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THE BEHAVIOR OF FINITE ELEMENT

SOLUTIONS OF SEMILINEAR PARABOLIC

PROBLEMS NEAR STATIONARY POINTS

S� LARSSONy and J��M� SANZ�SERNAz

Abstract� We study the qualitative behavior of spatially semidiscrete �nite element solutions
of a semilinear parabolic problem near an unstable hyperbolic equilibrium �u� We show that any
continuous trajectory is approximated by an appropriate discrete trajectory� and vice versa� as long
as they remain in a su�ciently small neighborhood of �u� Error bounds of optimal order in the L�
and H� norms hold uniformly over arbitrarily long time intervals� In particular� the local stable and
unstable manifolds of the discrete problem converge to their continuous counterparts� Therefore� the
discretized dynamical system has the same qualitative behavior near �u as the continuous system�
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�� Introduction� Classical error estimates for approximate solutions of nonlin�
ear evolution problems on a time interval � � t � T involve an error constant that
grows exponentially with the length T � � of the interval� In general this is the best
that can be expected� because trajectories of initial value problems may diverge from
each other at an exponential rate� On the other hand� exponentially growing bounds
become meaningless even for moderate values of T � � in situations where trajectories
actually contract as time increases�

A typical instance of �contracting� trajectories occurs in the neighborhood of a
stable equilibrium� a case that has been considered for ordinary di�erential equations
by Stetter �	
� Chapters ��� and ��� and for nonlinear parabolic partial di�erential
equations by Heywood and Rannacher ���� Larsson ��� and Sanz�Serna and Stuart
�		�� It turns out that� under suitable technical assumptions� the exponential growth
of the error predicted by the classical bounds does not materialize� numerical methods
provide approximations that are accurate uniformly in t near a stable equilibrium�

Numerical methods cannot be expected to do very well in a neighborhood V
of an unstable equilibrium �u due to the divergence of trajectories� Figure 	 depicts
a situation� which is typical for an unstable hyperbolic equilibrium �cf� Section 

below�� there is a local stable manifold MS composed of solutions that remain in V
for t � � and approach the equilibrium as t � �� The local unstable manifold MU

is composed of solutions that are in V for t � � and approach the equilibrium as
t � ��� Trajectories not contained in the stable or unstable manifolds remain in
V during a �nite time interval � � t � T � the length of this interval depends on the
individual trajectory and may be arbitrarily large� By considering initial values on
opposite sides of MS � it is easily seen that the distance between trajectories may grow
exponentially with t� even if they are close initially� Therefore we are in a situation�
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the behavior of finite element solutions 	��	

Fig� �� Trajectories in the neighborhood of an unstable hyperbolic equilibrium�

where the exponential error growth predicted by classical bounds is not pessimistic
and numerical methods cannot be expected to approximate individual trajectories well
over long time intervals�

In a recent paper ���� restricted to ordinary di�erential equations� Beyn showed
that numerical methods can nevertheless be useful for long�time integration near an
unstable hyperbolic equilibrium� any continuous trajectory is approximated by an
appropriate discrete trajectory� and vice versa� to the correct order of approximation
and uniformly in t as long as they remain in a su�ciently small neighborhood V of
�u� The conclusion is that� when a numerical method is used to simulate the phase
portrait in V through the generation of a number of numerical trajectories� we can be
sure that the result is accurate� there are trajectories of the original problem that are
close� uniformly in t� to the computed trajectories� The di�erence with the case of a
stable equilibrium is that there the discrete trajectory approximates the continuous
trajectory starting from the same initial value� while here a given discrete trajectory
approximates a continuous trajectory with a di�erent �and a priori unknown� initial
value�

The purpose of the present work is to extend Beyn�s result to the case of partial
di�erential equations� We consider a model situation� where a semilinear parabolic
problem is discretized in space by piecewise linear �nite elements� Several general�
izations are possible but we have decided not to deal with them in order to gain
in clarity� Our main result� Theorem 	� is analogous to that of Beyn� there is an
H��neighborhood V of the unstable hyperbolic stationary point �u� such that for any
exact solution u�t� contained in V for � � t � T there is a numerical solution uh�t��
which approximates u�t� accurately for � � t � T � We emphasize that the initial
value uh�� � is a priori unknown� a numerical solution starting from some a priori
prescribed approximation of u�� � �as in the standard error analysis� may deviate from
u�t� at an exponential rate as noted before� Conversely� for any numerical solution
uh�t� contained in V for � � t � T there exists an exact solution u�t�� which is close
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to it� The distance between u�t� and uh�t� is measured in the L� and H� norms� and
we prove error bounds of optimal order with error constants that are independent of
T � � � In a similar manner� we show in Theorem 
 that the discrete problem has local
stable and unstable manifolds which converge at an optimal rate to their continuous
counterparts� The conclusion is that the discretized dynamical system has the same
qualitative behavior near �u as the continuous system�

Theorem 	 is related to the concept of shadowing in dynamical systems theory�
but the classical shadowing lemma is not directly applicable in the present situation�
see� for example� ��� and �	���

Our work is in a sense complementary to that of Alouges and Debussche �	�� which
deals with discretization in time but not in space� However it is not trivial to combine
our result with theirs to obtain a result for a completely discrete scheme� We plan to
study space and time discretization simultaneously in a future work�

Section 
 is devoted to the presentation and analysis of the partial di�erential
equation to be solved and Section � deals with the discretization in space� Our main
results� Theorems 	 and 
� are stated at the end of Section ��

�� The continuous problem� Throughout this work � is a bounded convex
polygonal domain in Rd� d � 	� 
 or �� and we let ��� �� and k � k denote the usual
inner product and norm in L� � L����� The norms in the standard Sobolev spaces
Hs � Hs���� s � �� are denoted by k � ks� H�

� � H�
���� is the space of functions

v � H� satisfying the Dirichlet boundary condition vj�� � �� and H�� � H����� is
the dual space of H�

� with norm kvk�� � sup��H�

�

j�v� ��j�k�k�� For u � H�
� we let

B��� u� denote the closed ball of radius � � � centered at u� i�e�� B��� u� � fv � H�
� �

kv � uk� � �g� The symbols C and C��� are used to denote generic constants whose
values may change from one occurrence to the next�

We consider the model semilinear parabolic problem

�
�	� ut ��u � f�u�� x � �� u � �� x � ���

where u � u�x� t�� �u �
Pd

i�� �
�u��x�i � and ut � �u��t� We assume that f � C��R�

and� if d � 
 or �� we assume in addition that

�
�
� jf �j��u�j � C
�
	 � juj��j

�
� j � �� 	� 
� u � R�

with 	 � � if d � �� and 
 � 	 �� if d � 
� It then follows that f is locally Lipschitz
from H�

� into L� �cf� Lemma 
�
 below�� which� by standard techniques �see� e�g��
����� implies local existence and uniqueness of solutions to the initial value problem
for �
�	��

We further assume that �
�	� has a stationary solution �u � H�
� �H�� i�e�� �u is a

solution of
���u � f��u�� x � �� �u � �� x � ��


Let A � �� � aI� where a�x� � f ���u�x��� denote the linearized operator with
domainD�A� � H�

��H
� and let f�ig�i�� be its eigenvalues numbered in nondecreasing

order� with f�ig�i�� the corresponding L��orthonormal eigenfunctions� Note that� by
standard embeddings� �u and hence a are continuous functions in the closure ��� The
stationary point �u is assumed to be hyperbolic �i�e�� we assume that � is not one of
the eigenvalues �i� and unstable �i�e�� there is at least one negative eigenvalue�� Hence
there is a positive integer q such that �i � � for 	 � i � q� and �i � � for q�	 � i ���
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We then let P� denote the orthogonal projection of L� onto X� � spanf�ig
q
i�� and set

P� � I�P�� X� � X�
� �orthogonal complement in L��� Finally we de�ne E�t� � e�tA�

Aj � AjXj � Ej�t� � e�tAj for j � 	� 
� i�e��

E��t�P�v �

qX
i��

e�t�i�v� �i��i� E��t�P�v �
�X

i�q��

e�t�i�v� �i��i� v � L�


Thus E� and E�� respectively� correspond to the unstable and stable parts of the
semigroup E generated by �A� The following lemma contains bounds for these op�
erators� Although the result is valid in greater generality� we state it with precisely
those assumptions that will be needed in the sequel�

Lemma ���� There are positive numbers M and  such that

kE��t�P�vk� �Me�tkvk�� t � ��

kE��t�P�vk� �Mt�
���
� e��tkvk�� t � ��

for v � H�
� � � � �� 	� � � �� 	� 
 with � � ��

Proof� Let B � �� with domain D�B� � D�A� � H�
� �H�� We �rst note the

equivalence of norms

�
��� kvk� 	 kA
�	�
� vk� v � X� �D�B�	��� � � �� 	� 



This is trivial when � � �� Since B � A � aI is bounded in L� and kAvk � kA�vk �
�q��kvk for v � X�� we obtain

kBvk � k�B � A�vk� kAvk � CkAvk� v � X� �D�B��

and also an analogous inequality with A and B interchanged� In view of the equiva�
lence of norms kBvk 	 kvk� for v � D�B�� this proves the case � � 
 of �
���� The
remaining case � � 	 follows by interpolation�

Since the spectrum of A� is positive and bounded away from �� we thus have

kE��t�P�vk� � Ct�
���
� e��tkP�vk�� t � ��

and the second bound in the lemma follows� if P� is bounded with respect to the H�

norm� For � � � this is obvious� For � � 	 it follows from the orthogonality of P�
with respect to the inde�nite bilinear form

�
�� A�u� v� � �ru�rv�� �au� v��

�following a standard practice we use the same letter A to denote both the linear
operator A and the corresponding bilinear form A��� ��� by the following estimation�

ckP�vk�� � kA
�	�
� P�vk� � A�P�v� P�v�

� A�P�v� v� � CkP�vk�kvk�� v � H�
� 


Finally� the bound for E��t� is clear� since X� is �nite dimensional and A� is bounded
and negative de�nite� tu

Using the linearized operator A we may now write equation �
�	� as

�
��� ut �Au � F �u�� F �u� � f�u� � au


We are interested in the behavior of solutions of �
��� in the neighborhood of �u� It is
therefore convenient to introduce a dependent variable z�t� � u�t�� �u� which satis�es

�
��� zt � Az � G�z�� G�z� � F �u�� F ��u�


We shall need the fact that the mappings F�G � H�
� � L� are locally Lipschitz with a

constant that can be made arbitrarily small in a neighborhood of �u and �� respectively�
More precisely� we have the following result�



	�� s� larsson and j��m� sanz�serna

Lemma ���� If ui � B��� �u�� and z� zi � B��� �� for i � 	� 
� then for j � �� 	 we
have the bounds

kF �u�� � F �u��k�j � k���ku� � u�k��j��
���

kG�z�� �G�z��k�j � k���kz� � z�k��j��
���

kG��z�vk�j � k���kvk��j��
���

kG�z�k� � k���kzk���
�	��

kG��z�vk� � k���kvk� � C���kzk�kvk���
�		�

where k��� � O���� C��� � O�	� as �� ��
Proof� Since F �u�� � F �u�� � G�z�� � G�z�� �with z � u � �u�� it is su�cient

to show the bounds for G� The inequality �
��� follows readily from �
���� We prove
�
��� for d � � only� the remaining cases can be proved in a similar way� We have� by
H older�s and Sobolev�s inequalities�

kG��z�vk � kG��z�kL�kvkL� � CkG��z�kL�kvk�

�with a slight abuse of notation we let G��z� denote both the linear operator G��z� �
H�
� � L� and the related function x 
� G��z�x�� in L	����� Moreover� by �
�
� �recall

that 	 � � if d � ���

kG��z�kL� �
���
Z �

�

f ����u� tz�z dt
���
L�
�

Z �

�

kf ����u� tz�kL� dt kzkL�

� C �	 � k�ukL� � kzkL�� kzkL�

� C �	 � k�uk� � kzk�� kzk� � C �	 � ����

which proves the case j � � of �
���� The case j � 	 is obtained in a similar way�
using the inequalities

kvk�� � sup
��H�

�

j�v� ��j

k�k�
� sup

��H�

�

kvkL���k�kL�
k�k�

� CkvkL��� �

kG��z�vkL��� �

Z �

�

kf ����u � tz�kL� dt kzkL� kvkL� 


The remaining bounds �
�	�� and �
�		� are proved by the same techniques� tu
Let �� � � � t � T ��� A solution of �
��� de�ned for t � ��� T � satis�es

u�t� � E�t� � �u�� � �

Z t




E�t � s�F �u�s�� ds�

and hence

P�u�t� � E��t � � �P�u�� � �

Z t




E��t � s�P�F �u�s�� ds


Similarly�

P�u�T � � E��T � t�P�u�t� �

Z T

t

E��T � s�P�F �u�s�� ds�
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so that� by application of E��t� T �� we get

P�u�t� � E��t � T �P�u�T ��

Z T

t

E��t � s�P�F �u�s�� ds


Substitution of these expressions into u�t� � P�u�t� � P�u�t� yields

u�t� � E��t� T �v �

Z T

t

E��t� s�P�F �u�s�� ds

�E��t� � �w �

Z t




E��t � s�P�F �u�s�� ds�

�
�	
�

where v � P�u�T �� w � P�u�� �� Conversely� a solution of �
�	
� �see� e�g�� ��� for the
appropriate de�nition of solution� satis�es �
���� The corresponding equation for a
solution z of �
��� is

z�t� � E��t � T �P�z�T ��

Z T

t

E��t� s�P�G�z�s�� ds

�E��t � � �P�z�� � �

Z t




E��t� s�P�G�z�s�� ds


�
�	��

Note also that �u satis�es �
�	
�� i�e��

�u � E��t� T �P��u�

Z T

t

E��t� s�P�F ��u� ds

� E��t� � �P��u�

Z t




E��t� s�P�F ��u� ds


�
�	�

The representation in �
�	
� holds for bounded time intervals ��� T �� If we let
� � � and T � � in �
�	
� under the assumption that ku�T �k� remains bounded�
then we obtain the equation

�
�	�� u�t� � E��t�w �

Z �

t

E��t� s�P�F �u�s�� ds �

Z t

�
E��t� s�P�F �u�s�� ds�

which is satis�ed by solutions of �
��� de�ned in ������ Solutions de�ned in ���� ��
can also be accommodated by means of a similar device�

Consider now a solution u � u�t� of �
���� which enters a small ball B��� �u� at
time � and exits B��� �u� at time T � As pointed out in the introduction� the initial
value problem� where u�� � is prescribed� is ill posed due to the unstable character
of the stationary point �u� However� equation �
�	
� shows that the boundary value
problem� where P�u�� � and P�u�T � are prescribed� is well posed� This is the key idea
of the present work� We make this precise in the following lemma� where M is the
constant in Lemma 
�	�

Lemma ���� There is a positive number � such that� for any real numbers �� T
with � � T and any v � X�� w � X� with

�
�	�� kv � P��uk� � kw� P��uk� �
�


M
�



	��� s� larsson and j��m� sanz�serna

equation ������ has a unique solution u such that u�t� � B��� �u� for t � ��� T ��
Proof� We shall apply Banach�s �xed point theorem in the space C � C���� T � �

H�
� � normed by kukC � sup
�t�T ku�t�k�� Equation �
�	
� can be written as u �

S�v� w� � T �u�� where

�
�	��

S�v� w��t� � E��t � T �v � E��t� � �w�

T �u��t� � �

Z T

t

E��t� s�P�F �u�s�� ds�

Z t




E��t� s�P�F �u�s�� ds


Let B � fu � C � ku� �ukC � �g� We want to choose � such that the operator T is a
contraction in B� For future reference we introduce

�
�	��
J�t� �

Z �

t

e��t�s��	 � s�
�

� � ds�

Z t

�

�t� s��
�

� e���t�s��	 � s�
�

� � ds�

K � sup
t��

J�t�


It is easy to show that K is �nite� so that we may choose � � � such that

�
�	�� Mk���K � �
� 


For u� z � B we then have� by Lemma 
�	 and Lemma 
�
�

kT �u��t�� T �z��t�k� �

Z T

t

kE��t� s�P��F �u�s��� F �z�s���k� ds

�

Z t




kE��t � s�P��F �u�s��� F �z�s���k� ds

�M

Z T

t

e��t�s�kF �u�s��� F �z�s��k ds

�M

Z t




�t � s��
�

� e���t�s�kF �u�s��� F �z�s��k ds

�Mk���

�Z T

t

e��t�s� ds�

Z t




�t� s��
�

� e���t�s� ds

�
ku� zkC

�Mk���J�t � � �ku� zkC �Mk���Kku� zkC

� �
�ku� zkC � t � ��� T ��

so that T is a contraction� It remains to check that the operator u 
� S�v� w� � T �u�
maps B into itself� This will be achieved if kS�v� w�� �u� T ��u�kC �

�
��� or

kS�v� w�� S�P��u� P��u�kC �
�
���

since in view of �
�	� �u � S�P��u� P��u��T ��u�� But� in view of Lemma 
�	 and �
�	���
we have

kS�v� w��t� � S�P��u� P��u��t�k� � kE��t � T ��v � P��u�k� � kE��t� � ��w � P��u�k�

�M
�
kv � P��uk� � kw � P��uk�

�
� �

���

for t � ��� T �� Thus equation �
�	
� has a unique solution u � B� tu
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Note that the lemma also holds� with essentially the same proof� for solutions
on the semi�in�nite time interval ������ More precisely� there is � � � such that
equation �
�	�� has a unique solution u�t� � B��� �u� for t � ����� for all w � X� with
kw � P��uk� � ��
M � This implies that the local stable manifold of �u� de�ned by

�
�
�� MS��� � fu� � H�
� � kP��u� � �u�k� �

�


M
and u�t�u�� � B��� �u� for t � �g�

is homeomorphic to the ball B���
M�P��u� in X�� Here u�t�u�� denotes the solution
u�t� of �
��� satisfying u��� � u�� Moreover� one can show thatMS��� is tangent toX�

at �u� and that u�t�u��� �u exponentially in H�
� as t�� for all u� �MS ���� Similar

considerations hold for solutions de�ned in ���� ��� leading to the construction of the
local unstable manifold MU ���� We refer to Henry ��� Theorem ��
�	� for the details�

Our next lemma concerns the regularity of a solution u�t� � B��� �u� for t � ��� T ��
In our error analysis below we will need bounds for certain derivatives of u� Since
T � � may be arbitrarily large� it is crucial that these bounds are independent of �
and T �

Lemma ���� There are positive numbers � and C such that� for any �� T with
� � T � and for any solution u of ������ with u�t� � B��� �u� for t � ��� T �� we have the
bounds

�
�
	� kDl
tu�t�km � C

�
	 � �t� � ��l�

m��
�

�
� t � ��� T ��

for l � �� 	� m � 	� 
�
Proof� Let � be given by �
�	��� It is convenient to estimate z�t� � u�t���u� which

satis�es �
��� and �
�	��� The desired bounds for u then follow� since �u � H�
� �H��

The reason why this is convenient is that G�z� � H�
� � so that we may employ Lemma


�	 with v � G�z� and � � 	� This is not possible with F �u�� which may be nonzero
on ���

Using Lemma 
�	� �
�	��� �
�	�� and equation �
�	�� we get

kz�t�k� � kE��t� T �P�z�T �k� � kE��t� � �P�z�� �k�

�

Z T

t

kE��t � s�P�G�z�s��k� ds�

Z t




kE��t� s�P�G�z�s��k� ds

�Mkz�T �k� �M �t� � ��
�

� kz�� �k�

�M

Z T

t

e��t�s�kG�z�s��k� ds�M

Z t




�t � s��
�

� e���t�s�kG�z�s��k� ds

�M�
�
	 � �t � � ��

�

�

�
�Mk���

�Z �

t

e��t�s�
�
	 � �s � � ��

�

�

�
ds

�

Z t




�t� s��
�

� e���t�s�
�
	 � �s � � ��

�

�

�
ds

�
sup


�s�T

�
��s � � �kz�s�k�

�

�M�
�
	 � �t � � ��

�

�

�
�Mk���J�t � � � sup


�s�T

�
��s � � �kz�s�k�

�

�M�
�
	 � �t � � ��

�

�

�
�Mk���K sup


�s�T

�
��s � � �kz�s�k�

�

�M�
�
	 � �t � � ��

�

�

�
� �

�
sup


�s�T

�
��s � � �kz�s�k�

�
�
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where ��s� � �	 � s�
�

� ��� � 	� Hence

��t � � �kz�t�k� �M� � �
� sup

�s�T

�
��s � � �kz�s�k�

�
�

so that

�
�

� kz�t�k� � C���
�
	 � �t� � ��

�

�

�
�

which implies the case l � �� m � 
 of �
�
	�� The case l � �� m � 	 is trivial�
We now estimate v � ut � zt� It can be shown by standard techniques that u is

di�erentiable with respect to t and that v satis�es vt � Av � G��z�v� and hence

v�t� � E��t� T �P�v�T � �

Z T

t

E��t� s�P�
�
G��z�s��v�s�

�
ds

� E��t� � �P�v�� � �

Z t




E��t� s�P�
�
G��z�s��v�s�

�
ds


We refer to Henry ��� Theorem ����
� for the details� It remains to prove the required
bounds for v with a constant C��� independent of � and T � �The bound given in ��� is
obtained by Gronwall�s lemma and therefore not applicable in the present situation�
where we require bounds that do not deteriorate as T � � � ��� We already have�
by �
�	�� and �
�

��

�
�
�� kv�t�k � kAz�t�k� kG�z�t��k � C���kz�t�k� � C���
�
	 � �t� � ��

�

�

�



Using Lemma 
�	� �
��� and �
�	��� we obtain

kv�t�k� � kE��t� T �P�v�T �k� � kE��t � � �P�v�� �k�

�

Z T

t

���E��t� s�P�
�
G��z�s��v�s�

����
�
ds

�

Z t




���E��t� s�P�
�
G��z�s��v�s�

����
�
ds

�Mkv�T �k�M �t� � ��
�

� kv�� �k

�Mk���

�Z T

t

e��t�s�kv�s�k� ds�

Z t




�t � s��
�

� e���t�s�kv�s�k� ds

�

�M
�
	 � �t� � ��

�

�

��
kv�T �k � kv�� �k

�

�Mk���K sup

�s�T

�
��s � � �kv�s�k�

�



In view of �
�	�� this shows that

��t � � �kv�t�k� � 
M
�
kv�T �k � kv�� �k

�
�

which together with �
�
�� with � replaced by �t� � ��
 implies

�
�
� kv�t�k� � C���
�
	 � �t� � ���

�
�
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which is the case l � 	� m � 	 of �
�
	�� Similarly we may show

�
�
�� kv�t�k� � 
M
�
kv�T �k� � kv�� �k�

�



For the proof of the remaining bound �l � 	� m � 
� we use �
�		�� �
�

� and �
�
��
in a similar way as above�

kv�t�k� �M
�
	 � �t� � ��

�

�

��
kv�T �k� � kv�� �k�

�

�Mk���K sup

�s�T

�
��s � � �kv�s�k�

�

�MC���

�Z T

t

e��t�s�kz�s�k�kv�s�k� ds

�

Z t




�t � s��
�

� e���t�s�kz�s�k�kv�s�k� ds

�

�M
�
	 � �t� � ��

�

� � 
MC���K
��
kv�T �k� � kv�� �k�

�

� �
� sup

�s�T

�
��s � � �kv�s�k�

�



Together with �
�
� this leads to kv�t�k� � C���
�
	 � �t � � ��

�

�

�
and the proof is

complete� tu

�� The semidiscrete problem� We now proceed to discuss the spatially semi�
discrete approximation of equation �
�	� by the standard piecewise linear �nite element
method� Thus we denote by Sh the subspace of H�

� that consists of piecewise polyno�
mials of degree � 	 with respect to a �triangulation� of the convex polygonal domain
� with maximummesh size h� The semidiscrete solutions uh�t� � Sh satisfy

���	� �uht � �� � �ruh�r�� � �f�uh�� �� �� � Sh 


Before pursuing the discussion of uh further� we collect some basic results and
assumptions concerning the �nite element method� Let � � maxx�� a�x�� so that the
bilinear form

!A��� �� � �r��r�� � ���� a��� ��

is H�
��elliptic� Then there is an operator G � L� � H�

� such that

���
� !A�Gf� �� � �f� �� �� � H�
� � f � L�


In other words G � �A � �I���� It is easy to see that G is a selfadjoint� positive
de�nite� compact� linear operator on L�� and by the standard regularity theory for
elliptic problems� we have the inequality

����� kGfk� � Ckfk� f � L�


We also de�ne an �elliptic projection� operator Rh � H�
� � Sh by

���� !A�Rhv � v� �� � � �� � Sh
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Under the usual regularity assumptions on the triangulation� and in view of ������ the
standard error analysis for elliptic problems yields

����� kRhv � vk � hkRhv � vk� � Chmkvkm� v � H�
� �H

m� m � 	� 
�

see for example �� Chapter ��� This error bound will form the basis for our error
analysis� For convenience of the presentation of our main result �cf� Remark 
 below�
we assume� in addition� that the triangulation is such that the orthogonal projection
P h of L� onto Sh is bounded �uniformly in h� with respect to the H� norm� It is easy
to see that this is true under an inverse assumption� For a more general discussion of
the H� boundedness of P h the reader may consult ����

We now resume our discussion of the semidiscrete problem ���	�� It is convenient
to linearize the equation around �u� We thus introduce the operator Ah � Sh � Sh �
de�ned by

�Ahv� �� � A�v� �� �� � Sh�

where A��� �� is the bilinear form corresponding to the operator A� see �
��� Equation
���	� now becomes

����� uht �Ahuh � P hF �uh�� F �u� � f�u� � au


Let f�hi g
Nh

i�� be the eigenvalues of Ah numbered in nondecreasing order� and let

f�hi g
Nh

i�� be the corresponding L��orthonormal eigenfunctions� It is well known �
� that
the eigenvalues of Ah converge to those of A as h � �� Hence there is h� � � such
that� for h � h�� we have �hi � � for 	 � i � q� and �hi � � for q � 	 � i � Nh� We

then set Xh
� � spanf�hi g

q
i��� X

h
� � spanf�hi g

Nh

i�q��� and denote by P h
j the orthogonal

projections of L� onto Xh
j for j � 	� 
� Note that P h

j � P h
j P

h and P h
� � P h � P h

� �

Next we de�ne Ah
j � AhjXh

j
and evolution operators Eh

j �t� � e�tA
h
j � i�e��

Eh
� �t�P

h
� v �

qX
i��

e�t�
h
i �v� �hi ��

h
i � Eh

� �t�P
h
� v �

NhX
i�q��

e�t�
h
i �v� �hi ��

h
i � v � L�


The next result provides bounds for these operators� Note that there is no loss of
generality in assuming that the constants M and  in the following lemma are the
same as in Lemma 
�	�

Lemma ���� There are positive numbers h��M and  such that for h � h� we
have

kEh
� �t�P

h
� vk� �Me�tkP h

� vk�� t � ��

kEh
� �t�P

h
� vk� �Me��tkP h

� vk�� t � ��

and
kDj

tE
h
� �t�P

h
� vk� � Me�tkvk�� t � ��

kDj
tE

h
� �t�P

h
� vk� � Mt�j�

���
� e��tkvk�� t � ��

for v � H�
� � j � �� 	� � � �	� �� � � �� 	�

Proof� We �rst establish the equivalence of norms �uniform in h�

����� kvk� 	 k�Ah
� �

�	�vk� v � Xh
� 




the behavior of finite element solutions 	�		

Since �hq�� � �q��� we have

����� A�v� v� � �q��kvk�� v � Xh
� 


Hence

����� kvk�� � Ckrvk� � C
�
A�v� v� � �av� v�

�
� CA�v� v� � Ckvk��� v � Xh

� �

which is the desired result� in view of the identity k�Ah
� �

�	�vk� � A�v� v��
Using ����� and ����� we may now prove

kDj
tE

h
� �t�P

h
� vk� � Ct�j�

���
� e��tk�Ah

��
�	�P h

� vk� t � �


This implies the second bound in the lemma� because of the above equivalence of
norms� and also the fourth bound for � � �� because of the boundedness of P h

� in L��
For the case when � � �	 we note that

���	�� A��Ah
� �
��P h

� v� �� � �v� �� �� � Xh
� �

which together with ����� implies

k�Ah
� �
��	�P h

� vk � sup
��Xh

�

�v� ��

A��� ��
�

�

� C sup
��Xh

�

�v� ��

k�k�
� C sup

��H�

�

�v� ��

k�k�
� Ckvk��


This completes the proof of the bounds for Eh
� �t�� The bounds for Eh

� �t� are easily
obtained by noting that Xh

� is �nite dimensional with dimension q� and that the
spectrum of Ah

� is negative and bounded away from � �uniformly in h�� tu
Equation ����� is now equivalent to

uh�t� � Eh
� �t� T �vh �

Z T

t

Eh
� �t� s�P h

� F �uh�s�� ds

�Eh
� �t� � �wh �

Z t




Eh
� �t � s�P h

� F �uh�s�� ds�

���		�

where vh � P h
� u

h�T �� wh � P h
� u

h�� �� cf� �
�	
�� Again the cases T �� and � � ��
can be catered for after minor changes� cf� �
�	���

In our next lemma we will show that equation ����� has a unique stationary
solution in a neighborhood of �u� In other words� there is �uh � Sh satisfying

���	
� Ah�uh � P hF ��uh��

which is implies

�uh � Eh
� �t� T �P h

� �u
h �

Z T

t

Eh
� �t� s�P h

� F ��uh� ds

� Eh
� �t � � �P h

� �uh �

Z t




Eh
� �t� s�P h

� F ��uh� ds


���	��
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Lemma ���� There are positive numbers �� h� and C such that� for h � h��
equation ������ has a unique solution �uh � B��� �u� � Sh � Moreover� k�uh � �uk� � Ch


Proof� We �rst note that the operator Ah is invertible and that there is a constant
C� such that

k�Ah���P hvk� � C�kvk� v � L��

if h is su�ciently small� To see this we use ����� and ���	�� with � � �Ah
� �
��P h

� v to
�nd

ck�Ah
��
��P h

� vk
�
� � A��Ah

� �
��P h

� v� �A
h
� �
��P h

� v� � �v� �Ah
� �
��P h

� v�

� kvk k�Ah
� �
��P h

� vk�

which shows k�Ah
��
��P h

� vk� � Ckvk� The inequality k�Ah
��
��P h

� vk� � Ckvk holds by
�nite dimensionality �uniform in h�� This proves the desired bound�

In view of ���	
� we are seeking a �xed point of the operator Qh de�ned by
Qh�u� � �Ah���P hF �u�� For u� v � B��� �u� we have� in view of �
����

kQh�u��Qh�v�k� � k�Ah���P h�F �u�� F �v��k� � C�kF �u�� F �v�k

� C�k���ku� vk�


Hence Qh is a contraction on B��� �u�� if we choose � so that C�k��� � �
� � It remains

to show that Qh maps B��� �u� into itself� if h is su�ciently small� Using the identity

���	� AhRh � P h�A� ��Rh � I���

which follows easily from the de�nitions of Ah and Rh� see ����� we get

Ah
�
Qh�u�� Rh�u

�
� P hF �u��AhRh�u � P h

�
F �u��A�u� ��Rh�u� �u�

�

� P h
�
F �u�� F ��u� � ��Rh�u� �u�

�
�

so that
Qh�u�� Rh�u � Qh�u�� Qh��u� � ��Ah���P h�Rh�u� �u�


In view of ����� we thus have

���	�� kQh�u� � �uk� � �
�ku� �uk� � �	 � j�jC��kRh�u� �uk� � �

�ku� �uk� � Ch�

so that kQh�u� � �uk� � �
�� � Ch � � for u � B��� �u�� if h is su�ciently small�

Hence Qh maps B��� �u� into itself� and we conclude that Qh has a unique �xed point
�uh � B��� �u�� The �xed point belongs to Sh because the range of Qh lies in Sh� The
error bound follows immediately from ���	��� tu

We can now prove an existence result for equation ���		�� analogous to Lemma

�� for the continuous problem�

Lemma ���� There are positive numbers � and h� such that� for any h � h�� for
any real numbers �� T with � � T and for any vh � Xh

� � w
h � Xh

� with

���	�� kvh � P h
� �u

hk� � kwh � P h
� �u

hk� �
�

M
�
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equation ������ has a unique solution uh such that uh�t� � B��� �u� for t � ��� T ��
Proof� The argument is a slight modi�cation of the proof of Lemma 
��� Equation

���		� is written as a �xed point equation uh � Sh�vh� wh� � T h�uh�� where the
operators on the right hand side are de�ned in the obvious way� cf� �
�	��� We want
to solve this equation in the same ball B as in the proof of Lemma 
��� Clearly T h is
a contraction on B with the same choice of �� It remains to check that the operator
u 
� Sh�vh� wh� � T h�u� maps B into itself for small h� In view of ���	��� ���	�� and
Lemma ��
� this follows from

kSh�vh � wh��t� � T h��u� � �uk�

� kSh�vh � wh��t� � Sh�P h
� �u

h� P h
� �u

h��t� � T h��u�� T h��uh�� ��u� �uh�k�

� kEh
� �t� T ��vh � P h

� �u
h�k� � kEh

� �t� � ��wh � P h
� �u

h�k� �
	
�k�u

h � �uk�

�M
�
kvh � P h

� �u
hk� � kwh � P h

� �u
hk�

�
� Ch � �


�� Ch � �
���

for t � ��� T �� This completes the proof� tu
A variant of Lemma ��� can be used to construct the local unstable and stable

manifoldsMh
U ��� and Mh

S ��� of �u
h in the same way as for the continuous problem� In

this context we de�ne �cf� �
�
���

���	�� Mh
S ��� � fuh� � Sh � kP h

� �u
h
� � �uh�k� �

�

M
� uh�t�uh�� � B��� �u� for t � �g


In our next result we estimate the di�erence between two solutions uh�t� and
u�t� that remain in a small ball B��� �u� for t � ��� T �� It is important that the error
constant is independent of � and T � because T � � may be arbitrarily large� In the
�rst error estimate there is a weak singularity at t � � due to the possible lack of
regularity of u�� �� note that we assume only that u�� � � H�

� � The second estimate
holds uniformly as t� � � but the rate of convergence is correspondingly lower�

Lemma ���� There are positive numbers �� h� and C such that� for any h � h��
for any �� T with � � T � for any solutions uh of ���	� and u of ���
� with uh�t�� u�t� �
B��� �u� for t � ��� T �� and for j � �� 	� t � ��� T � we have

kuh�t�� u�t�kj � C
�
	 � �t� � ��

�

�

�

�
�
kP h

�

�
uh�T � � u�T �

�
k� kP h

�

�
uh�� �� u�� �

�
k� h��j

�
�

and

kuh�t� � u�t�k � C
�
kP h

�

�
uh�T �� u�T �

�
k� kP h

�

�
uh�� � � u�� �

�
k� h

�



Proof� Choose � as in �
�	��� so that the conclusion of Lemma
� holds� Following
a standard practice we write

e�t�  uh�t�� u�t� �
�
uh�t� �Rhu�t�

�
�
�
Rhu�t�� u�t�

�
 �h�t� � �h�t��

where Rh is the projection de�ned in ����� so that by ����� and Lemma 
�� we have

���	�� kDl
t�
h�t�kj � Chm�jkDl

tu�t�km � Chm�j
�
	 � �t� � ��l�

m��
�

�
�
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for l� j � �� 	� m � 	� 
� In particular� we have the required bounds for �h�t�� In order
to estimate �h�t� � uh�t� � Rhu�t� we note that� in view of ���	� and the equations
����� and �
��� satis�ed by uh and u�

�ht �Ah�h � P h
�
F �uh�� F �u� � ��h � �ht

�
�

and hence that

�h�t� � Eh
� �t � T �P h

� �
h�T � � Eh

� �t� � �P h
� �

h�� �

�

Z T

t

Eh
� �t� s�P h

�

�
F �uh�s�� � F �u�s�� � ��h�s� � �ht �s�

�
ds

�

Z t




Eh
� �t � s�P h

�

�
F �uh�s�� � F �u�s�� � ��h�s� � �ht �s�

�
ds


It is convenient to divide this expression into two parts �h � �h� � �h� � where

�h� �t� � Eh
� �t� T �P h

� �
h�T � �Eh

� �t� � �P h
� �

h�� �

�

Z T

t

Eh
� �t � s�P h

� �
h
t �s� ds �

Z t




Eh
� �t� s�P h

� �
h
t �s� ds�

and

�h� �t� � �

Z T

t

Eh
� �t� s�P h

�

�
F �uh�s�� � F �u�s�� � ��h�s�

�
ds

�

Z t




Eh
� �t� s�P h

�

�
F �uh�s�� � F �u�s�� � ��h�s�

�
ds


We rewrite �h� by integration by parts�

�h� �t� � Eh
� �t� T �P h

� e�T � �Eh
� �t� � �P h

� e�� � � P h
� �

h�t�

�Eh
� ��t� � ��
�P h

� �
h��t � � ��
��

Z T

t

DsEh
� �t� s�P h

� �
h�s� ds

�

Z �t�
�	�




DsEh
� �t� s�P h

� �
h�s� ds �

Z t

�t�
�	�

Eh
� �t� s�P h

� �
h
t �s� ds


Hence� by Lemma ��	 and ���	�� with j � �� m � 	�

k�h� �t�k� � M
�
	 � �t � � ��

�

�

��
kP h

� e�T �k� kP h
� e�� �k � k�h�t�k� k�h��t� � ��
�k

�

�M

Z T

t

e��t�s�k�h�s�k ds �M

Z �t�
�	�




�t � s��
�

� e���t�s�k�h�s�k ds

�M

Z t

�t�
�	�

�t� s��
�

� e���t�s�k�ht �s�k ds

� C
�
	 � �t � � ��

�

�

��
kP h

� e�T �k � kP h
� e�� �k � h

�

�Ch

�Z T

t

e��t�s� ds�

Z �t�
�	�




�t� s��
�

� e���t�s� ds

�

Z t

�t�
�	�

�t� s��
�

� e���t�s�
�
	 � �s � � ���

�
ds

�

� C
�
	 � �t � � ��

�

�

��
kP h

� e�T �k � kP h
� e�� �k � h

�
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For the remaining term �h� we apply �
��� with j � � to get

k�h� �t�k� �M

Z T

t

e��t�s�
�
k���ke�s�k� � Ck�h�s�k

�
ds

�M

Z t




�t� s��
�

� e���t�s�
�
k���ke�s�k� �Ck�h�s�k

�
ds

�Mk���K sup

�s�T

�
��s � � �k�h�s�k�

�
� CKh�

where ��s� � �	�s�
�

� ��� andK is de�ned in �
�	��� SinceMk���K � �
� and ��s� � 	�

we may conclude that

��t � � �k�h�t�k� � C
�
kP h

� e�T �k � kP h
� e�� �k � h

�
� �

� sup

�s�T

�
��s � � �k�h�s�k�

�
�

and the H� norm error estimate follows� For the L� norm estimates we �rst use ���	��
with j � �� m � 	� 
 to get

k�h� �t�k �M
�
kP h

� e�T �k� kP h
� e�� �k � k�h�t�k� k�h��t� � ��
�k

�

�M

Z T

t

e��t�s�k�h�s�k ds �M

Z �t�
�	�




�t � s���e���t�s�k�h�s�k ds

�M

Z t

�t�
�	�

e���t�s�k�ht �s�k ds

� C
�
	 � �t � � ��

m��
�

��
kP h

� e�T �k � kP h
� e�� �k � hm

�

� Chm
�Z T

t

e��t�s�
�
	 � �s � � ��

m��
�

�
ds

�

Z �t�
�	�




�t� s���e���t�s�
�
	 � �s � � ��

m��
�

�
ds

�

Z t

�t�
�	�

e���t�s�
�
	 � �s � � �

���m��
�

�
ds

�

� C
�
	 � �t � � ��

m��
�

��
kP h

� e�T �k � kP h
� e�� �k � hm

�



For the estimate of k�h� �t�k we use �
��� with j � 	 and obtain

k�h� �t�k � M

Z T

t

e��t�s�
�
k���ke�s�k � Ck�h�s�k

�
ds

�M

Z t




�t� s��
�

� e���t�s�
�
k���ke�s�k � Ck�h�s�k

�
ds

�Mk���K sup

�s�T

�
��s � � �k�h�s�k

�
�CKhm�

where now ��s� � �	 � s�
m��
� ��� and K is de�ned in �
�	�� as before� The proof can

now be completed in the same way as above� tu
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We may also� with essentially the same argument� prove analogous error bounds
over the semi�in�nite time interval ������ that is� bounds of the di�erence between
solutions of �
�	�� and its discrete version� For example� we have

���	�� kuh�t� � u�t�k � C
�
	 � t�

m��
�

��
kP h

�

�
uh���� u���

�
k� hm

�
� t � ������

for m � 	� 
� whenever uh�t�� u�t� � B��� �u� for t � ������ Error bounds over ���� ��
are obtained in a similar way� In fact� we have

���
�� kuh�t� � u�t�k � C
�
kP h

�

�
uh���� u���

�
k� h�

�
� t � ���� ���

since there is no initial singularity in this case�
As a �nal preparation for the proof of our main result we give a bound for the

di�erence between the projections P h
� and P��

Lemma ���� There are positive numbers h� and C such that� for h � h�� we have

k�P h
� � P��fk � Ch�kfk� f � L�


Proof� The proof is a modi�cation of a standard argument on abstract spectral
approximation that can be found for example in �
�� We let G � �A � �I��� and Rh

be the operators de�ned in ���
� and ����� and de�ne Gh � RhG� i�e��

!A�Ghf� �� � �f� �� �� � Sh � f � L��

or� equivalently� Gh � �Ah � �I���P h� It follows that G has positive eigenvalues
�i � 	���i � �� and the same eigenfunctions �i as A� Similarly� Gh has eigenvalues
�hi � 	���hi � �� and the same eigenfunctions �hi as Ah� Applying the error bound
����� for v � Gf together with ������ we obtain

���
	� k�Gh � G�fk � Ch�kfk� f � L�


Let " be a positively oriented circle in the complex plane such that f�ig
q
i��� but

no other eigenvalues of G� lie inside "� Then for small h the eigenvalues f�hi g
q
i�� of

Gh� but no others� lie inside " and we have the representations

P� �
	


�i

Z
�

�zI � G��� dz� P h
� �

	


�i

Z
�

�zI � Gh��� dz


Hence

P h
� � P� �

	


�i

Z
�

�
�zI � Gh��� � �zI � G���

�
dz

�
	


�i

Z
�

�zI � Gh����Gh � G��zI � G��� dz�

and the required bound follows by ���
	�� since clearly k�zI�Gh���k and k�zI�G���k
are bounded uniformly for z � " and small h� tu

We can now state and prove our main result�



the behavior of finite element solutions 	�	�

Theorem �� There are positive numbers ��� h� and C such that� for any h � h��
and for any �� T with � � T � the following holds� if u is a solution of ���
� with
u�t� � B���� �u� for t � ��� T �� then there is a solution uh of ���	� such that

���

� kuh�t�� u�t�kj � C
�
	 � �t � � ��

�

�

�
h��j� t � ��� T �� j � �� 	


Conversely� if uh is a solution of ���	� with uh�t� � B���� �u� for t � ��� T �� then there
is a solution u of ���
� such that ������ holds�

Proof� Let � and h� be such that the conclusions of all the previous lemmas hold�
If u�t� � B���� �u� for t � ��� T � and h � h�� then we choose

���
�� vh � P h
� u�T �� wh � P h

� u�� ��

in equation ���		�� In order to apply Lemma ��� we must check condition ���	��� By
Lemma ��
 we obtain

kvh � P h
� �uhk� � kwh � P h

� �uhk� � kP h
�

�
u�T �� �uh

�
k� � kP h

�

�
u�� �� �uh

�
k�

� C
�
ku�T �� �uhk� � ku�� �� �uhk�

�

� C
�
ku�T �� �uk� � ku�� �� �uk� � 
k�u� �uhk�

�

� 
C ��� � h�� �
�

M
�

for �� and h� su�ciently small� Here we used the boundedness of P h
i in H�� which

follows from the H� boundedness of the projections P h �by assumption� and P h
i jSh

�cf� the corresponding statement about Pi in the proof of Lemma 
�	�� Now Lemma
��� shows the existence of uh�t� � B��� �u� for t � ��� T �� and Lemma �� yields the
error bound ���

�� since P h

� �u
h�T � � u�T �� � �� P h

� �u
h�� � � u�� �� � �


Conversely� if uh�t� � B���� �u� for t � ��� T �� then we choose v � P�uh�T � and
w � P�uh�� � in equation �
�	
�� In order to apply Lemma 
�� we must check condition
�
�	��� Using the H� boundedness of Pi� we obtain

kv � P��uk� � kw � P��uk� � kP�
�
uh�T � � �u

�
k� � kP�

�
uh�� �� �u

�
k�

� C
�
kuh�T � � �uk� � kuh�� � � �uk�

�

� 
C�� �
�


M
�

for �� su�ciently small� Lemma 
�� now yields the existence of u�t� � B��� �u� for
t � ��� T �� In order to apply Lemma �� we use the identities

P h
� P� � P h

� �I � P�� � P h
� �P

h
� � P���

P h
� P� � �P h � P h

� �P� � P h�P� � P h
� �P��

and the boundedness of P h
i � P

h and Pi in L� together with Lemma ���� to get

kP h
�

�
uh�T �� u�T �

�
k � kP h

� P�
�
uh�T � � u�T �

�
k � Ch�kuh�T �� u�T �k � C��h��

and� similarly� kP h
�

�
uh�� � � u�� �

�
k � kP h

� P�
�
uh�� � � u�� �

�
k � C��h�� tu
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Remark �� If u�� � � H�
��H

� �smooth initial data� in the �rst part of the theorem�

then the factor �t� � ��
�

� is not needed in ���

�� as can be shown by the appropriate
modi�cations of Lemma �� and Lemma 
��

Remark �� The assumption that P h is bounded with respect to the H� norm
was used only in the �rst part of the previous proof� We made this assumption
only in order to streamline the formulation of our main result� In fact� if P h is not
bounded in H�� then we may choose vh � P h

� R
hu�T �� wh � P h

� R
hu�� �� instead of

���
��� and condition ���	�� is checked in the same way as before� using now the H�

boundedness of P h
i R

h� �Both P h
i and Rh are bounded in H�� Rh is bounded because

it is the orthogonal projection with respect to the inner product !A��� ��� see �����
which is equivalent to the usual inner product in H�

� � and P h
i are bounded because

the eigenfunctions �hi are orthogonal with respect to !A��� ���� Lemma �� is applicable�
since

kP h
�

�
uh�T � � u�T �

�
k � kP h

� �R
h � I�u�T �k � k�Rh � I�u�T �k � Ch�ku�T �k��

and similarly kP h
�

�
uh�� �� u�� �

�
k � Ch�ku�� �k�� if u�T �� u�� � � H�

� �H
��

Remark �� Our analysis clearly applies also in the case of a stable hyperbolic
equilibrium� i�e�� when q � � and P h

� � �� P h
� � P h� Lemma �� then gives long�time

error bounds similar to those of ���� ��� and �		��
Finally we show that the local stable and unstable manifolds of �uh converge to

their continuous counterparts� More precisely� the following result shows that Mh
S ����

�as de�ned in ���	��� lies in an O�h��neighborhood of MS��� �de�ned in �
�
��� with
respect to the L� norm for some radii �� � �� and vice versa� This rate of convergence
is the best that can be expected� because the stable manifold contains nonsmooth
elements of H�

� � cf� ����� with m � 	� The unstable manifold� on the other hand� is
smooth and the rate of convergence is O�h���

It is convenient to express the result in terms of the semidistance 	�A�B� �
supa�A infb�B ka�bk between two subsets A�B of L�� Thus 	�A�B� � � if and only if
A lies in an ��neighborhood of B in L�� It would be desirable to have error bounds in
the Hausdor� metric d�A�B� � max �supa�A infb�B ka� bk� supb�B infa�A ka� bk��
but we are not able to achieve this due to a lack of symmetry in our argument�

Theorem �� There are positive numbers ��� �� h� and C with �� � � such that�
for any h � h�� the quantities 	�MS�����Mh

S ���� and 	�Mh
S �����MS���� are bounded

by Ch� and 	�MU �����Mh
U ���� and 	�Mh

U �����MU ���� are bounded by Ch��
Proof� Let ��� � and h� be as in the proof of Theorem 	� If u� � MS����� then

there is a solution u�t� � u�t�u�� � B���� �u� of equation �
��� for t � ����� such
that u��� � u�� see �
�
��� Set wh � P h

� u�� As in the previous proof we check that
kwh�P h

� �u
hk� � ��M � and a variant of Lemma ��� with � � �� T �� shows that the

discrete version of equation �
�	�� has a solution uh�t� � B��� �u� for t � ����� with
P h
� u

h��� � wh� It follows that uh�  uh��� � Mh
S ���� see ���	��� A variant of Lemma

�� with � � �� T � �� cf� ���	��� now yields kuh�t� � u�t�k � Ch for t � ������ In
particular� using this result with t � �� we may conclude that

	�MS �����Mh
S ���� � sup

u��MS����
inf

uh
�
�Mh

S ���
kuh� � u�k � Ch


Arguing as in the second part of Theorem 	 we obtain an analogous inequality with
MS and Mh

S interchanged� which proves the statements about the stable manifolds�



the behavior of finite element solutions 	�	�

The corresponding statements about the unstable manifolds are proved in a similar
way� see ���
��� tu
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