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Modified equations for ODEs

M. P. CALVO, A. MURUA AND J. M. SANZ-SERNA

ABSTRACT. We study the method of modified equations for the analysis
of discretizations of ordinary differential equations. We show how to sys-
tematically construct modified system of any order. Some applications are
presented.

1. Introduction

Modified equations [28], [13] are a means for the analysis of numerical meth-
ods for differential equations. Modified equations are strongly related to the idea
of backward error analysis, explained in all numerical analysis textbooks. Given
a problem P with true solution S and given an approximate solution S, forward
error analysis consists of estimating the distance between S and S. Backward
error analysis consists of showing that S exactly solves a problem P which is close
to P. While backward error analysis has played a role of paramount importance
in areas like numerical linear algebra, error analysis of numerical methods for
evolutionary problems has essentially been of the forward variety (see neverthe-
less [4], [23], [10]).

However, there are many instances where forward error analysis of numerical
simulations of evolutionary problems is doomed to fail. In regimes where true
orbits of the system quickly diverge from each other, including chaotic dynamics,
any numerical method in realistic circumstances will produce an answer S very
different from the true S. Hence the outcome of forward analysis would be that
any method performs badly, a conclusion at odds with the fact that numeri-
cal simulations have been helpful in ascertaining the behaviour of the systems
involved. Similarly, classical error bounds are meaningless in long-time simu-
lations performed in order to find the qualitative behaviour of most nontrivial
dynamical systems. Therefore there is a clear need for analyses that depart from
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the classical (forward) error bounds for numerical integrators of evolutionary
problem.

An idea that has become quite prominent is that of shadowing. Originally
introduced in a dynamical systems context [2], [5], it has recently gained pop-
ularity in numerical analysis applications, see e.g. [1], (3], [8], [9], [12], [17],
(18], [19], [20], [21], [22], [26], [27]. In a shadowing approach, the numerically
computed orbit with initial value ug is compared not with the true orbit from
ug, but with the shadowing orbit, the exact orbit of the system being simulated
corresponding to a slightly perturbed ig. Typically it is shown that the distance
between the numerical and shadowing orbits is small in some sense, while the
distance between the numerical orbit and the true orbit (i.e. the classical error)
is unacceptable. The similarity with backward error analysis is evident.

In the shadowing approach, the initial condition is allowed to be changed,
while keeping the same evolutionary system. In the modified equation technique
the numerical solution is compared with a solution of a perturbed system. The
idea of modified equations has been around for some time (see e.g. [28]), mainly
in the study of dissipation and dispersion properties of numerical schemes for
partial differential equations. However it is only recently that the method has
been applied to ordinary differential equations (ODEs), specially to investigate
symplectic methods for Hamiltonian systems [24], [25], [14].

In this paper, the attention is restricted to one-step numerical methods for
initial value problems for D-dimensional systems of ODEs:

(1) H= i@, w0) =

For simplicity, we assume that the vector field f is defined in the whole of R?
and of class C*°. Of course the system in (1) may arise from the discretization
in space of a system of time-dependent partial differential equations.

Simple examples of numerical methods are Euler’s rule

(2) Unt1 = Up + hf(uy),

the implicit midpoint rule

3) gt =t + (5 (e + ),
and Runge’s second order method

(4) Unt1 = Up + hf(un + gf(un)).

Here h denotes the time step and u, is the numerical solution at time ¢, = nh.
A numerical method is consistent of order p > 1 if, for all u in R?,

(5) Y p(u) — ¢n p(u) = O(RPHY), h— 0,
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FIGURE 1. True solution u = u(t) (solid), Euler solution (stars)
and modified solution (dashes) for du/dt = u?.

where 9y, r(u) and ¢p ¢(u) respectively denote the numerical and theoretical
solutions after one step of length h taken from the initial condition u (so that
&5 is the flow of (1)). From the local error estimate (5), it follows [6], [15]
that, as h — 0, the global errors u, — u(t,) are O(hP), uniformly in bounded
time intervals 0 < ¢, < ;.42 contained in the interval of existence of the true
solution u(t) (convergence of order p). The order is 2 for (3) and (4) and only 1
for (2).

We now present a simple example of the application of the method of modified
equations. We integrate in the interval 0 < ¢t < T = 0.99 the equation du/dt =
f(u) = u? with initial condition u(0) =1 (solution u(t) = 1/(1 —t)). The solid
line in Figure 1 represents the true solution, while the stars depict the numerical
solution for Euler’s rule with h = T//16. We see that there is little agreement
between the behaviour of the numerical and theoretical solutions. Can we find
a differential equation whose solution with initial condition up = 1 behaves as
the numerically computed points? To be more precise, we try to find a modified
equation du/dt = f(u) such that, for all u,

s (u) — ¢, (w) = O(?),

i.e. such that Euler’s rule, consistent of the first order with the problem being
integrated, is consistent of the second order with the modified equation. By
going from local to global errors, the computed points u, will lie at distance
O(h?) from the solution of the modified equation with initial value uy. To find
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f we start with an ansatz f(u) = u? + hF(u), where F is a function of u to
be determined. Note that f depends on A. Expanding in powers of h the flow
¢y, 7(u), it is found that it differs from 9p f(u) = u + hu® in O(h?) terms if
F = —u?, which leads to the modified f = u? — hu3. The solution of the
modified equation is shown in Figure 1 by a dotted line. It is clear that the
numerical solution is better described by the modified equation than by the
original equation being solved. It is now possible to look for an even better f,
fo(u) = u? — hu® + h2F,(u), to have consistency of the third order and more
generally for vector fields fy(u) = u® — hud + h2Fy(u) + --- + AV "1 Fy_1(u)
leading to consistency of order N. We then say that du/dt = fy (u) is a modified
equation of order N

In §2 of this paper we show how to systematically construct modified systems
of any order for one-step methods. The formulae we present are due to Hairer
[14]; however our methodology for the derivation of those formulae is different
from and easier than that presented in the original paper. An example of the
application of modified equation techniques is given in §3.

2. Constructing modified equations

It is well known [6], [15] that (rooted) trees are an important tool in the
analysis of one-step methods. The trees with four of fewer nodes are depicted in
Figure 2. The symbol 7; denotes the only tree with one node. It is common to
denote by [r1,72,...,7™] the tree that consists of the root and m leaving edges
to which the trees 71, 72, ... | 7™ are attached. Thus in Figure 2, 72 = [11], 731 =
[11,71], T32 = [72], etc. For each tree 7, the integers p(7) and a(7) respectively
denote its order (number of nodes) and number of monotonic labellings. These
functions can be computed recursively by the formulae p(71) = a(r1) = 1 and,

for r = [r,..., 7™,

p(1) = 14p(rh)+--+p(r™),
(p(r) —1)! 1 my_ 1
a(fr) = —————oa(r)...a(r")———.
(7) p(r)!- - p(rm)! (%) ( )NI!NZ!"'
The integers p; count the number of equal trees among 7!, ..., 7™. Finally,

in connection with the system in (1), an RP-valued function F(7)(u) (elemen-
tary differential) is associated with each tree 7. The recursive definition of the
F(r)(u)sis F(m1)(u) = f(u) and for 7 = [r1,...,7™]

F(7)(w) = f™ @)(F(T) (), ..., F(r™)(u)),

where f(™ (u) represents the m-th Frechet derivative of f evaluated at u.
With these notations, the formal Taylor expansion of the flow ¢, y in powers
of h is given by
hP(T)

bnsla) =+ 3 Ssalr) P (),
TeT
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FIGURE 2. Trees of order < 4.

where T' denotes the set of all trees.

Numerical methods can be Taylor expanded in a similar way. Methods (2),
(3) and (4) are particular instances of Runge-Kutta methods. A general Runge-
Kutta method is specified by an integer s > 1 (the number of stages) and real
coeflicients a;;, b;, 4,5 = 1,...,s. Its application to (1) results in the formulae

Ui = unt+hd ayf(Uy),

Jj=1
Upt1 = un+th,f(U1)
i=1

For Euler’s rule s = 1, a;; = 0, by = 1; for the midpoint rule s = 1, a1 =1/2,
by = 1; for the method (4), s = 2, ay; = 1/2, by = 1 and the remaining
coefficients are 0. The Taylor expansion of a Runge-Kutta method is

o() s
Yh,p(u) = u+ Z Z(—T)!a(r) ('y(r) Zbi@(r)) F(7)(u),
TeT i=1

where the recursive definitions of v and ®; are y(1;) = 1, ®;(7;) =1 and

p(T)y(Th) oy (7 ™),
i(r) = Y a5, (Y. ay, 8, (7).

Jiseesdm

2

—_
5
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In view of the Taylor expansions above, Hairer and Wanner [16] introduced
the notion of a B-series. Given a real valued mapping a defined in the union of
T and the set {0}, a B-series B(a, u) is a formal power series

a(@u+ Y

T€T

hP(T)
ma(r)a(T)F(T)(u).
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Thus the true flow ¢, ; corresponds to a = 1, while for a Runge-Kutta method
a(@) =1 and

a(r) = 9(r) Y_bidi(r).

These ideas are not confined to Runge-Kutta methods. The Taylor expansion
of most one-step methods used in practice is also a B-series. In the remainder of
the section we assume that we are dealing with a method ¥n,#(u) corresponding
to a suitable B-series B(a, u), without specifying the exact nature of the method.
We suppose that the method is at least of order 1, i.e.

(6) a@) =1, a(n)=1
Our aim is to construct a formal power series f
hP(T)—1
(7) > —(—,a(f)b(T)F (7)(w)
T€T P T).

so that for each integer N > 1

Q E—fw= Y

provides a modified equation of order N.

An essential tool for our purposes is the formula for composition of B-series,
see Theorem 11.6 in [15]. If a and b are B-series coefficients with a(§) = 1 then
the composition B(b, B(a,y)) is a again a B-series B(ab,y) whose coefficients
ab(t) can be found in a systematic way from the a’s and b’s. The formulae for
the first ab(7) are

9) ab(@) = b(0),
(10) ab(Tl) = b(@)a(rl) + b(Tl),
(11) ab(ry) = b(@)a(r2) + 2b(m1)a(r1) + b(rs),

(12) ab(7‘31)
(13) ab(ng)

b(0)a(7s1) + 3b(11)a(1)? + 3b(72)a(r) + b(7s1),
b(0)a(732) + 3b(11)a(72) + 3b(72)a(T) + b(7s2).

1

We introduce a real parameter A and write the flow of the vector field in (7)
as a B-series

he(T)

b)) =u+ ma(f)ak(f)F(T)(u).

T€T

Next we substitute this series into the equation

d -
a@j = f(¢t,f)§
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in doing so the B-series of the right hand side is computed by the formula for
composing B-series. In this way we find that the a,(7) satisfy, for each tree 7,

(14 ax(r) = (@)(n).

Furthermore at A =0, ¢, f(u) = u and hence, for each T,
(15) ao(1) = 0.

The relations (14)—(15) allow the computation of the a(7)’s in terms of the b(7)’s
when the latter are known. In our setting, the b coefficients are determined to
ensure that, for each 7, at A =1

(16) a1(7) = a(7),

to impose that, as formal power series, b, 7 and ¥y, ¢ coincide.

The relations (14)-(16) make it possible to recursively compute the b coeffi-
cients. Let us illustrate this. For 7; we obtain from (14) and (10), (d/d\)ax(m1) =
b(m), so that, according to (15), ax(m1) = Ab(r1). If we now impose (16), we
obtain the relation b(7;) = a(m1). We conclude, from the consistency assumption
(6), that b(r;) = 1, and therefore, as expected, f differs from f in O(h) terms.

If we now go through the same steps for the next tree 75, we succesively obtain

;—/\—a,\(fg) = 2b(m)ax(m1) + b(m2)
= 2Xb(11)? + b(72),
ax(m) = Ab(11)? + \b(72),
a(r) = b(r1)* +b(ra).
The last equation yields b(r2). Note that for a method of order > 2, a(m) =1,
which, in tandem with b(7;) = 1, leads to b(2) = 0 and f and f differ in O(h?)

terms.
Similarly the equations for finding b(732) and b(731) turn out to be

a(T31) = b(T1)3 + gb(Tz)b(Tl) + b(Tgl),
a(32) = b(m1)® 4 3b(72)b(1) + b(732).

From here b(731) = b(732) = 0 for methods of order > 3.
We summarize our findings in the following theorem, due to Hairer [14].

THEOREM 1. Assume that an order p, p > 1, one-step method can be formally
Taylor expanded into a B-series B(a,u). There is a unique B-series (7), differing
from f(u) in O(hP) terms, such that, for each integer N > 1, (8) provides
a modified system of order N. The coefficients b can be recursively found as
functions of the coefficients a.
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We emphasize that the formal power series (7) in general does not converge.
Lack of space prevents us from discussing further this point and the interested
reader is referred to [24] and to Chapter 10 in [25].

3. An application

We now illustrate the use of modified equations in ODEs. We consider the
pendulum system, that we write in terms of the components p and ¢ of u as

dp dg _

dt dt
This is a Hamiltonian problem [24], [25] with Hamiltonian function (energy)
H = (1/2)p* + 1 — cosq. Let (po,qo) be an initial condition with energy Ho,
0 < Hy < 2, leading to a periodic solution. In phase plane the trajectory
corresponds to the level set H = Hp; the period Tj of the solution is an increasing
function of Hy. Furthermore, we respectively denote by fo and go the vector field
f evaluated at (po,qo) and the energy gradient at (po,qo). The vectors fo and
go are mutually orthogonal by conservation of energy.

This initial value problem is integrated by a one-step method of order p with
step length h, that for simplicity we assume to be of the form h = Ty /v, with v
a positive integer. Let epr(h) be the global error u, — u(t,) after n = Mv steps,
i.e. after simulating M periods of the solution. Then it is not too difficult to
show (see [7]) that

= —sing, p.

(A7) en() = Mea(h) + 3 (M? — M) (g0, () 8oo + O(*), B0,

where (-,-) means inner product and &, denotes the derivative of the period
T with respect to the energy H evaluated at the initial condition. Therefore,
ignoring the O(h%") remainder, the error eps(h) grows quadratically with M.
The leading M? growth is in the direction of fo, i.e. tangent to the solution
at the initial point, thus corresponding to a phase error. However linear error
growth with M is possible: if (go, e1(h)) = O(h?P) (i.e the error after one period
is almost orthogonal to the energy gradient), then

em(h) = Mey(h) + O(h*), h— 0.

To sum up, the way global errors build up is determined by the direction of
the error e (h). This is not suprising: if after one period the error e;(h) has
a significant component in the direction of go, then the numerical solution has
jumped in phase plane to a neighbouring trajectory corresponding to a different
(say larger) value of the energy. Thereafter, the method, when evaluating the
vector field f, picks up wrong information as to the solution period and is lead
to believe that the motion is faster than it really is. As the integration proceeds
the numerical solution keeps jumping to higher and higher energy levels and
getting unduly speeded up. This is the mechanism leading to quadratic growth
in the phase error. On the other hand, if e;(h) is essentially in the direction of
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fo, then there is no energy error: the method is basically describing the right
trajectory with a slightly distorted average velocity and errors grow linearly.
These considerations apply to all nonlinear oscillators with one degree of freedom
[7] and even to some partial differential equations [11].

We now use the method of modified equations to investigate the direction of
e1(h). We begin with the midpoint rule (3). The modified system with N = 4
is found to be

d h?

d—f = —sing+ ﬂ(sin2q — p?sing),
dq h? cos

- = — 7<-PCOsq.

a ~ P pPene

There are no O(h3) terms: the b coefficients corresponding to trees of order 4
vanish, a consequence of the symmetry of the midpoint rule [14]. The modified
system is the Hamiltonian system with Hamiltonian function

-1 h?
H= §p2 + (1 —cosq) + E(—sz cosq + cos2q — 1).

The Hamiltonian character of the modifed system is linked to the symplecticness
of the midpoint rule [24], [25], [14]. The modified solution conserves H exactly
and hence, Taylor expanding,

0=H(u(Tp)) — H(up) = (90, &(To) — uo) + O(|a(Tp) — uol?)
(18) = (9o, u(To) — uo) + O(h%).

Here g is the gradient of H at the initial point uy and we have used that
(19) WTo) = uo = a(Tp) — w(Tp) = O(h?),

due to the periodicity of the true solution and to the fact that the true and
modified vector fields differ in O(h2) terms. From (18)-(19), along with §o— gy =
O(h?), we obtain

(20) (90, @(To) — up) = O(h?),
and finally, since @ and the numerical solution differ in O(h*) terms,
(21) (90, e1(h)) = O(h*).
We take this to (17) and conclude that for the midpoint rule
em(h) = coMh®fo + O(hY), h — 0,

where ¢y is a constant depending on the initial condition, but independent of
M and h. This is illustrated in Figure 3, where the initial condition is po = 0,
go = 7/3 and h = T,/400. The dash-dot line gives the Euclidean norm of the
error as a function of M. The linear growth is clear.
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FIGURE 3. Euclidean norm of the error against time measured
in periods. The dash-dot line corresponds to the midpoint rule
and the dash line to Runge’s method.

We next use the method (4). The modified equations with N = 3 turn out to
be

d h?
d_lt, = —sing - ﬁ(pQSinq+2sin2q),
dg _ + w cos
a p 6 pcosgq,
and for N =4 we find
d h? 3
;i_zt) = —sing— ﬂ(p2sinq+2sin2q)+%pcoszq,
d h? h3
d_(tl = p+ —é—pcosq+ 1—6(p25inq+sin2q).

The modified system of order N = 3 is not Hamiltonian but has the reversibility
property of being invariant under the change of p into —p and ¢ into —t. It has
the following invariant of motion

I p° N /q siné + (h?/3)sin2€
2(1+(h2/6)C05‘I)% 0 (1+(h2/6)cos§)% '

This quantity plays now the role played by H in the midpoint rule analysis, so
that (20) still holds. However since we are dealing with a modified system of
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-order 3 we only conclude that

(22) (g()a el(h’)) = O(h3)7
(rather than (21)), and (17) implies
eM(h) = C()]Wfoh2 + O(h?’), h—0.

To expliciy obtain the A3 term in the asymptotic expansion of e m(h) we
have to resort to the modified problem with N = 4. Now, this is a system
with negative dissipation. Straightforward differentiation reveals that along its
solutions the O(h3) quantity dI/dt remains positive for |g| < 7/2, leading to
O(h?) outward spiraling. From here we see that the inner product in (22) is
actually of size O(h3) and no better. Then

enm(h) = CoM foh® + (DoM? + EoM) foh® + FoMgoh® + O(h*), h — 0,

where Cy, Dy, Ey and Fy are real constants independent of h and M, with Cj,
Dqy and F, different from 0.

The dotted line in Figure 3 gives the actual error norm for the value h =
To/400 used before. For M large, M2h3 dominates over Mh? and what we see
is the quadratic growth of the O(h3) terms in the expansion. For M small (say
less than 20) M2h3 is negligible relatively to the leading Mh? term and we see
linear growth. We infer from the figure that for M near 160 the Mh2? and M?h3
contributions are of equal size and cancel each other.
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