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Abstract. We show that the use of the concept of stability with h-dependent thresholds
inroduced by Lépez-Marcos and Sanz-Serna avoids the need for a priori bounds in
convergence proofs of discretizations of nonlinear problems in partial differential

equations. It is also shown that h-dependent thresholds are indeed necessary in the
investigation of the stability of such discretizations.




1 Introduction.

In {5] and [6] Lépez-Marcos and Sanz-Serna have suggested a definition of stability
for numericai methods for nonlinear problems. Their definition is based on so called
h-dependent stability thresholds. In the present paper we show that the use of the
formalism developed in (7], [5], [6]. [4] may avoid the need for a priori estimates in
nonlinear convergence proofs. Although the ideas in this paper are very general, we
present them as applied to a particular case. Namely our treatment follows the thesis

[1] which analyzes several finite-difference and spectral schemes for the nonlinear
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where u,. u, are complex-valued functions of x and t and f is a smooth real-valued

Dirac equation

¢
(1.1) 3

function of a real variable. Systems of the form (1.1) have been used to model several
physical situations (see references in [1]); in such applications f is typically a
polynomial and therefore is not globally Lipschitz continuous.

To simpiify the exposition we consider. instead of (1.1). the single model
equation
(1.2) ut=u}:+if({u§2)u,
with u complex valued, f Cl-continuous. While it is straightforward to extend the results
presented here for (1.2) to the physically relevant system (1.1), working with (1.2) has
the advantage of allowing a notation more compact than that required for (1.1).

For simpiicity, we only consider the 1-periodic initial value problem for (1.2),
specitied by the conditions
(1:3} WX, 1y=u(x+1 1), == <x<e QeteT <o,

(1.4) u(x, 0) =q(x}, -t X €
with g a given 1-pericdic function. (For nonperiodic boundary condition see [1].) We
assume throughout that (1.2)-(1.4) has a unique smooth solution u.

In section 2 we present a numerical method for (1.2)-(1.4) and recall the
standard technique for proving its convergence, underlining the need for a priori
estimates. In section 3, we briefly outline the general formalism of Lépez-Marcos and
Sanz-Serna and show how the main result in Ldpez-Marcos [4] (see also [5], [6]) can

be applied to eliminate several steps from standard convergence proofs.
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The formalism in [5]. 6], [4] is built around a notion of stabilty with h-dependent
thresholds. The idea of stabilty thresholds, useful as it is, does not appear to be well
known. The final section 4 takes up this issue and proves that h-dependent stability
thresholds are indeed necessary when dealing with discretizations of nonlinear partial

differential equations.

2 Numericalmethod and standard analysis.

We introduce a uniform grid % = hj=..-2-1012 .. h=1/J, Janinteger, and

the time-levels t, =nk,n=0,1,..., N; N =[T/k]; k = ch, c a fixed positive number. The
equation (1.2) is discretized as follows
(2.1) (/UM -0y = (17 (40U = Uy )+ [1/ (U - U™
+ g(u/z)(uinﬂ sUPY =120 n=01, N,
where, by periodicity, Ugh = UM UM =UMn=01 .., N, and g is the mapping
defineaby giv) =if(lv ]z)v, ve €. Other finite-difference and speétral methods for (1.2)
have been studied in [1], but (2.1) suffices to illustrate the points we want to make.
If we consider the vectors UM =[U, U, . Ul e @, n=01, ., N, then
the equations (2.1) take the form
(2.2a) (/KB -UN) =Ly [(1/2)(UM 1+ UP )]+ G(1/2) (UM T+ UM
/ n=1,2\,...,N-17;

o

where Ly is a JxJ, skew-symmetric matrix and Gis the TY-valued mapping defined by

G(V)= {g(Vi), oV gV T iV =[Vy, Vy o VyJTe T The recursion (2.2a) is
supplemented by an initial condition
(2.2b) U=q,
with gy, @ given approximation to [ g(x,), q(Xa), ... AX) .

Now let VO V! VN and W8 W' ___ WN be two sequences of J-dimensional
complex vectors. When these vectors are substituted in the relations (2.2) that define

the numerical method, they originate residuals F", G" as follows
(2.3) N = (1/K) (W 1= W0 ) = L [(1/72)YM e W0 )] G(1/2)(V T+ VM),
n=01,.., N1,
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(2.4) Gl = (1/k(WMT-wWny = L, [(1 /2WT L WO+ G((1/2)(W e W)

n=01, .., N1,
GD = WD - G,
The stabiiity question [7] is that of bounding the norms of the vectors V' - WM in

terms of the norms of the vectors FM - G, uniformly in h, k. Here we employ the
standard L2-norm

i
R
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Of course, the main application of the idea of stability lies in the proof of
convergence. There the vectors VI are chosen to be the numerical solutions U, n =0,
1, ... N, definedin (2.2), so that F"" = 0, and the vectors W" are taken to be the vectors
u’t of gridrestriction of the theoretical solution, u™ = {u(x(, 1), u(x. t,), ..., U(x) t,) ]T,
n=0 1 ... N, a choice which entails that the coresponding residuals G" are vectors
containing the truncation errors. Thus the notion of stability makes it possible to bound
the errors || UM-u™ || in terms of the truncation errors. For simplicity, round-off errors
are not taken into account in this paper. (In the presence of round-off [7] the computed
vectors UM do not satisfy (2.2) exactly and accordingly they originate nonzero residuals
F" which would feature in the bound for fun-u)

Let us return to the stabilty question, where VN and W1 are not necessarily
equal to U™ and u™. To prove stability. the standard approach in evolutionary problems
starts by subtracting (2.4) from (2.3) to arrive at

(2.5) [1-(k/2)L, JEM™ = [ 1+ (k/2)L, JEN + K [FP*1- G
+k[ G172V VM) - G1/2(WM T+ W) |

(2.6) E0=FU-GO,
where | denotes the JxJ identity matrix and we have used the abbreviation
EN=V"-WNn=01 . N Sincel, is skew-symmetric

1[(!-(k,f'2)Lh)"||g1, ”(I-(k/2)Lh)“(l+(k/2)Lh)||=1,

and, on taking norms in (2.5), we conclude
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(2.7) FEM™ < | EN ||+ ki F*1-GM* 1)
] G172V T+ V) - G((1/72(WN+1e W) |
n=0,1,.., N1
To deal with the nonlinear term in (2.7) we would like to employ a Lipschitz
bound. However, g is not globally Lipschitz in € and therfore G is not globally Lipschitz

in € On the other hand, g has been assumed to be smooth and therefore for each
positive K. there exists a constant L = L (K) such that
lg(v) - gw) < Ljv-wl, i v, fw] <K

This implies

J
. 2 12
(2.8) 1G(V)-GW)I=( . hlgv)-gwy )
i=1
J
BV W ) = L v W
j=1
it
(2.9) PV W <K i=1,2 00
Note that the last condition holds if
IV W <KR12
but that the requirement
WYL W <K B

is not enough to guarantee (2.9).

Thus, to make some progress in (2.7), it is not possible to let V" W " be

arbitrariry in T and the attention must be restricted to values of V", W' near the

theoretical vector u”". Namely we assume that VI, W' satisfy

(2.10) VP -un | <RhM2 JfWN-un || <RhY2 n=0,1.. N,

where R is an arbitrarily chosen positive constant. The hypothesis (2.10) guarantees

that (2.9) holds for VN WM n=0.1 . N withK=R+max{jux. ) 0<x<1,0<t<T}

Then, the use of (2.8} in{2.7), yields

TET e NEM+KIFT -G ek L2 (HE™ T+ I E D,

n=0,1,...,N-1,

wn
'
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(1= (kL/2)) | EM T < (1 + (kL/2) [ ER L+ K FT*T- @y,

n=0,1 N-1.

it we now restrict the attention to values of k such that kL < 1, so that
(1-(kL/2))7 W1+ (KL/2)) < exp(3KL/2),
then a simple induction argument shows that
N
@11)  max [V -W<S (IF’-G 1+ 2 KIFT-G)
6sns N n=i
with
(2.12) S = exp(3LT/2).
To sum up we have proved
Proposition (Stabilty). Given R > 0 and vectors VI, W n=0, 1, .., N, satisfying (2.10),

suppose that kL < 1, where L is the Lipschitz constant of g in the disk with centre at 0
andradius R + || u ||.. Then (2.11) holds with S given by (2.12).

Taking up the issue of convergence, it is clear that the proposition together with
the consistence of the scheme do not directly imply convergence [6]. In fact, before we
can use the bound (2.11) with the numerical solution playing the role of V and the
thoretical solution playing the role of W. we must check:

1y That the numerical solutions exist at all, i.e. that, at least for k small, the
recursion (2.2) defines a sequence of vectors UN.n=0.1, .., N.

(i) That the vectors U™ satisfy the hypothesis of the proposition, namely that the
following @ priori bound holds
(2.13) fUN-un <R n=01...N
for a suitable constant R > 0.

Thus, generally speaking, standard convergence proofs of nonlinear
algorithms for steady or evolutionary problems consist of the following steps:

1) Proof of consistency. This bounds the residual originated in the discrete
equations by the theoretical solution. |

2) Proof of a stability proposition like the one above. This bound the difference
between two elements V and W in the neighbourhood of the theoretical solution in
terms of the difference between the residuals they originate in the discrete equations.

(Ohen this step is only camied out for the particular choice where V and W are
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respectively the numerical and theoretical solutions. )

3) Proof of the existence of the discrete solution.

4) Proof of an a priori bound which guerantees that the numerical solution is
not far from the theoretical solution and makes it possible to take advantage of the local
properties of the nonlinear terms in the neighbourhood of the theoretical solution.

In many cases the proofs of the steps 3) and 4) turn out to be more involved
than the proof of the stability bound itself. We are going to show next that often steps 3)
and 4} above are not really necessary.

In fact we are going to describe a formalism developed by Lépez-Marcos and
Sanz-Serna (7], [5], [6], [4] where the checking of 1) and 2) often implies the
convergence. The formalism will be presented in an abstract, general way, but we shall

simultaneously outline its application to the scheme (2.2).

3. A general fommalism.

in the formalism all the relations defining a numerical scheme are rewriten in the

abstrac form

(3.1) by [ Uy)= 0,

where (/, collects all numerical results and @, is a mapping with domain Dy, © X, and
values in Y, with X, and Y}, normed spaces such that
(32)  dmXy=dim Yy <= |
| The parameter h takes values in a set Hwith infH = 0.
Example. For the scheme (2.2)
Uy =[UOT UTT,  UNT T & (@I !

and @, is given by

' 0
A v'-q,
KTV V- Ly e VO - G+ V)

Ko™ v - L™ v - Gy

N* VN-‘I))

B
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Thus (3.1) represents the set of relations (2.2). The normed space Xy, is (CHN+H

with the norm

(3.3) 14 b, = maxgn 1V L #y = viT viT  yNTpT

and Y}, is the space (T N*! with the norm

N L e L PN [

in (3.3), (3.4) || . || denote the LZnorm in €. The condition (3.2) is trivially satisfied.
Here the domain Dy is the whole of Xy, but situations where D, is smaller than X,
would arise if the nonlinear function g in (2.1) were not defined in the whole of €. The
parameter h ranges the set H of numbers of the form 1/J, J a positive integer and k is

not viewed as an indepedent parameter but as the function of h given by k = ch.03
The abstract discretization (3.1) is said to be consistent if 1Dy Uh)”Yr—_» 0 as
h— 0. where ), = Dy, is a suitable representation of the theoretical solution (say a grid

restriction or a projection).

Example. For the scheme (2.2), the standard Taylor expansions show that

[Py c/h)nvr = O(hz)‘ as h — 0, provided that the initial approximations gy, satisfy

(3.9) Nqy-ull=0m%, h-—o00 N

We say that the discretization (3.1} is stable if there existhy > 0 and S > 0, and
values By, O <Ry = == suchthath < hy, ¥, We X, || V- u, !}}(hs Ry 1 #- w, H;{hs‘ Rp.
imply that
B8) ¥ Wl = Sl -0 )

The constant S is the stability constant and the values R are called the

stability threshclds.

Example. In the case of the scheme (2.2), the choices of norms in (3.3)<(3.4) and the
definition of F™ and G" in (2.3)-(2.4) imply that the stability bound (3.6) is identical with
(2.11). Therefore the proposition in the previous section shows the stability of (2.2) with



hg =(cLy! Ry =Rh"2 and S given in (2.12).00

The key result of the formalism is the following theorem [4], [5], which is based
on a deep result due to Stetter ([9], Lemma 1.2.1):

Theorem. Assume that : (i) (3.1) is stable with thresholds Ry (il) The mapping D, is
defined and continuos in the ball By, Ry) with centre at 4y, andradius Ry,. (iii) (3.1) is
consistent and

(37) ”fl’h( Uh)”\"h = O(Rh), h— 0.

Then, for h sufficiently small, the equation (3.1) has a unique solution ¢}, in the ball

B{ ¢y, Ry) and

IRZ iixh= O] Py #p) iiYh jon— 0
Example. For (2.2). under the condition (3.5). the hypotheses of the theorem cleary
hold, since in (3.7), Ry, = Rh''2 and [0, aplly, = O(h?). Therefore we conclude that, for

nosmall, the squations (2.2a) posses solutions U™ n = 1. 2. ... N, and that those
solutions are locally unique. Furthermore
. o T g
maxg o ifUM-u = Othe).
Thus the application of the abstract theorem above has made it possible to pf{f')ve the
convergence of (2.2) without a separate investigation of the existence of discrete

solutions and without any need for a priori bounds. i

Remarks. 1) The formalism above is quite general and has been applied to finite
differences, finite efements and spectral methods: boundary-value, initial-value, and
initial-boundary-value problems [5], [6], [4], [1].

2) An appealing feature of the definition of stability employed here is that, with
respect to this definition, a smooth, nonlinear discretization is stable if and only if its
linearization around the theoretical solution is a stable (linear) discretization [6]. This
result makes it possible to investigate the stability of nonlinear algorithms by using
linear techniques.

3) Consider the case where the discrete equations take the form of a linear

recurrence



Ul given

U™ =ChUN n=01, ... [T/h]=N.
where the elements U™ belong to a linear space By, and C(h) is a linear mapping in By,
With the choice of norms in (3.3)-(3.4), where now Il . || represents the norm in By a
necessary and sufficient condition for stability as defined here [7], [5]. [8] is given by the
familiar requirement

sup { Il :heH nha T <o
Thus, the notion of stability employed here contains as a particular case the celebrated
definition introduced by Lax.

Note that this remark also shows the relevance of the norms (3.3)-(3.4) used in

our analysis of (2.2).

4 hrdepent stability thresholds.

The main feature of the definition of stability used in this paper is the presence of
h-dependent stability thresholds. Many authors define stability without resorting to
threshoids, i.e. they demand that (3.6) be verified for arbitrary ¥, # in Xy, (h small).
Such definitions without thresholds, are utterly unsuitable for the investigation of most
nonlinear situations [6), [4].

Stetter [9] and Keller [3] have given definitions of stability with thresholds, but in
their theories the thresholds are not allowed to depend on h. Guo Ben-Yu [2] uses a
definition with h-depéhdent thresholds which is different from the concept employed in
this paper in that in his theory the threshold condition is imposed on the residuals #
and & rather that on the elements ¥and W. A comparison between these definition of
stability has been presented in [5], |4].

Kefler's definition is identical to that introduced by Lépez-Marcos and
Sanz-Serna [5], [6]. [4] and given in section 3, except for the fact that Keller demands

that the thresholds Ry, be independent of h. In this section we are going to prove that

the scheme (2.2), which we have shown to be convergent, is not stable in the sense of
Keller, thus implying that the introduction of h-dependent thresholds is indeed
necessary.

Itis enough to consider the particular case where in (1.2), i(s) = s2. The method
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of characteristics reveals that to each 1-periodic initial datum q there corresponds a
unique solution of (1.2)-(1.4) which we denote by Eq. Explicity

Eqlx. 1) = exp(i jqix+t ) tigix=t)
Note that the evolution in time consists of a displacement along the characteristics

along with a complex rotation with frecuency |qx+t ){*. Cleary Eqis a C3 function of x
and tif q e C% and then the results of the previous section imply that the scheme (2.2)
converges at a rate O(h?), provided that q = C3. We argue ad_absurdum and suppose

that (2.2) is Keller stable in the particular case q = 0 (u = 0). Then, by definition , there
exists constants R and S such that, for h small, || VI'|| <R, [|WN||<R,n=01,. N,

imply (2.11). By convergence, it is easy to see, that if p, ¢ are C3-continous, 1-periodic

initial data, then
(4.1 Ipli<R [joill<R imply maxg_y THEPC, t)-Eo(., )= Slip-ol,

where the norm is the standard norm in L2(0, 1). In fact (4.1) follows from (2.1) by

setting V" and W equal to the numerical solution given by the scheme for the initial
data p and 0, and then lettingh — 0.
Now choose, for each m =1, 2 ... initial conditions Py, and o, as follows

LR (X) [ 2 m, | Gp(X) [am-1, 0sxz2t,

PpiXy=m. o (x)=m-1. [x-1/2]« Rz/(4m2),’

Py {X)= 0, (X)=0, Ocx=1, [x-1/2]>R%/(4m2) + R%/(4m?),

Py, @nd 0, indefinitly differentiable.
|- 0as

tis trivial to check that || p,_ /| < R. || 0, || < R. Furthermore || P~ O

1! l (1] l
m - 0, because the support of p, - 0, shrinks with increasing m and, in that support
Py - Oy, 18. essentially, 1. Therfore, by (4.1)

(4.2) maxg . THEPL(- t)-Eo (.. ))I-0, m-0

On the other hand the complex rotation experienced by Py in the time-evolution is

faster than that experienced by Cn and, accordingly, the phases of Ep. and Eg_,



which coincide at time t = 0. later become opposite to each other. This happens at time

b= 1/ (mY-(m-1)% which is clearly < T for m large.

Then

EPL(- ) B0 (. )
J!”?'ils B2 Jam? | exp(im4trn)m - exp(i{m-1 )4tm)(m-1) |2 dx
= (R%2) ((4m? - 4m +1)im?) > R,
On comparing the last relation with (4.2) we obtain the sought contradition.
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