ERRING AND BEING CONSERVATIVE
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1 Introduction

The classical analysis of numerical methods for time-dependent, ordinary or partial differ-
ential equations is based on the ideas of stability, consistency and convergence. Roughly
speaking, consistency means small local errors and stability means that errors do not build
up catastrophically. Together, consistency and stability yield convergence: small (global)
errors. However it is clear that there are useful theoretical properties of a method beyond
its consistency, stability and convergence. Here we are interested in conserved quantities:
the differential equations being integrated may possess one or several quantities (mass,
energy, etc.) that are conserved in the true evolution and it is reasonable to demand that
the numerical scheme also preserves those quantities. Several reasons are usually invoked
for using schemes with such conservation properties. In a recent paper 6], C.W. Gear
writes “In some cases, failure to maintain certain invariants leads to physically impossible
solutions”. In other cases conservation quantities are deemed important to avoid spuri-
ous blow-up of the numerical solution. In a classical paper [1], Arakawa writes “If we
can find a finite difference scheme which has constraints analogous to the integral con-
straints of the differential form, the solution will not show the false ‘noodling’, followed
by computational instability”.

Since, in general, a quantitatively accurate solution cannot be unphysical, the pre-
ceding and similar arguments in favour of conservative schemes only apply to long-time
integrations. Here the term long-time refers to integrations on time intervals 0 < t < tmar
that are so long, relatively to the step-size At being used, that errors become large and
the numerical solutions deviate significantly from the theoretical solutions. Therefore the
preceding arguments seem to imply that while errors are small conservation properties
are not too important; they become important when t,,,, is so large that the integration
goes very wrong quantitatively. In the latter, long-time regime, conservative methods
are quantitatively wrong but qualitatively acceptable, while nonconservative numerical
solutions may be unacceptable from both the quantitative and the qualitative viewpoints.

However such an assessment of the merits of conservative schemes is too severe. In
actual fact, in many cases, conservative schemes have better error propagation mecha-
nisms that render them superior from a quantitative point of view and they should be
preferred even for computations where the numerical solution remains close to the theo-
retical solution. An instance is presented in [3]. It is shown there that, when integrating
the two-body problem with some conservative schemes, the leading term of the global
error grows linearly with ¢, while for ‘general’ schemes the growth is quadratic. This
makes conservative methods more efficient than general methods when accurate solutions



are needed.

In the present paper we use the Korteweg-de Vries (KdV) equation as a model case.
Only soliton solutions are considered, but this particular solution is particularly relevant
because other solutions asymptotically give rise to solitons. After presenting the differen-
tial equation (Section 2) and the numerical methods considered (Section 3), we describe
the behaviour of the numerical solutions by means of soliton perturbation theory (Section
4). It turns out that schemes that preserve the integrals of the solution and the solution
squared behave much better than ‘general’ schemes. Numerical illustrations are presented
in Section 5. In the final Section 6 we consider the same issue by using functional analytic
techniques. It is shown rigoroursly that, for conservative schemes, the leading term of
the global error consists of an error in the soliton phase, plus errors that are uniformly
bounded for all positive times.

The main observation in the paper is that, if we look at the local error of a numerical
method as a vector in a suitable phase space, then conservation properties imply con-
straints for the direction of the local error. When local errors build up to give rise to the
global error, their directions are not irrelevant: there are harmful directions that lead to
faster error accumulation. In many instances, the local error of a conservative scheme has
a direction that renders it relatively harmless and this gives the scheme an advantage.
These features are not captured by standard convergence analyses, which just take into
account the size of the local error.

2 The Korteweg-de Vries equation

We write the KdV equation in the form
Ut — 6UUy + Uzps =0, ~c0<T <00, t>0. (2.1)

The symbol ®;, t > 0, will denote the t-flow of the equation: if up = up(z) is a function
of the spatial variable z, then ®,(uo) is the function of z given by u(:,t), where u(,-) is
the solution of (2.1) with initial condition u(z,0) = uo(z), —00 < T < 00.

Among the many remarkable properties of (2.1) we focus on two: the existence of
solitons and the existence of conservation laws.

A function ¢(£), € = z — ct provides a solution of (2.1) if (' = d/df)

_c¢l_6¢¢l+¢”l=0,

or, if ¢ and its derivatives vanish at oo,

—cp—3¢° +¢" =0. (2.2)

After an elementary integration of this second-order ordinary differential equation, it is
found that for ¢ > 0 and real d, the function

86 c,d) = ~Z sean? Yo(¢ 4 0, 23)
provides, through the recipe

u(z,t) = ¢(z — ctjc, d), | (2.4)



a soliton (solitary travelling wave solution) of (2.1) moving at velocity ¢ and initially
located at £ = —d. Obviously, varying the value of d results in a translation of (2.4) along
the z-axis. Note that the amplitude or depth of (2.3) is —c/2; thus deeper solitons travel
faster than shallower solitons.

We now turn our attention to conservation laws for (2.1). There is an infinite number
of these, but we only need the first two. For smooth solutions of (2.1) the following
quantities do not vary with ¢:

L(w) = /::u(a:,t)dx, (2.5)
Lu) = /_oo u®(z,t) dz. (2.6)

3 Numerical methods

We consider semidiscrete (discrete ¢, continuous z) numerical methods for (2.1). Fully
discrete and continuous t, discrete z algorithms may also be treated by the techniques in
this paper; for brevity they are not included. If At denotes the time step and U™ is the
numerical solution at time level t, = nAt, then we write the (one-step) method in the
symbolic form

U™ = ¥, (U™). (3.1)
The local error (at a function ug = ue(z)) is, by definition,
Lat(uo) = Yar(uo) — Pas(uo)- (3.2)

If p denotes the order of the method, then La:(up) = O(AtP*!) for suitably smooth ue.
We also assume the existence, for smooth ug, of an asymptotic expansion

Lai(uo) = AP, (o) + o( AtPHY), (3.3)

where £, is an operator independent of At and involving differentiation with respect to
z. This requirement is fulfilled for all methods of practical interest.
If I is a conserved quantity of (2.1), then ¥, conserves exactly I if, for all At and o,

I(Vai(uo)) = I(uo).

From here and I(®a:(uo)) = I(uo), it follows, via Taylor expansion, that

0 = I(Wac(uo)) — I(Par(uo)) = AL (pea (uo0)) + o(AEPTY),

where I, is the first variation of I evaluated at uo and acting on £,41(uo). Hence

Ly(oia(u0)) = 0. (3.4)

For instance, for the functional I, in (2.6)

I'(up + ev) = I(ug) + e/_: 2uo(z)v(z) dx + 0o(€),



so that o
L, (v) = /_oo 2uo(z)v(z) dz

and (3.4) means that for methods that conserve I exactly

Vuo, [ 2uotyia(uo) dz = 0. (3.5)

As pointed out in the introduction it is useful to think of this as an orthogonality relation
between £, (uo) and uq.
For I, in (2.5) obviously I, = I and conservation implies

Voo, [ bpii(uo)dz=0. (3.6)

This relation implies geometrically that £5+1(uo) is contained in the hyperplane of func-
tions with vanishing integral.

It is clear that (3.4) holds not only for methods that conserve I exactly, but for all
methods for which

I(Par(uo)) — I(uo) = o(AtPH). 3.7)
In what follows, it should be understood that the properties that we prove by using

(3.4) for methods that exactly conserve I also hold for methods that satisfy the weaker
requirement (3.7).

4 Perturbation theory

Following the well-known methodology of modified equations [14], [7], we now introduce
the (modified) equation

The flow &4, of this equation differs from the method mapping ¥,; in terms o(AtPt1);
the right hand side of (4.1) counterbalances the leading term of the difference ¥, — ®a,.
Since ® and ¥ coincide to higher order than & and ¥, it is expected that solutions of (4.1)
describe the behaviour of the numerical solution U with higher accuracy than solutions
of the original KdV equation (2.1) being integrated.

Perturbation theory [10], [11] can be used to describe the solution of (4.1) when the
initial condition is a soliton profile #(z;c,d). It turns out that, to leading order in the
perturbation parameter At?, the modified solution is of the form

o(z,t) + w(z,t) (4.2)
where w is a function to be discussed later and

0(2,t) = $lx — u(t); 4r7(t), d) = —263(2) sech? w(t) z — p(t) + d),



with x and u given by the differential equations
de  M(k)AtP

i ORI (4.3)
du N(xk)At?
E = 452 - T, (44)

with initial conditions x(0) = 1/c/2, u(0) = 0. In turn, M, N in (4.3)-(4.4) are functions
of k given by

M) = [ fpn(d(z a6, 0) d(z;462,0) ds,

N(k) = /_: £py1(p(z; 452, 0)) [m: sech? kz 4 tanh «kz + tanh? m:] dzx.

Note that o in (4.2) has, for each fixed value of ¢, the shape of the soliton of depth —2k2(t).
For the unperturbed problem with At = 0, (4.3) shows that —2x? remains equal to its
initial value —c/2. Furthermore, in the unperturbed case, du/dt = ¢, u(t) = ct, so that o
in (4.2) reproduces the soliton solution ¢(z — ct; c,d). When the perturbation is present,
the perturbed soliton depth —2x? evolves according to (4.3) and furthermore the phase
velocity du/dt also undergoes changes.

For a scheme that satisfies (3.5), M = 0 and the depth of o does not vary with t.
Furthermore, from (4.4) we see that the phase velocity of ¢ is of the form ¢+ mAtP, with
m = —N(4/c/2)/(2¢c), a constant. Hence, for schemes that conserve I, exactly, the o
contribution to (4.2) is a soliton of the correct depth travelling at a perturbed, constant
velocity.

On the other hand when (3.5) does not hold, then, in general, M # 0, and solving the
equations (4.3)-(4.4) to leading order in At, we find that the perturbed soliton depth is

given by /e
25y c  M(\c/2)AtP 2p
—2k%(t) = — (§ + Tt) + O(At*),

with a linear variation with t at leading order. Substitution in (4.4) reveals that then
the perturbed phase velocity differs from the unperturbed ¢ in terms tAt?, which in turn
implies that the phase z — u(t) in (4.2) differs from the unperturbed = — ct in terms
t2At. Thus, in the ‘general’ case and to leading order in At, depth errors grow linearly
with t and phase errors grow quadratically with t. This is to be compared with the case of
conserved I, where there is no depth error and phase errors grow linearly.

Note that in the perturbation formulae, the direction of £,4; is important; while in
conventional error analysis only the size of the local error is taken into account.

The function w in (4.2) has not been discussed so far. This is also O(At?) and
describes, on the one hand, the change in the soliton shape due to the perturbation and,
on the other, a tail induced by the perturbation. Since the tail gets in general longer and
longer as t increases (see the numerical experiments in the next section), w grows with ¢.
However, perturbation theory shows that there is no tail formation when

/_ " 401(6(z; 4K2,0)) tanh? kz dz = 0. (4.5)



We now observe that in view of the relation tanh?z = 1 — sech? 2, (4.5) holds provided
that M =0 and

[ 0@ 42,0) ds =0,

i.e. if the numerical method exactly preserves I 1 and I,. In this case, w merely represents
an O(AtP) distortion in the soliton shape.

5 Numerical experiments

We first consider the standard backward Euler rule. For an equation du/dt = A(u) this
is given by
U™ — U™ = AtA(U™).

It is well known that the leading term of the truncation error for this rule is (1/2)At?uy,.
After replacing time derivatives by z-derivatives, we find that (3.3) holds with p = 1 and

by (ug) = 0, {18u§6z.u0 — 6uo02ug — 98,u00%ug + %6211,0] )

To implement the method, we introduce a computational domain —-20 < z < 20
and replace 8; by its standard pseudospectral approximation on a grid consisting of 128
equally spaced points. The errors introduced by this spatial discretization are negligible
when compared with the time integration errors. For implementation details see [4].

The initial condition is chosen to be #(x;4,10), i.e. we are dealing with a soliton of
velocity ¢ = 4 (depth —2) initially located at z = —10. The integration is carried out for
0 <t < tmaz = 6, so that the soliton travels a distance of 24 units.

For the dissipative backward Euler rule I is not conserved. Actually M < 0, and
perturbation theory predicts a decrease in the soliton depth as t increases. Furthermore
(4.5) does not hold and a tail is expected.

Fig. 5.1 shows the solution at t,,,, when At = 1 /160. The continuous line depicts
the true position of the soliton ¢ and the crosses give the numerical solution U. It is
clear that, in agreement with (4.2) the computed solution consists of a soliton profile plus
a tail. The dotted line is the modified soliton o computed by the the formulae (4.3)-
(4.4): the agreement with the numerical solution is excellent. This shows both the ability
of the modified equation to approximate the numerical solution and the success of the
perturbation theory in describing the behaviour of the solutions of the modified equation
(4.1).

Fig. 5.2 gives, for At = 1/160,1/320,1/640 the maximum norm of the error u(-,tn) —
U™ as a function of . While the errors are not too large, say below 0.6, they grow
quadratically, as predicted by the perturbation theory. When the phase of the soliton is
completely wrong, so that the computed and true soliton do not overlap, the maximum
norm of the error is 2. Thus as t — oo the errors saturate.

We consider next the nondissipative implicit midpoint rule (p = 2)

U U = AtA (%[U" + U"+l]) ,
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Figure 5.1: True soliton (solid line), modified soliton o (dotted line) and numerical solution
(crosses) for the backward Euler rule, t = 6, At = 1/160
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Figure 5.2: Maximum norm of the error as a function of time for the backward Euler rule,
At =1/160,1/320,1/640
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Figure 5.3: Maximum norm of the error as a function of time for the midpoint rule,
At =1/40,1/80,1/160
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function of time for the midpoint rule, At = 1/40,1 /80,1/160



Table 5.1: Midpoint rule errors with respect to the true solution u and modified soliton o

jun - U tn)lloo ju” — o (s tn)lloo

At th=3 | tn=6 | t,=3 [ t,=6
1/40 | 4.46E-2 | 8.98E-2 | 8.60E-4 7.22E-4
1/80 | 1.12E-2 | 2.27E-2 | 2.39E-4 2.22E-4
1/160 | 2.79E-3 | 5.69E-3 6.67E-5 | 5.68E-5

which conserves linear and quadratic invariants [12], [13] and in particular I, and I,.
Perturbation theory predicts no tail formation, correct depth and linear growth of phase
errors. Experiments (not all of them are shown here) confirm these expectations. Fig. 5.3
gives the maximum norm of the error as a function of ¢ when At = 1/40,1/80,1/160:
errors clearly grow linearly with ¢. For the same runs, we have given in Fig. 5.4, the
maximum norm of the difference between the computed U™ and the perturbed soliton o
in (4.2). Table 5.1 provides at t = 3 and ¢t = 6 the maximum norm of the (true) error
U™ - ¢(- ~ ctp;c,d) with respect the true solution and of the error " — o(-,t,) with
respect the perturbed soliton. In the table we see that the errors with respect to o are
much smaller than the true errors with respect to ¢. In other words, the bulk of the
true error consists of the phase error that is removed by comparing with the relocated
0 = ¢(x — p(tn); c, d) rather than with the KdV solution ¢(z — ct; ¢, d). However the error
with respect to o still shows an O(At?) behaviour: this is due to the w contribution to
(4.2). On the other hand note, both in the table and in Fig. 9.4, that errors with respect
to o do not grow with ¢: with no tail formation w only accounts for a distortion in soliton
shape and does not experiment secular growth. To sum up, in this case, experiments show
that the true error consists of a phase error, with a tAf2 behaviour, plus further O(A¢2)
errors that remain bounded as ¢ increases.

For another application of soliton perturbation theory to numerical methods see [9].

Of course, the aim of the experiments above was not to show that the dissipative, first-
order backward Euler rule is not suitable for the problem at hand. This fact is universally
appreciated. Our goal was to point out that methods that behave differently with respect
to conservation laws also possess different error propagation mechanisms.

6 Analytic results

6.1 Preliminaries

The results mentioned so far are not rigorous. To begin with, asymptotic expansions
have been used, without paying attention to the norms in which they may be valid. The
combinations of values of ¢ and At for which the perturbation formulae are valid have
not been spelled out. Furthermore, even though the technique of modified equations may
be used in some cases in a rigourous way [7], this would require, if at all feasible, a
detailed mathematical analysis of the (method dependent) modified equation (4.1). In
this section we present a different, but related approach. The key idea is to note that for
most practical methods the global error U™ — u(-,t,) possesses an asymptotic expansion,



whose leading term is a solution of a variational equation, see e.g. [8]. We therefore start
by studying the variational equation of the KdV equation.
We use the standard Sobolev spaces H*, k an integer, with norm || - [|&.

6.2 The homogeneous variational equation around a soliton
solution

In what follows, we fix a velocity co > 0 and consider the moving coordinates X = z — cot,
T =t, in which the KdV equation becomes

ur — coux — 6uux + uxxx = 0. (6.1)

In the new variables the soliton (2.4) with velocity ¢o and d = 0 becomes a T-independent
(equilibrium) solution ¥(X) := ¢(X; co, 0) of (6.1). Similarly, the soliton of velocity ¢ # co
of (2.1) becomes a soliton of velocity ¢ — co of (6.1).

We study perturbations of the equilibrium . If e(X,0) is a small perturbation,
then, to the first order of small quantities, the solution of (6.1) whith initial condition
Y(X)+e(X,0) is ¥(X) +e(X,T), where e(X, T) satisfies the (linear) variational equation

er — coex — 6Y(X)ex — 6¢'(X)e +exxx =0, (6.2)

or

€r = 5)—(—L26,

with the second-order operator L, given by

Lye = (co + 6%)e — exx. (6.3)

Alternatively, the same variational equation may be obtained by first linearizing in (2.1)
and then changing variables (z,t) — (X, T).
Let us find some particular solutions of (6.2). We start from the easily proved relations

Lo/ =0 (6.4)

and
L2X = —'w’ (65)
where x(X) = ¢c(X; ,0).

From (6.4) we see that ¢/(X) is an equilibrium (i.e. T-independent) solution of (6.2).
This is readily interpreted: ¥(X) + /(X)) coincides except for o(e) terms with ¥/(X +¢),
i.e. with the soliton of velocity 0 located at —e¢, a solution of (6.1). Hence ey'(X) is a
solution of the variational equation.

On the other hand, by using (6.5)-(6.4), it is a trivial task to prove that,

x(X) - T¢/(X) (6.6)

also provides a solution of (6.2). The interpretation of this fact is as follows: Consider
the initial condition (X)) + ex(X) for (6.1). This is, except for order o(e) terms, the



initial profile of the soliton of velocity € located at the origin. At time T > 0, this has
travelled a distance €T so that the solution of (6.1) with initial condition ¥(X) + ex(X)
is Y(X — €T') + ex(X — €T) + o(¢). Hence

e(xX(X) — TY/ (X)) = [Y(X — €T) + ex(X — €T)] — %(X) + o(e)

has to satisfy the variational equation (6.2).

6.3 Stability of the homogeneous variational equation

The expression (6.6) shows that the variational equation (6.2) possesses solutions that
grow unboundedly with T'. This corresponds to the fact that 1 is not a Lyapunov-stable
equilibrium of (6.1): if the initial profile is changed from % into that of a soliton with a
small velocity the difference between 1 and the new soliton solution grows unboundedly.
However, Benjamin [2] proved that 1 is stable in the sense that if u(X, T) is a solution of
(6.1) with u(X,0) — ¥(X) small, then, for T > 0, a suitable translation w(X — w(T), T)
of (X, T) remains close to (X) (uniformly in T). Thus the Lyapunov instability only
manifests itself as a phase error. The techniques used by Benjamin can be applied to
prove the following result [5].

Theorem 6.1 There ezists a constant C > 0 such that if e(X, T) is a solution of (6.2)
then, for all T > 0,

leC,T) — (M)W ()l < Clle(-, 0l (6.7)
with w(T) = (e(-, T), ¢')/ (¥, ¥).

The theorem shows that, even though the solutions e(X,T) may grow unboundedly
with T, they only do so in the direction of 9/, cf. (6.6). This of course corresponds to
secular growth of phase errors in the KdV equation (6.1).

6.4 The nonhomogeneus variational equation

We now look at the nonhomogeneus initial-value problem

7]
er = a—XLge +s, T>0, (6.8)
e(T = 0) = 0, (6.9)

where the source s is assumed to be independent of T. The following result holds.

Theorem 6.2 Assume that the (T-independent) source term s is in L?, is the (distribu-
tional) derivative of an L? function S and satisfies

(s,9)=0. (6.10)
Then, for a constant C independent of s and T,
(e, T),¥") ,
7 3 PR AN A V4 <C , T >0. 6.
C(, ) (wl’d),) w 1-— ”s”—l > ( 11)




Proof. We first look for a T-independent solution e; of (6.8). This satisfies

0 0 0
O=er= —6-?14261 +s= gngel + -6-3(—5,

or
L261 = -S. (612)
The kernel of the operator L, mapping H 2 in L? is spanned by ¢/. Hence (Fredholm’s
alternative) (6.12) has a solution e; provided that (—S,4') = 0, a condition that follows

from (6.10). Furthermore e; is uniquely defined under the additional condition (e1,%') =0
and with e; defined in this way

lexll, < CUSlo = Clisl-s» (6.13)

with C a constant associated with Lq
We now set e; = e — e1, where ez has to solve

0
€T = a—XLzem
62(T = 0) = —€j.

By (6.7) and (6.13)

"T ) ! '
st )~ EETD ] <y < Ol
From this bound and after noticing that (e2(-,T), %) = (e(-,T),?'), we conclude
'aT ) ! !
et - T | e+ el

and a new application of (6.13) concludes the proof. O

We see that, once more, the theorem ensures that the component of e orthogonal to
4/ remains uniformly bounded for all T > 0. However the source term has to satisfy some
qualifications: to possess an antiderivative in L? and to satisfy (6.10). The solution

T2
Tx — —2—1/)'

corresponding to the source s = X reveals that when (s, %) # 0, the growth with T is not
confined to the direction of 9. (This particular solution clearly corresponds to quadratic
growth of phase errors along with linearly growing amplitude errors, as we found in our
discussion in Section 4.)

Before closing this subsection it is important to observe that if s is in L?> N L! then it
has an antiderivative in L?,

S(z) = ] ’m s(z) dz,

if and only if I;(s) = 0 (so that the integral decays as x — oo). Hence for reasonably
smooth sources s, the hypotheses of the theorem read I,(s) = 0, (5,9) = 0; these are
essentially the geometric constraints we found in Section 4. These constraints again
identify directions in phase-space that are relatively harmless.



6.5 Conclusion

We now revert to the original (z,t) variables. The nonhomogeneous variational equation
(6.8) becomes

et — 6%(z — cot)es — 63 (z — cot)e + egpy = s(z — cot), (6.14)
with s a real function of a real variable €. The bound (6.11) becomes
(C(', t)7 'l/l’) /
e(t) — ————= <Clsll_,, t>o.
(1) @) Y 1 llsll_,

where now 9/ is to be interpreted as the function 3’ (- — cot).
Assume that for a numerical method W ¢ satisfying (3.3) it holds that the global error
when integrating &é(z — cot; oy, 0) has an asymptotic expansion

U" = U(', t‘n) + Atpe(’a t'n) + R(7 t);

where R is a residual with || R(-,t)[l1 = o(At?) uniformly in bounded ¢ intervals and e is
the solution of the variational equation (6.14) with source term

s(€) = Lor1((§)).

We can conclude from Theorem 2 that the leading error term AtPe consists of a phase
error in the direction of ¢/ plus errors that are uniformly bounded for all t, provided that
the local error satisfies (lp+1(¥), %) = 0 and I1(€p+1(¥)) = 0. These conditions on the
local error are once more satisfied for methods that exactly preserve I 1 and 7.

Of course to apply rigorously the last result it is necessary to first check that the
numerical method converges in H! and has the indicated asymptotic expansion for the
global error. While this has not been done for the methods considered in the preceding
section, we strongly feel that it is feasible by using routine techniques. The verification of
the existence of such an asymptotic expansion would however take us too far away from
the main purpose of this article: to show additional evidence for the fact that numerically
preserving conservation laws not only implies better qualitative behaviour, but may also
lead to better error bounds.
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