jj=1

i=1

Pat1 =P+ 3 _bihf(Yi, Z)), nt1 =0a+ ) Bihg(Y., Z:). (6.2)

i=1 i=1

.F ﬁ:.w remainder of this section we shall always assume that we are deal-
Ing with separable Hamiltonians, i.e. the case where H(p,q) is of the form
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T(p) + V(q). Separable Hamiltonians arise very frequently, with T,V rep-
resenting the kinetic and potential energies respectively. The next result,
which is given for the first time in this paper, can be established by follow-
ing the techniques of the proof of Theorem 1 in [14].
Theorem 6.1 Assume that in (2.1) the Hamiltonian H is separable. Then,
iffor1<4,57<s

&..\»_C. + Bja;; — F.ms. =0 Am.wv

(cf. (5.3)), the method (6.1) - (6.2) is canonical when applied to (2.1).

Particular canonical partitioned RK schemes were constructed by Ruth
[11]. This author works with generating functions and does not employ the
Runge-Kutta formalism. He considers a family of three stage methods of
the form (6.1) ~ (6.2), with siz free parameters b;, B;, 1 <i<3,and

a1 = az; = az; = b, A2 = Az = By, (6.4)
@22 = azz = by, A3zz = By,
asz = bg,

a;; =0, if i < j, \»Q“Ovﬁ.ﬁ.m.&

and sho s canonicity for separable Hamiltonians. Furthermore (6.4) has
third ¢ ser of accuracy under the five order conditions

NS +vu + vw =B + Bs + B3 = H,&mmu + owAmu +mmv = M\M- A@mv

baB + b3(B1 + B3)? = Byb? + Ba(by + by)? + Bs(by + by + b3)? = 1/3.

Of importance is the fact that, even though a;; # 0, the algorithm (6.4) is
ezxplicit since for separable Hamiltonians Y; is not an argument of f; = f(Z;)
in (6.1).

Ruth points out that the choice B, = 2/3 leads in (6.5) to a particularly
simple solution for the remaining parameters. We prefer to choose the free
parameter as follows. A separable Hamiltonian system is left invariant by
simultaneously interchanging the roles of kinetic and potential energies,
coordinates and momenta and reversing the direction of ¢. It is easy to see
(cf. (8] pp. 214-215) that the same invariance will be true for the numerical
method (6.4) if

@H ”mw.vn = mwvvw” WH. A@@v

The system (6.5)-(6.6) (8 equations for six unknowns) is compatible and

yields
B; =0.91966152 (6.7)

a root of 12z* — 2422 + 162 -3 = 0.

Furthermore, the present author employs (6.4) so as to have to have
canonical integrations with fourth order accuracy. In fact, it is enough
to use before each step of the method one step (of the same length h)
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of the adjoint method ((8] pp.214-215). 1t is easy to see that, since the
combination of the two steps is symmetric, the combined method must
have fourth order of global accuracy at each step. (This enhancement of
the order does not depend on the specific choice of the free parameter B)
Over two-steps the composite scheme can be written as

Y1 = g2 + Bahg(pa,), 2, = Pon + b3h f(Y1), (6.8)
M\M =Y+ mwb.QANmV‘ Z3 = Zy + &mb.\ﬂv\mv,

Q2n+1 = Y2 + B1hg(Zs), P2nt1 = pon + b1hf(g2n41),
I =Pt +01hf(Qons1), Yy = gop + Bihg(Z}), (6.9)
23 =Zi +hahf(Yy), Y= Y + Byhg(Z3),
Prni2 = 23 + b3h f(Yy), 42 = Y5 + Bahg(pon ).

The whole algorithm is explicit. Furthermore only five evaluations of f are
needed over the two steps. This is important since in many applications
the evaluaticn of f (the forces) in (2.1) is far more expensive than the
evaluation of g, for instance 9(p) is simply pif

1 2
T=5(l++pD), (6.10)

the most frequently occurring kinetic energy. Incidentally, it should be
noted that for separable Hamiltonians with kinetic energy (6.10) the sys-
tem (2.1), after elimination of p = dg/dt, can be reduced to the second
order form d2¢/dt? = f(g) and then treated with a Runge-Kutta~Nystrém
(RKN) method [8]. Suris [22] studies conditions for RKN algorithms to
be symplectic in the case (6.10) and suggests a three-stage, third order
method, which turns out to be equivalent to the method (6.4), with Ruth’s
choice of the free parameter By = 2/3. Suris does not appear to be aware
of Ruth’s work.

7 Numerical illustrations

Clearly, extensive numerical experimentation is needed to assess the advan-
tages, if any, to be gained by the use of canonical integration techniques
and to identify the best canonical schemes. Here we only report two ex-
periments that illustrate the preceding material. Of course, the canonical
methods described above would only be competitive with available soft-
ware 1If implemented in a code with variable time-steps, something which
as yet has not been done. Therefore our experiments refer to fixed-h im-
plementations. Nevertheless, we have chosen the test problems in such a
way that, as the integration proceeds, the time-scale of the solutions does
not change significantly, so that variable time-steps are not crucial. As
a reference noncanonical method we have used the ‘classical’ fourth-order
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Figure 2. Hénon-Heiles problem. Canonical method.

RK scheme, while as an example of a canonical integrator we have used

the fourth-order method (6.5) - (6.9). o
(1) Hénon—Heiles Hamiltonian. This is given by

H = (1/2)(p + p3 + ¢} + ¢3) + ¢3q2 — (1/3)¢3. (7.1)

For solutions near the origin the Hamiltonian is close to that of the double
harmonic oscillator ,
(1/2)(p? + P} + ¢f + 3), (7.2)

whose solutions are 27-periodic. It is of interest to ascertain whether o.lv;m
of (7.1) away from the origin retain the regular character of the orbits of
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Figure 3. Kepler problem. Standard method (triangles) and canonical
method (stars).

(7.2). As in [3], we use the initial condition py = 0,q; = 0,¢, = 0.2, with p,
owo%: $o as to have an energy H = 0.117835. The number of steps is 5000
with a step-length A = 0.5. For the neighbouring Hamiltonian (7.2) this
would mean that the solution is being sampled about 12 times per period
of length 27, so that, in a short-time computation, the chosen value of 4 is
expected to guarantee, at least, a moderate accuracy.

Figures 1 and 2 correspond to the noncanonical and canonical schemes
respectively and depict the ¢, and g2 components of the solution at the
even-numbered time-steps. The differences are obvious. The symplectic
scheme has identified that the solution lies on an invariant torus, while the
classical Runge-Kutta method gives meaningless results. The final energies
are H = (.1181911 for the canonical method (with an error of 0.3 per cent)
and H = 1.7E—2for the classical scheme. We emphasize that, as discussed
previously, ?m symplectic scheme is not (cannot be) energy-preserving.
Of course the ‘nice’ appearance of Figure 2 does not guarantee that the
computed points are close to the corresponding values of the theoretical
.wo_:ao? which probably is not true. However the canonical scheme has
identified the right qualitative behaviour and this was the point of interest
in the study of (7.1).

(i) Kepler’s problem. The Hamiltonian is given by the well-known ex-

pression
H=(1/2)(»? + p3) - 1/r,

The solutions are, of course, available analytically [1]. However many im-
portant proplems in celestial mechanics require the numerical integration
of problems where the Potential energy —1/r is subjected to small pertur-

r?=g¢f +q3. (7.3)
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bations. Typically, these problems demand computations over very long
time intervals (say many revolutions of an artificial satellite) [9].

We have chosen the initial conditions p; = 0,p2=0.95,¢1=1,¢2=0
leading to a low-eccentricity elliptic motion with period T = 5.464783,
energy H = —0.5487500 and angular momentum M = 0.9500000. We have
integrated over fifty revolutions of the satellite.

For the classical method h was taken to be T/40 (i.e. forty steps per
revolution), while for the canonical method we set h = T/64, so that both
runs employ the same number of evaluations of the force. The errors in the
g2 component at the end of each revolution have been plotted in Figure 3.
While after one or two periods both schemes exhibit the same performance
(recall that the canonical method is operating with a smaller value of h), the
differences between the methods grow markedly as the integration proceeds.
The error growth is much faster in the noncanonical method, and at the end
of the experiment the difference in the size of the error is almost three orders
of magnitude. At the end of the integration, the canonical scheme yields
H = —0.5487541, M = 0.9499964, so that the error in the approximation
of the conserved quantities is indeed much lower than the error in the
individual solution components. But then the same is true for the classical
method, which results in H = —~0.5493714, M = 0.9495119.
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