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Abstract. In 1991 Rowlands proposed an effectively fourth-order, effectively two-stage, explicit
symplectic integrator based on using a Hessian–vector product to modify the force evaluation in the
leapfrog method, and evidence indicates that for modest accuracy this method is highly competitive.
Here we explore the possible existence of even more efficient fourth-order explicit symplectic inte-
grators, also based on the use of Hessian–vector products and the concept of effective order. First
it is shown that the cost of a force evaluation plus a Hessian–vector product is less than twice the
cost of the force alone for a sum of two-body interactions. Then a new method is found that is
generally better than both the method of Rowlands and that of Calvo, according to both a theoret-
ical measure of the error and limited numerical experiments. The basic motivation behind the new
method is quite simple: do a Hessian–vector computation only every other step, significantly cutting
costs while only marginally increasing the error. The idea of effective order means that we allow for
both the possibility of preprocessing the initial values before application of the basic method and
the possibility of postprocessing the values obtained by the basic method, but at output points only.
For some applications processing is unnecessary, but in any case processing has been shown to be
possible at low additional cost. The derivation of the new method illustrates how to simplify by the
use of H-series the determination of parameters for methods of increased effective accuracy.
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1. Introduction. There is much interest in the use of symplectic integrators for
the numerical solution of Hamiltonian systems. Evidence suggests that these integra-
tors are superior to traditional integrators for computations of low accuracy in which
it is unnecessary to resolve all the details of the solution, for example, in molecular
dynamics and galaxy simulations. For low accuracy computations, numerical methods
of fourth-order accuracy are as a general rule the most efficient (although second order
is often used because of its simplicity). A particularly efficient fourth-order symplectic
integrator has been the method of Calvo and Sanz-Serna [3], which requires four force
evaluations per step. However, a fourth-order method with fewer stages developed by
Rowlands [14] has been shown recently [10] to be equally efficient. In this paper we
explore the possible existence of even more efficient fourth-order explicit symplectic
integrators, based on the idea in Rowlands’s method (presented in section 2) of using
Hessian–vector products and the concept of effective order.
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224 M. A. LÓPEZ-MARCOS, J. M. SANZ-SERNA, AND R. D. SKEEL

Explicit symplectic methods of Runge–Kutta type of order greater than two all
have the minor drawback that some of their weights must be negative [18] and, more-
over, this must occur for both position and momentum variables [4]; these negative
weights tend to be compensated by large positive weights, yielding error terms with
somewhat larger coefficients. One possible way to circumvent this limitation is to
incorporate higher derivatives of the Hamiltonian (for example, its Hessian) into the
numerical method. Unfortunately, for general Hamiltonians and general separable
Hamiltonians, it was proved by Murua [13] that explicit methods that exploit higher
derivatives cannot be symplectic. This result does not apply, however, to the Hamil-
tonian

H(q, p) = T (p) + V (q), T (p) =
1
2
pTM−1p,(1)

for which the differential equations are

d

dt
q = Hp(q, p) = M−1p,

d

dt
p = −Hq(q, p) = −Vq(q).(2)

For example, the paper [20] mentions that Koseleff [7] gives a symplectic higher deriva-
tive method of order four that requires two modified force evaluations per step, in
which a small correction involving a Hessian–vector product is added to the force
−Vq(q). The possibilities broaden further if we relax the condition of being fourth
order to that of being effectively fourth order [2]. This means that we allow methods,
perhaps of order smaller than four, that yield fourth-order accurate results after pro-
cessing the numerical solution. A notable example is the aforementioned method of
Rowlands, in which the force in the Störmer/leapfrog/Verlet method is modified by
the addition of a Hessian–vector product to yield an effective order of four.

Section 3 shows that methods that use Hessian–vector products may be seen as the
limiting case when abscissas of methods that evaluate the force at two or three distinct
but closely spaced abscissas coalesce. Section 4 shows that for a sum of two-body
interactions the incremental cost of evaluating a Hessian–vector product once the force
has been evaluated is generally less than or equal to the cost of doing the original force
evaluation. In our theoretical and experimental comparisons we therefore count a force
evaluation together with a Hessian–vector computation as having a cost equivalent
to two force evaluations. Section 6 explores a simple generalization of Rowlands’s
method. A new method is found that, according to a theoretical measure of the error,
is significantly better than both the method of Rowlands and that of Calvo. The
basic motivation behind the new method is quite simple: perform a Hessian–vector
computation only every other time—significantly cutting costs while only marginally
increasing the error. (It is important to note here that if the error is proportional to
Eh4 for some coefficient E, then to achieve a given accuracy on a unit interval the
number of steps h−1 is proportional to E1/4 and the work required is proportional
to mE1/4, where m is the work per step, say, in number of function evaluations.)
Section 7 gives experimental results that compare the three methods and indicate the
advantages of Hessian methods.

The new method has effective order four. This means that it is fourth-order
accurate only if the numerical values produced by the formulas are appropriately
interpreted. The initial values need to be preprocessed before application of the time-
stepping scheme and the values thus obtained need to be postprocessed at desired
output points. A discussion of processing and effective order is given in [10]. Not
all errors produced by a given method may be removed by processing. For instance,
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SYMPLECTIC INTEGRATORS WITH HESSIANS 225

phase errors along a periodic orbit cannot be so removed, while errors in the shape
of the numerical computed orbit can [16]. In practice, to obtain fourth-order accu-
racy, the postprocessing requires only the formation of second-order differences of
numerical solution values [10, 17]. (The single preprocessing step may be done by
extra force evaluations.) In applications for which only statistical or qualitative in-
formation is desired one may even dispense with the processing. In particular, in
molecular dynamics and galaxy simulations initial values are known only partially, so
preprocessing makes little sense. However, postprocessing may still make sense for
some purposes, for example, monitoring fluctuations/drift in the energy. In such a
case, to attach significance to changes in energy, the postprocessing transformation
should be asymptotically equal to a symplectic one. In any case, the main reason for
considering processing is that it reveals the true accuracy of a scheme (by retaining,
for the most part, only error not removable by a change of variables) and thus directs
us to schemes that are intrinsically more accurate. In sum, we have in mind that these
methods, although derived on the basis that they will be processed, might generally
be used with little or no processing.

The idea of effective order appeared first in [2] and later in the symplectic con-
text in [14, 19]. For the symplectic case the ideas are explored to greater depth and
more systematically in [20, 12], which use the term “corrector” for the preprocessing
transformation. The latter of these papers uses an exact, computable representa-
tion of the corrector in the derivation of formulas. However, this is cumbersome for
multiderivative methods and unnecessary if the details of processing are regarded to
be of secondary importance. In section 5, we instead represent a sufficiently gen-
eral symplectic transformation as the flow of an H-series, and we give a methodology
for determining parameters for explicit symplectic generalized Runge–Kutta–Nyström
(RKN) methods of increased effective accuracy.

2. Rowlands’s method. As motivation, the method of Rowlands [14] is derived
first. This method is also given by [20, Eq. (78)].

We begin with a method for (1) that is known by the names Störmer, leapfrog,
and Verlet, and under the last of these names is currently the method of choice in
molecular dynamics. In its “velocity form” [1] this method can be expressed as half
a kick [20]

Pn+1/2 = Pn − h

2
Vq(Qn)

followed by a drift

Qn+1 = Qn + hM−1Pn+1/2

and another half a kick

Pn+1 = Pn+1/2 − h

2
Vq(Qn+1).

More abstractly, we can write a Verlet step as

φhV/2 ◦ φhT ◦ φhV/2,(3)

where φhH denotes the 1-flow of the Hamiltonian system with Hamiltonian hH, or
equivalently the h-flow for Hamiltonian H.

Notation. We are using uppercase for raw “misinterpreted” numerical approxi-
mations and will use lowercase for processed numerical approximations.
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226 M. A. LÓPEZ-MARCOS, J. M. SANZ-SERNA, AND R. D. SKEEL

The numerical solution is known to be “very nearly” the analytical solution of a
nearby Hamiltonian system whose Hamiltonian is [16]

H̃(Q,P ) = H + h2 1
12
TpVqqTp − h2 1

24
VqTppVq +O(h4),(4)

with H as in (1). Here we use the convention (used for example by Mathematica)
that when a vector, matrix, or higher-order object is followed by another such object,
there is an implied summation over the last index of the first object and the first index
of the second object. For several objects juxtaposed, a sensible grouping is implied.

One can interpret the first error term in (4) as a perturbation to the kinetic en-
ergy T and the second as a perturbation to the potential energy V . The perturbation
to the kinetic energy changes the constant mass matrix M into a different and possi-
bly position-dependent matrix, which seems unphysical. This has motivated [14, 16]
a canonical change of variables that makes the perturbation more meaningful. By
definition a canonical transformation yields a new Hamiltonian system whose Hamil-
tonian is simply the result of substituting the change of variables into the original
Hamiltonian. The desired canonical change of variables (Q,P ) = χh(q, p) should
satisfy χh = id + O(h2), where id is the identity mapping id(q, p) = (q, p), so it is
enough to consider the h-flow of a Hamiltonian. Moreover, for methods based on the
composition of flows of T and V , it is enough [13] to consider Hamiltonians that are
linear combinations of elementary Hamiltonians [5]. Only elementary Hamiltonians
of order two can modify the dominant h2 terms of the modified Hamiltonian and there
is only one such elementary Hamiltonian of order two TpVq, so we try

Hχ = hλTpVq.

The change of variables is thus

Q = q + h2λTppVq +O(h4),

P = p− h2λVqqTp +O(h4).(5)

The expressions TppVq and VqqTp are the elementary differentials of order two. After
substitution of (5) into (4) the perturbed Hamiltonian becomes

H̃(χ(q, p)) = H + h2
(
−λ+

1
12

)
TpVqqTp + h2

(
λ− 1

24

)
VqTppVq +O(h4).

The choice λ = 1
12 gives

H̃(χ(q, p)) = H +
h2

24
VqTppVq +O(h4).

This new interpretation of the numerical solution of the Verlet method defines a
“processed” Verlet method.

We can compensate for the error of the processed Verlet method by applying the
Verlet time-stepping (3) to the Hamiltonian with potential energy

Vh := V − h2

24
VqM

−1Vq

instead of V . The result is the Rowlands time-stepping

φhVh/2 ◦ φhT ◦ φhVh/2,(6)

for which the error in the Hamiltonian of the transformed numerical variables be-
comes merely O(h4). Moreover, the h2 discrepancy between the transformed and the
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SYMPLECTIC INTEGRATORS WITH HESSIANS 227

original variables is simply due to the transformation and therefore remains bounded
if more timesteps are taken. We can actually perform the transformation on the ini-
tial conditions, apply (6), and, for output values only, do postprocessing by means
of the reverse transformation. Then the method would be truly fourth order. The
transformation need be performed only up to fourth-order accuracy and need not be
symplectic since its effects are not propagated by the numerical integrator. To do this
transformation computationally, approximate the preprocessing by

Q0 = q0 +
h2

24
M−1(V 1/2

q + V −1/2
q ), P 0 = p0 − h

12
(V 1/2
q − V −1/2

q ),

where V ±1/2
q = Vq(q0 ± h

2M
−1p0), and the postprocessing by formulas

qn = Qn +
1
12

(Qn+1 − 2Qn +Qn−1), pn = Pn − 1
12

(Pn+1 − 2Pn + Pn−1),

whose derivation is given in [10]. However, as mentioned in the introduction, initial
conditions are often unknown and there may be no need to do the transformations.

3. Hessian methods as a limiting case of gradient methods. In [11] it is
shown that the Rowlands method is the limiting case of the 1-parameter family of the
symmetric four-point first same as last (FSAL) effectively fourth-order RKN methods
if we choose the parameter so that two points coalesce at each end. The accuracy
decreases but not dramatically as the limit is approached, but the cost drops from
three down to two function evaluations. Thus it would appear that we are getting
nearly the accuracy of three function evaluations for the price of two. And, in fact,
this is borne out by both the theoretical and experimental results in [11]. It is shown
here how to obtain Hessian methods as limiting cases of RKN methods.

Let us use a superscript s, s+, or s− to denote an approximation at time t = sh.
Consider the following four intermediate substeps of a symplectic RKN method, where
it is assumed that we have already obtained values P s−a and Qs−:

Qs−cε = Qs− + h(−cε)M−1P s−a,

P s−1/
√
ε = P s−a − h

(
a− 1√

ε

)
Vq(Qs−cε),

Qs = Qs−cε + hcεM−1P s−1/
√
ε,(7)

P s+b = P s−1/
√
ε − h

(
b+

1√
ε

)
Vq(Qs).

Here a, b, c, and ε > 0 are method parameters. Thus these substeps advance from
approximations Qs−, P s−a to approximations Qs, P s+b. The net advance in the P
variable is (a + b)h units of time. For the Q variable, the substeps produce a value
Qs which approximates the solution at the same value of time t = sh as the initially
given approximation Qs−. As ε→ 0 in (7),

Qs = Qs− +O(h2√ε),

P s+b = P s−a − h(a+ b)Vq(Qs)− h3cVqq(Qs)M−1Vq(Qs) +O(h2√ε),

which in the limit is a single substep that advances the P variable from P s−a to P s+b

by using the potential gradient and potential Hessian evaluated at Qs.
The foregoing construction cannot represent the midpoint of a family of symmetric

methods; rather one has to form the composition of method fragment (7), where b = 0
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228 M. A. LÓPEZ-MARCOS, J. M. SANZ-SERNA, AND R. D. SKEEL

together with its adjoint:

Qs−cε = Qs− + h(−cε)M−1P s−a,

P s−1/
√
ε = P s−a − h

(
a− 1√

ε

)
Vq(Qs−cε),

Qs = Qs−cε + hcεM−1P s−1/
√
ε,

P s+1/
√
ε = P s−1/

√
ε − h 2√

ε
Vq(Qs),

Qs+cε = Qs + hcεM−1P s+1/
√
ε,

P s+a = P s+1/
√
ε − h

(
a− 1√

ε

)
Vq(Qs+cε),

Qs+ = Qs+cε + h(−cε)M−1P s+a.

As ε→ 0,

Qs+ = Qs− +O(h2√ε),

P s+a = P s−a − 2haVq(Qs)− 2h3cVqq(Qs)M−1Vq(Qs) +O(h3√ε+ h2ε),

which in the limit is a single substep.
The paper [20] gives a fourth-order approximation to Rowlands’s method that

requires two force evaluations per step and replaces the Hessian–vector product by a
difference of gradients, but this approximate method is not symplectic. By undoing
the limiting process described in this section, Rowlands’ method and other Hessian
methods may be approximated by symplectic RKN methods.

4. Efficient implementation of the Hessian–vector product. Instead of
the evaluation of Vq, the Rowlands method requires the more complicated evaluation

∇qVh := Vq −
h2

12
VqqM

−1Vq.

In the case of an N-body problem with 2-body interactions this can be done at the
cost of at most two independent force evaluations and typically much less because of
reuse of calculations such as square roots. This section (also [11]) describes how to
organize the computation to achieve such an economy in computing time.

For the N-body problem the collective position vector q consists of 3-dimensional
positions r1, r2, . . . , rN of the bodies. For 2-body interactions the potential energy
is a sum over all interacting pairs of atoms of the form

1
2
φ(‖rj − ri‖22).

Likewise, the gradient Vq(q) is a sum of terms like

φ′(r2
ij)


0

−rij
0

rij

0

 ,
where rij denotes rj − ri, and the 0’s denote columns of zeros appropriate to leaving
−rij and rij in positions that correspond to the ith and jth forces, respectively.
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SYMPLECTIC INTEGRATORS WITH HESSIANS 229

Similarly, the Hessian Vqq is a sum of “element” matrices like
0
−I

0
I

0

(φ′(r2
ij)I + 2φ′′(r2

ij)rijr
T
ij

) [
0 −I 0 I 0

]
,

where I denotes the 3-by-3 identity matrix and the 0’s denote blocks of zeros appro-
priate to leaving the identity matrices in positions that correspond to the ith and jth
forces. The Hessian–vector product Vqqd, where d consists of 3-vectors δ1, δ2, . . . , δN ,
is computed as a sum of element matrices times vectors:

0
−I

0
I

0

(φ′ijδij + 2φ′′ijr
T
ijδijrij

)
,

where δij denotes δj − δi and the scalars φ′ij and 2φ′′ij are to be computed and stored
during the force evaluation.

As an example, an inverse square law has the form φ(s) = 2s−1/2 for which
φ′(s) = −s−3/2 and φ′′(s) = 3

2s
−5/2. Clearly the additional cost of obtaining φ′′ is only

a fraction of the cost of computing φ′. However, the formation of the Hessian–vector
product requires two passes through the data, each pass involving a collection and a
distribution of data. In the context of large-scale computing on a parallel computer,
this doubles the communication costs, which are significant for distributed-memory
machines. Hence, it is best to count the Hessian-vector product as equal in work to
the evaluation of a second collective force vector.

The computation of the Hessian-vector product for an inverse-law force calculated
by the fast multipole or related methods is the subject of current research [8].

5. Processing and effective order. In the derivation of symplectic methods
it seems useful to consider symmetric (also called self-adjoint, time-reversible, or re-
flexive) methods. Suppose we are given a symplectic method that it not symmetric.
The adjoint (or time reversal) of this method has equally good accuracy, and, for
most families of methods including explicit RKN methods, equal computational cost.
If we compose the original method with its adjoint, we obtain a new method with
apparently equal computational costs and superior accuracy. The accuracy is superior
because the asymptotic expansion of the error for the composed method is devoid of
terms with odd powers of h.

For second- or fourth-order symmetric methods that use only elementary differ-
entials, the modified Hamiltonian is an H-series [13] in h having as coefficients linear
combinations of elementary Hamiltonians of the appropriate order. Hence the modi-
fied Hamiltonian must be of the form

H̃(Q,P ) = H + h2ATpVqqTp + h2BVqTppVq

+ h4CTpVqqTppVqqTp + h4DVqTppVqqTppVq

+ h4FVqTppVqqqTpTp + h4GTpVqqqqTpTpTp +O(h6).

We wish to perform a canonical transformation (Q,P ) = χh(q, p) with χh =
id + O(h2) that reduces the error terms of the modified Hamiltonian H̃. Any such
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canonical transformation can be expressed as the h-flow of a Hamiltonian Hχ. A
useful choice for Hχ will be an H-series consisting only of odd powers of h, so we
write

Hχ = hλTpVq + h3µTpVqqTppVq + νh3TpVqqqTpTp,

where the coefficients λ, µ, ν are to be determined.
For the analysis the explicit formation of the transformation (Q,P ) = χh(q, p) can

be avoided through the use of Lie series and the Baker–Campbell–Hausdorff (BCH)
formula. Using Poisson brackets, defined for scalar functions f(q, p), g(q, p) by

{f, g} = fqgp − fpgq,
we can formally express the h-flow of the Hamiltonian system (2) by

φhH = exp({−hH, ·})id.
The processed method after n steps is the result of applying to the initial values the
transformation

φ−1
hHχ
◦ (φhH̃)n ◦ φhHχ = (φ−1

hHχ
◦ φhH̃ ◦ φhHχ)n,

for which

φ−1
hHχ
◦ φhH̃ ◦ φhHχ = exp(−{−hHχ, ·})id ◦ exp({−hH̃, ·})id ◦ exp({−hHχ, ·})id

= exp({−hHχ, ·}) exp({−hH̃, ·}) exp(−{−hHχ, ·})id.
The application of the BCH formula to the special product eCeKe−C , where C and
K are Lie operators, simplifies considerably, yielding the formula [20]

eCeKe−C = exp
(
K + [C,K] +

1
2

[C, [C,K]] + · · ·
)

= exp(e[C,·]K),

where the (square) brackets denote the commutator [A,B] = AB − BA. Employ-
ing the homomorphism from functions with Poisson brackets to Lie operators with
commutators gives

exp({−hHχ, ·}) exp({−hH̃, ·}) exp(−{−hHχ, ·}) = exp({−hH̃ ◦ χh, ·}),
where

−hH̃ ◦ χh = −hH̃ + {−hHχ,−hH̃}+
1
2
{−hHχ, {−hHχ,−hH̃}}+ · · ·

= exp({−hHχ, ·})(−hH̃),

and we have

H̃(χ(q, p)) = H̃ − h{Hχ, H̃}+
h2

2
{Hχ, {Hχ, H̃}}+O(h6)

= . . .

= H(q, p) + h2(A− λ)TpVqqTp + h2(B + λ)VqTppVq

+h4(C + λ2 − 2Aλ− µ)TpVqqTppVqqTp

+h4(D + λ2 + 2Bλ+ µ)VqTppVqqTppVq

+h4
(
F − µ+ 3ν +Aλ− λ2

2

)
VqTppVqqqTpTp + h4(G− ν)TpVqqqqTpTpTp

+O(h6).
(8)
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The parameter λ can be chosen to obtain fourth-order accuracy in (8) if and only if

B = −A,(9)

in which case

λ = A(10)

is the appropriate choice. Henceforth, let us assume that both (9) and (10) are satis-
fied, in which case we have

H̃(χ(q, p)) = H(q, p)

+h4(C −A2 − µ)TpVqqTppVqqTp + h4(D −A2 + µ)VqTppVqqTppVq

+h4
(
F − µ+ 3ν +

1
2
A2
)
VqTppVqqqTpTp

+h4(G− ν)TpVqqqqTpTpTp +O(h6).

The choice of µ and ν is not so obvious. As a heuristic it is common to choose
parameters to minimize the sum of squares of the error coefficients. Minimizing

E2 = (C −A2 − µ)2 + (D −A2 + µ)2 +
(
F − µ+ 3ν +

1
2
A2
)2

+ (G− ν)2

gives

µ =
1
42
A2 +

10
21
C − 10

21
D +

1
21
F +

1
7
G,

ν = −1
7
A2 +

1
7
C − 1

7
D − 2

7
F +

1
7
G,


Ĉ

D̂

F̂

Ĝ

 =


11
21

10
21 − 1

21 − 1
7

10
21

11
21

1
21

1
7

− 1
21

1
21

2
21

2
7

− 1
7

1
7

2
7

6
7



C

D

F

G

+


− 43

42

− 41
42
1
21
1
7

A2.

As an example let us look at the error H̃ −H of the symmetrized Calvo method,
which is defined to be the original Calvo method [15, p. 113] followed by its adjoint.
The symmetrized method is a nine-stage FSAL method and for one step of stepsize
2h it is given by

φb1hV ◦ φc1hT ◦ φb2hV ◦ φc2hT ◦ φb3hV ◦ φc3hT ◦ φb4hV ◦ φc4hT ◦ φ2b5hV

◦φc4hT ◦ φb4hV ◦ φc3hT ◦ φb3hV ◦ φc2hT ◦ φb2hV ◦ φc1hT ◦ φb1hV ,
where

b1 = 0.0617588581356263250,
b2 = 0.3389780265536433551,
b3 = 0.6147913071755775662,
b4 = −0.1405480146593733802,
b5 = 0.1250198227945261338,
c1 = 0.2051776615422863869,
c2 = 0.4030212816042145870,
c3 = −0.1209208763389140082,
c4 = 0.5127219331924130343.
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To determine the modified Hamiltonian, it is convenient to develop a formula of
the form

exp({−hf, ·}) exp({−hg, ·}) exp({−hf, ·}) = exp({−hF, ·})

using the BCH-derived formula in [15, eq. (12.12)]. If we exploit the homomorphism
from functions and Poisson brackets to Lie operators and commutators and simplify
a little, we get

F = 2f + g + h2
(

1
6
{g, g, f} − 1

6
{f, f, g}

)
+ h4

(
7

360
{f, f, f, f, g} − 1

360
{g, g, g, g, f}

+
1
90
{f, g, g, g, f}+

1
45
{g, f, f, f, g} − 1

60
{f, f, g, g, f}+

1
30
{g, g, f, f, g}

)
+O(h6),

where the Poisson bracket is recursively extended to multiple arguments by the rule

{f1, f2, . . . , fm} = {f1, {f2, . . . , fm}}.

With the use of these rules in Mathematica, the perturbed Hamiltonian of the sym-
metrized Calvo method with stepsize 8h is found to be (coefficients have been trun-
cated)

H̃(Q,P ) = T + V + 0.034h4TpVqqTppVqqTp − 0.053h4VqTppVqqTppVq

− 0.075h4VqTppVqqqTpTp + 0.019h4TpVqqqqTpTpTp +O(h6).

A stepsize of 8h is chosen because each step requires the evaluation of eight forces.
The square root of the sum of the squares of error coefficients for stepsize chosen to
be 8h is 0.0995. Its perturbed Hamiltonian after processing is (again after truncation
of the coefficients)

H̃(Q,P ) = T + V − 0.007h4TpVqqTppVqqTp − 0.012h4VqTppVqqTppVq

− 0.006h4VqTppVqqqTpTp − 0.017h4TpVqqqqTpTpTp +O(h6).

The square root of the sum of the squares of error coefficients for stepsize chosen to
be 8h is 0.0228. If we take the fourth root of the ratio of this to its previous value,
we conclude that the computational effort to achieve a given accuracy is reduced by
a factor of 0.69 if we process Calvo’s method. This supposes that practical postpro-
cessors can be developed, say, using linear combinations of force values available from
intermediate stages of the method.

6. A family of 3-point FSAL methods. Inspired by Rowlands’s method, we
examine a family of 3-point FSAL Hessian methods

φ(1/4+b)hV+dh3VqTppVq ◦ φ(1/2)hT ◦ φ(1/2−2b)hV+ch3VqTppVq ◦ φ(1/2)hT

◦φ(1/4+b)hV+dh3VqTppVq ,

whose effective cost per step is four function evaluations. The case b = 0, c = −1/192,
d = −1/384 is the 2-fold Rowlands method (two concatenated steps of the method
with stepsize h/2).
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The perturbed Hamiltonian of this 3-parameter method after processing has error
coefficients

Â =
1
48

+
b

4
− λ,

B̂ = − 1
96
− b

4
+
b2

2
+ c+ 2d+ λ,

Ĉ =
1

960
+

b

24
+
b2

12
− c

12
+
d

3
− λ

24
− bλ

2
+ λ2 − µ,

D̂ = − 1
3840

− 5b
192

+
5b2

48
− b3

4
+

c

12
− bc− d

3
− λ

48
− bλ

2
+ b2λ+ 2cλ+ 4dλ+ λ2 + µ,

F̂ =
1

1920
+

b

24
− b2

24
− c

12
+
d

3
+

λ

48
+
bλ

4
− λ2

2
− µ+ 3ν,

Ĝ = − 1
11520

− b

192
− ν.

With

c = − 1
96
− b2

2
− 2d,

λ =
1
48

+
b

4
,

chosen to make Â = 0 and B̂ = 0, the other error coefficients become

Ĉ =
17

11520
+

b

32
+
b2

16
+
d

2
− µ,

D̂ = − 1
640
− 5b

192
+
b3

4
− d

2
+ 2bd+ µ,

F̂ =
37

23040
+

3b
64

+
b2

32
+
d

2
− µ+ 3ν,

Ĝ = − 1
11520

− b

192
− ν.

We further assume that µ and ν are chosen to minimize the sum of the squares of the
error coefficients E2 = Ĉ2 + D̂2 + F̂ 2 + Ĝ2.

The two-fold Rowlands method is obtained by choosing b = 0 and d = 1
2c = − 1

384 .
The processed coefficients are

Ĉ = −0.009, D̂ = −0.013, F̂ = −0.004, Ĝ = −0.013.

An appropriate measure of error for a fourth-order method is E1/4 = 0.0950. To
take into account the cost of one step we multiply by the number of force evaluations
m = 4, obtaining 0.380. These values together with those for the unprocessed and
processed symmetrized Calvo methods and other methods yet to be discussed are
shown in Table 1. In all cases these values are for the processed versions of the
methods where λ is chosen to yield fourth-order accuracy and µ and ν are chosen to
minimize E. We note here a slight theoretical superiority of the Rowlands method
over that of the processed symmetrized Calvo.

Consider now the selection of b and d to minimize E. Keeping b free and choosing
d to minimize E gives

d =
5

101376
b−1 − 1

384
− 21

704
b− 1

8
b2
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TABLE 1
Theoretical comparison of methods.

Method Error E1/4 Scaled error mE1/4

unproc. symm. Calvo 0.0702 0.562
proc. symm. Calvo 0.0486 0.389

Rowlands 0.0950 0.380
best b, best d 0.0792 0.317
best b, d = 0 0.0803 0.241
b = 0, d = 0 0.0950 0.285

and

E =
1

648806400
+

1
1351680

b2 +
1

11264
b4.

The error measure E approaches a lower bound as b → 0, although this causes the
method coefficients c and d to approach plus and minus infinity. The value of the
error and work measures for the limiting case are given in Table 1 as “best b, best d.”

The method just obtained shows the limitations of our error measure E. This
difficulty is less likely to occur if we work with fewer degrees of freedom. An effective
way to do this is to use one degree of freedom to reduce the amount of work per step.
The obvious choice is d = 0 (or c = 0, which is essentially equivalent). Then choosing
b to minimize E requires solving

11
56
b5 +

5
64
b4 +

107
8064

b3 +
29

32256
b2 +

17
967680

b− 5
9289728

= 0.

There is one real root,

b = 0.015425721644647824439.

The other coefficients are

c = − 1
96
− 1

2
b2,

λ =
1
48

+
1
4
b,

µ =
731

483840
+

29
1008

b+
1
32
b2 − 5

42
b3,

ν = − 1
26880

− 1
168

b− 1
28
b3.

The processed coefficients are

Ĉ = 0.0008, D̂ = −0.0001, F̂ = −0.0010, Ĝ = −0.0031.

Table 1 confirms that E for this method is only a little more than before and that
the work is dramatically less.

If we like our coefficients to be simple rational numbers, then we might be inter-
ested in the choice b = 0 (and c = − 1

96 ). Table 1 shows that this method is not far
from optimal.

This family of methods was defined at the beginning of this section in terms of
flows of H-series. It might seem useful to incorporate other elementary Hamiltonians
into a method. There is one other elementary Hamiltonian of order three VqTppVq,
but it would not lead to an explicit method. Among elementary Hamiltonians of order
five, only VqTppVqqTppVq would be useful.
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FIG. 1. Average error norm over one period vs. number of force evaluations for unprocessed
Calvo (dashed line and +), processed Calvo (dash-dot line and *), Rowlands (dotted line and ×),
and new (solid line and circles) methods.

7. Numerical experiments. We performed experiments to compare the sym-
metrized method of Calvo, unprocessed and processed, the method of Rowlands, and
the new method (with d = 0 and optimal b). In order to compare accuracy we de-
veloped a “black box” for pre- and post-processing. Little attention was given to the
efficiency of this black box. It obtains asymptotically correct values for elementary
differentials required in the processors (see, e.g., (5)) by differencing numerical values
obtained by taking a couple of steps of Verlet and Euler in the forward and backward
direction.

Two test problems were used. The first is a Kepler problem in two dimensions,
H(q, p) = 1

2 (p2
1 + p2

2) − (q2
1 + q2

2)−1/2, with initial conditions q1 = 1
2 , q2 = 0, p1 = 0,

p2 =
√

3 chosen to yield an orbit of eccentricity 1
2 and period 2π [15, section 1.2.4].

The problem was run for 100 periods and the Euclidean norm in R4 of the error
was measured during the last revolution at times (99 + j/8) × 2π, j = 1, . . . , 8 and
then averaged. The stepsizes were h = 2π/128, 2π/256, 2π/512, and 2π/1024 for the
Calvo method and 2π/256, . . . , 2π/4096 for the other two methods. Figure 1 shows
the error versus the number of force + Hessian evaluations for each of the meth-
ods. We observe that the ranking of the four methods agrees with their theoretical
work measure given by Table 1 except that the unprocessed Calvo performs signif-
icantly better than predicted and, in particular, better than the processed version.
This anomaly could be explained by a fortuitous cancellation of error terms for this
particular problem, and indeed we have checked that for other problems the perfor-
mance of the unprocessed Calvo method is worse than that of the processed Calvo
method. Note in this connection that, even though the processed Calvo method has
a value of E significantly lower than the unprocessed version, the coefficient in H̃ of
the elementary Hamiltonian involving Vqqqq does not decrease by processing, so that
the processing of the Calvo method cannot be expected to be uniformly beneficial
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FIG. 2. Average error norm over one period vs. CPU time for unprocessed Calvo (dashed line
and +), processed Calvo (dash-dot line and *), Rowlands (dotted line and ×), and new (solid line
and circles) methods.

across all problems. On the other hand, for the Kepler problem the incremental cost
of evaluating the Hessian (which in Figure 1 was assumed to be equal to that of the
force evaluation) is expected to be small because of the reuse of the relatively costly
square root. This expectation is confirmed by measurements of CPU time shown in
Figure 2, which shows a sizable advantage for the Hessian methods.

The second test problem is a simulation of the N = 256 atoms of liquid argon as
in [6, 9]. The potential energy is a sum of terms over all pairs of atoms of the form

1
2
φ(‖rj − ri‖22),

where r1, r2, . . . , rN are atomic positions and

φ(s) = 8ε
(
σ12

s6 −
σ6

s3

)
.

The values used are ε = 1.65324 × 10−21 joules, σ = 3.405 Å, and mass m =
6.64 × 10−26 kilograms. Periodicity of period L = 22.984 Å is imposed in each of
the three directions, effectively creating for each atom a 3-dimensional lattice of im-
ages. This is efficiently implemented with very little error by neglecting all pairwise
interactions between atoms (or images) whose x-, y-, or z-separation equals or ex-
ceeds L/2. Initial conditions were chosen as in [9] to achieve a temperature of 86.5◦K.
The computations were programmed in nondimensional units where a typical stepsize
h = 0.1 corresponds to 0.0311 picoseconds of physical time. Simulations were run for
time 60 (18.68 picoseconds) and sampled at intervals of 1.2. As our measure of accu-
racy we choose the root-mean-square deviation of the energy from its initial value. For
symplectic integrators the energy deviation represents the value of the perturbation
to the Hamiltonian and thus is a meaningful measure of accuracy. The results are
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FIG. 3. Relative energy error vs. number of function evaluations for unprocessed Calvo (dashed
line and +), processed Calvo (dash-dot line and *), Rowlands (dotted line and ×), and new (solid
line and circles) methods.

shown in Figure 3. For small stepsize the results are fairly consistent with the theo-
retical ranking of methods; for larger stepsizes Rowlands’s method does remarkably
well.

REFERENCES

[1] M. P. ALLEN AND D. J. TILDESLEY, Computer Simulation of Liquids, Clarendon Press, Oxford,
1987.

[2] J. C. BUTCHER, The effective order of Runge-Kutta methods, in Conference on the Numerical
Solution of Differential Equations, J. Ll. Morris, ed., Lecture Notes in Mathematics 109,
Springer-Verlag, New York, 1969, pp. 133–139.

[3] M. P. CALVO AND J. M. SANZ-SERNA, The development of variable-step symplectic integra-
tors, with applications to the two-body problem, SIAM J. Sci. Statist. Comp., 14 (1993),
pp. 936–952.

[4] D. GOLDMAN AND T. J. KAPER, Nth-order operator splitting schemes and nonreversible sys-
tems, SIAM J. Numer. Anal., 33 (1996), pp. 349–367.

[5] E. HAIRER, Backward error analysis of numerical integrators and symplectic methods, Ann.
Numer. Math., 1 (1994), pp. 103–132.
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