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Abstract. We consider methods that integrate systems of differential equations dy/dt = f(y)
by taking advantage of a decomposition of the right-hand side f =

∑
f [ν]. We derive a general

necessary and sufficient condition for those methods to be symplectic for Hamiltonian problems.
Special attention is given to the case of additive Runge–Kutta methods.
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1. Introduction. The purpose of this paper is to provide a necessary and suffi-
cient condition for the symplecticness of numerical methods based on decompositions
of the right-hand side of the system of differential equations being integrated.

Most numerical methods [4], [12] for the integration of systems of differential
equations

dy

dt
= f(y)(1)

use the right-hand side f only through a subroutine that finds f(y) at any given point
y. Other methods require, in addition, subroutines for the evaluation of the Jacobian
f ′(y) or of higher derivatives of f . All these methods, by ignoring all details of the
structure of f , may provide general-purpose, black-box library integrators. However,
in many applications, f possesses, in a natural way, a decomposition

f(y) =
N∑
ν=1

f [ν](y),(2)

and one may wish to consider methods that take advantage of the structure of f .
Those methods, while not very well suited to the construction of general-purpose
integrators, can be useful for large problems arising in specific applications.

Splitting methods provide an obvious example: if the systems

dy

dt
= f [ν](y), ν = 1, . . . , N,(3)

are integrable in closed form, it is possible to integrate (1) by combining individual
solutions of (3). If the systems (3), without being integrable in closed form, are
“simpler” than (1), it is possible to combine numerical approximations to the solutions
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1927

of (3) to obtain a numerical solution to (1). Splitting methods are often used in time-
dependent partial differential equations; the different f [ν] may correspond to different
spatial variables (dimensional splitting) or to different physical contributions, e.g.,
advection and diffusion (operator splitting). The literature on splitting methods is,
of course, huge, and we cannot review it here; we nevertheless mention the important
recent paper [16].

If, in (2), N = 2 and f [1] is stiff while f [2] is not, then it is common to combine
an implicit integrator for f [1] with an explicit integrator for f [2]. For instance, in a
reaction-diffusion partial differential problem, one may combine the implicit midpoint
rule for the diffusion terms with the second-order Adams–Bashforth for the reaction
terms. An interesting recent paper in this direction is [2]. Cooper and Sayfy [7], [8]
have considered general classes of such additive methods, including (N -part) additive
Runge–Kutta (ARKN ) methods. A step yn 7→ yn+1 of the s-stage ARKN method
specified by the Butcher tableau

a
[1]
11 · · · a

[1]
1s a

[N ]
11 · · · a

[N ]
1s

...
. . .

... · · ·
...

. . .
...

a
[1]
s1 · · · a

[1]
ss a

[N ]
s1 · · · a

[N ]
ss

b
[1]
1 · · · b

[1]
s · · · b

[N ]
1 · · · b

[N ]
s

(4)

is given by

Yn,i = yn + h
N∑
ν=1

s∑
j=1

a
[ν]
ij f

[ν](Yn,j),(5)

yn+1 = yn + h

N∑
ν=1

s∑
i=1

b
[ν]
i f [ν](Yn,i).(6)

When the a[ν]
ij , b[ν]

i do not depend on ν the ARKN method applied to the decomposed
system (1)–(2) is equivalent to a standard Runge–Kutta method applied to the unde-
composed (1). ARKN methods have recently been considered in Jorge’s thesis [14].

In molecular dynamics applications the different f [ν] may correspond to forces of
different stiffness. It is sometimes inappropriate to sample the net force f ; one may
wish to sample the stiffer parts f [ν] more frequently than the softer parts. This leads
to the idea of multiple time-step methods; see, e.g., [3].

Another decomposition that often appears in practice is that provided by com-
ponent partitioning, as in Hairer [9]: the set of the indices i that number the solution
components yi is partitioned into N subsets I [ν] and

f [ν]i(y) =
{
f i(y), i ∈ I [ν],
0, i 6∈ I [ν].

(7)

Coordinate partitioning arises naturally if (1) has been obtained by rewriting as a first-
order system a system y(N) = F (y, . . . , y(N−1)) of order N ; in this case the blocks
{yi : i ∈ I [ν]} correspond to the time-derivatives y(ν) of the solution y. Hamiltonian
systems have their solution components partitioned in a natural way into coordinates
and momenta. In some stiff problems some components are not stiff and one may wish
to treat them separately; this leads to partitioning in stiff and nonstiff components.

In this paper we consider the case where (1) is a Hamiltonian system. We are
interested in methods based on decompositions (2) that are symplectic [20], [22], [12].
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1928 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

If the parts f [ν] are themselves Hamiltonian, then it is easy to construct symplectic
NB-series methods by concatenating symplectic methods applied to the individual
parts of the right-hand side or to linear combinations of those individual parts. As a
first example with N = 2, we have the splitting methods of the form [16]

φβsh,f [2] ◦ φαsh,f [1] ◦ · · · ◦ φβ2h,f [2] ◦ φα2h,f [1] ◦ φβ2h,f [2] ◦ φα1h,f [1] .(8)

Here αi and βi are real constants and φh,g denotes the exact solution flow of the
system with right-hand side g. A second example, also with N = 2, is given by the
time-symmetric concatenation

ψMP
h,αf [1] ◦ ψMP

h,(1−2α)f [1]+f [2] ◦ ψMP
h,αf [1] ,(9)

where α is a real constant and ψMP
h,g denotes a step of length h of the implicit midpoint

rule applied to the system with right-hand side g. Clearly, (9) is a multiple time-step
method that uses f [2] less frequently than f [1]; it is also the ARK2 method with
tableau

α
2 0 0 0 0 0
α 1−2α

2 0 0 1
2 0

α 1− 2α α
2 0 1 0

α 1− 2α α 0 1 0

.(10)

It is worth noting that the multiple time-stepping algorithms used in practice can simi-
larly be reformulated as ARK methods. By concatenating steps of (9) as in [22, Section
13.1] it is possible to obtain symplectic ARK methods of arbitrarily high orders.

It is then of interest to characterize those decomposition methods that are sym-
plectic. To provide a treatment as comprehensive as possible, we note that any reason-
able one-step method based on the decomposition (2) gives rise, by Taylor-expanding
the numerical solution in powers of the step-size h, to a so-called NB-series [14]. It is
then convenient to work at the level of NB-series, rather than at the level of specific
classes of methods, and in section 3 we provide necessary and sufficient conditions for a
transformation given as an NB-series to be symplectic. Two scenarios are considered.
In the first, the individual parts f [ν] are supposed to be Hamiltonian. As discussed
above, there are then symplectic decomposition methods, and the characterization
in section 3.1 can be used either positively to construct new symplectic methods or
negatively to show that symplectic integrators with some target properties are not
possible. In the second scenario, the arbitrary (Hamiltonian) problem (1) is arbitrar-
ily decomposed into N not necessarily Hamiltonian parts. We then prove that there
is no genuine symplectic NB-series, in the sense that any symplectic NB-series uses
only the net right-hand side f , rather than the individual parts f [ν].

It is by now well understood [22], [12] that for symplectic methods some of the
standard order conditions become redundant. In section 4 we study the reduction of
independent order conditions for symplectic NB-series methods.

Section 5 deals with the situation where N = 2 and the decomposition has been
carried out by partitioning the components into coordinates and momenta. We em-
phasize that, due to the extra structure implied by component partitioning, the ma-
terial in this section is not just the particular case N = 2 of the theory presented in
sections 3 and 4. Sections 3–5 provide a unified theory of symplectic methods and
their order conditions that includes all cases known at present.

In section 6 we consider ARKN methods. For this class of methods, the general
symplecticness condition of section 3 may be rewritten in terms of the coefficients in
the tableau (4).
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1929

Section 2 and the final section, 7, are technical. Section 7 contains the proofs of
some lemmata. In section 2 we provide a brief description of NB-series [14]. These
generalize to the decomposed case (1)–(2) the concept of B-series for undecomposed
systems. B-series were introduced by Hairer and Wanner [13] and play a major role in
studying the consistency properties of one-step integrators. In connection with Hamil-
tonian problems, B-series were first considered by Calvo and Sanz-Serna [6], who gave
a necessary and sufficient condition for a B-series to be symplectic. These authors
then showed how their general B-series result implies the known characterization of
symplectic Runge–Kutta methods [15], [19], [23]. The B-series approach is particu-
larly helpful when proving the necessity of symplecticness conditions; the alternative
necessity proofs (see, e.g., [1]) are terribly messy. Also, [6] provided the basis for
the proof of nonexistence of higher-derivative symplectic Runge–Kutta schemes [11].
The present paper provides an extension of the main result of [6] to the decomposed
scenario; however, the technique of proof used here is different from those used in [6].
It should also be pointed out that a partial extension of [6] already exists: Murua [17],
[18] and Hairer [10] have considered symplectic P-series; these are the particular case
of NB-series corresponding to the situation where the decomposition (2) arises from
partitioning the components into coordinates and momenta. As point out before, the
P-series case is not just the particular case N = 2 of the NB-series theory.

2. Preliminaries.

2.1. N -trees. We denote by D the dimension of (1) and use superscripts to
refer to the components of y, f , f [ν], e.g., y = (y1, y2, . . . , yD)T . Unless otherwise
explicitly stated, f and the parts f [ν] are supposed to be smooth and defined in the
whole of RD.

N -trees provide a convenient tool to deal with the Taylor expansion of the solu-
tions of (1) in terms of the f [ν]. From (1), for i = 1, . . . , D,

d2yi

dt2
=

N∑
ν=1

f
[ν]i
j (y)

dyj

dt

=
N∑

ν,µ=1

f
[ν]i
j (y)f [µ]j(y).(11)

Here and later, subscripts denote partial differentiation, and we use Einstein’s conven-
tion of summation on repeated indices. In turn, time differentiation in (11) leads to

d3yi

dt3
=

N∑
ν,µ=1

f
[ν]i
jk (y)

dyk

dt
f [µ]j(y)

+
N∑

ν,µ=1

f
[ν]i
j (y)f [µ]j

k (y)
dyk

dt

=
N∑

ν,µ,λ=1

f
[ν]i
jk (y)f [λ]k(y)f [µ]j(y)

+
N∑

ν,µ,λ=1

f
[ν]i
j (y)f [µ]j

k (y)f [λ]k(y).(12)

The terms being summed in expressions like (11) or (12) are easily described by
means of N -trees. An N -tree is a tree where each vertex has been assigned, out of a
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1930 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

TABLE 1
Examples of 3-trees. The first, second, and third colors, respectively, correspond to black circles,

white circles, and white squares.

N -tree Elementary differential ρ α σ γ

∅ yi 0 1 1 1

ti f [1]i 1 1 1 1

di f [2]i 1 1 1 1

i f [3]i 1 1 1 1tjti f
[1]i
j f [1]j 2 1 1 2

djti f
[1]i
j f [2]j 2 1 1 2

ti
i f

[3]i
j f [1]j 2 1 1 2

tj tk
�@di f

[2]i
jk f [1]jf [1]k 3 1 2 3

tj dk
�@di f

[2]i
jk f [1]jf [2]k 3 2 1 3tk

�dj
A
i

f
[3]i
j f

[2]j
k f [1]k 3 1 1 6

choice of N , a color or type. For a full description of N -trees we refer to [9] or [17],
where they are called P -trees and used in the particular case of decomposition by
coordinate partitioning. When N = 1 all vertices are of the same color and we then
identify 1-trees with the standard (uncolored) trees used in connection with Runge–
Kutta methods [4], [12]. Note that throughout the paper, the terms tree and N -tree
are always assumed to refer to rooted graphs; we use the terms free tree and free
N -tree to refer to the cases without a root, i.e.; to the cases where no vertex has been
highlighted. Table 1 contains, for the case N = 3, some examples of N -trees and the
terms in (2), (11)–(12) that correspond to them.

We respectively denote by NT , NT , NT
[ν]

the sets of N -trees, nonempty N -trees,
and nonempty N -trees with root of color ν. The order ρ(u) of the N -tree u is the
number of vertices in u. The N -tree with a single vertex of type ν is denoted by τ [ν].
Each N -tree with ρ(u) > 1 may be expressed in terms of nonempty N -trees of order
< ρ(u) as follows: we write

u = [u1, . . . , um][ν](13)

D
ow

nl
oa

de
d 

01
/0

3/
14

 to
 1

57
.8

8.
33

.3
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



SYMPLECTIC METHODS BASED ON DECOMPOSITION 1931

if the root of u is of color ν and {u1, . . . , um} is the collection of N -trees arising from
chopping off the root of u.

If u ∈ NT and v ∈ NT , we denote their Butcher product by u · v. This is defined
by (i) u · ∅ = u, (ii) τ [ν] · v = [v][ν] if v 6= ∅, and (iii) u · v = [u1, . . . , um, v][ν] if u is as
in (13) and v 6= ∅.

If u is as in (13) and v ∈ NT , we denote by k(u, v) the number of times that
v appears amongst the ui. Furthermore, we set k(τ [ν], v) = 0 for ν = 1, . . . , N and
v ∈ NT . We also introduce the convention k(u, ∅) = 1 for each u ∈ NT .

For u ∈ NT we respectively denote by α(u), σ(u) the number of monotonic
labelings and symmetries of u. The definitions of these quantitites are straightforward
extensions of those used for standard trees [4], [12]. Table 1 contains some values of
α, σ; note, in particular in the last rows, that α and σ take into account the colors of
the vertices. These functions may be recursively computed through the easily derived
formulae [17]

α(u · v) =
1

k(u · v, v)

(
ρ(u · v)− 1

ρ(v)

)
α(u)α(v)(14)

and

σ(u · v) = k(u · v, v)σ(u)σ(v),(15)

which relate the values at u · v to the values at the smaller N -trees u, v.
The density γ is defined by γ(∅) = γ(τ [ν]) = 1 and

γ(u) = ρ(u)γ(u1) · · · γ(um)(16)

for u in (13). From (16) it follows that

γ(u · v) =
ρ(u) + ρ(v)

ρ(u)
γ(u)γ(v),(17)

and from (14)–(15) and (17) it is easily concluded by induction on the order ρ(u) that

ρ(u)! = α(u)γ(u)σ(u).(18)

2.2. Elementary differentials. Given the system (1) with the decomposition
(2), to each N -tree u ∈ NT , there corresponds an elementary differential F (u). This
is a mapping RD → RD recursively defined as follows:

F i(∅)(y) = yi,

F i(τ [ν])(y) = f [ν]i(y)

and, for u in (13),

F i(u)(y) = f
[ν]i
i1,...,im

(y)F i1(u1)(y) · · ·F im(um)(y).(19)

In terms of elementary differentials, the derivatives of a solution y(t) of (1) are given
by

dny(t)
dtn

=
∑
u∈NT
ρ(u)=n

α(u)F (u)(y(t))
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1932 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

(cf. (11)–(12)). Hence the Taylor expansion of y(t+ h) is

∑
u∈NT

hρ(u)

ρ(u)!
α(u)F (u)(y(t)),

or, using (18),

∑
u∈NT

hρ(u)

σ(u)
1

γ(u)
F (u)(y(t)).(20)

2.3. NB-series. If c is a mapping that assigns to each u ∈ NT a real number
c(u), then an NB-series relative to the decomposition (2) is a formal power series

NB(c, y) =
∑
u∈NT

hρ(u)

σ(u)
c(u)F (u)(y).(21)

For instance, the Taylor expansion (20) is NB(c, y(t)) with c(u) = 1/γ(u) for each u.
In the particular case where the number N of parts in (2) is 1 (so that f is not

really decomposed), an NB-series is a B-series:

B(c, y) =
∑
u∈T

hρ(u)

σ(u)
c(u)F (u)(y),(22)

where T = 1T is the set of trees with just one type of vertex. Note that (22) differs
in the normalization of the coefficients from the standard definition of B-series [12]:

B∗(c, y) =
∑
u∈T

hρ(u)

ρ(u)!
α(u)c(u)F (u)(y).

We have found that the normalization in this paper leads to simpler formulae than
the standard normalization.

Each B-series (22) for the undecomposed system (1) induces an NB-series relative
to the decomposition (2). For instance, the term

hc(q)F i(q)(y) = hc(q)f i(y) = hc(q) N∑
ν=1

f [ν]i(y)

in the B-series gives rise in the induced NB-series to N terms

hc( s)f [ν]i(y), hc( c)f [ν]i(y), . . . ,

with c( s) = c( c) = · · · = c(q). In a similar manner, the term

h2c(qq)F i(qq)(y) = h2c(qq)f ij(y)f j(y) = h2c(qq) N∑
ν,µ=1

f
[ν]i
j (y)f [µ]j(y)

gives rise to N2 terms

h2c( ss)f [1]i
j (y)f [1]j(y), h2c( cs)f [1]i

j (y)f [2]j(y), . . . ,
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1933

with c( ss) = c( cs) = · · · = c(qq). The following result is not difficult to prove. It identifies
the set of B-series for the (undecomposed) system (1) with a subset of the set of
NB-series relative to a given decomposition (2).

THEOREM 1. Given the system (1), each B-series B(c, y) induces an NB-series
NB(c∗, y) relative to the decomposition (2) in such a way that NB(c∗, y) = B(c, y)
for all y. The coefficients c∗(u) are given by c∗(u) = c(u), where u ∈ T is the tree
that one obtains from u ∈ NT by ignoring the colors of the vertices.

Conversely, if an NB-series NB(c∗, y) relative to the decomposition (2) is such
that c∗(u) = c∗(v) whenever u and v only differ in the color of the vertices (u = v),
then NB(c∗, y) coincides with a B-series for the undecomposed system (1).

It turns out that, for virtually all one-step numerical methods for (1)–(2), the
Taylor expansion in powers of h of the approximation yn+1 at time tn+1 = tn + h
is given by an NB-series NB(c, yn), where the coefficients c only depend on the nu-
merical method. We illustrate how to obtain these coefficients in the case of ARKN

methods. Assume that the stage vectors Yn,i and the vectors hf [ν](Yn,i) have expan-
sions respectively given by the NB-series NB(di, yn) and NB(g[ν]

i , yn). From (5) and
(6) we respectively obtain, for u ∈ NT ,

di(u) =
N∑
ν=1

s∑
j=1

a
[ν]
ij g[ν]

j (u), i = 1, . . . , s,(23)

c(u) =
N∑
ν=1

s∑
i=1

b
[ν]
i g[ν]

i (u).(24)

In turn, the g[ν]
i (u) may be expressed in terms of the di(v), with ρ(v) < ρ(u) as

follows (δ is the Kronecker symbol):

g[µ]
i (τ [ν]) = δν,µ(25)

and, for u in (13),

g[µ]
i (u) = δν,µ

m∏
k=1

di(uk).(26)

These formulae can be used recursively to find the c(u) in terms of the coefficients
a

[ν]
ij , b[ν]

i in the tableau (4). The same recursion may be applied to prove the fact that
the Taylor expansions of Yn,i and hf [ν](Yn,i) are, in fact, B-series, something that was
assumed in the derivation of the formulae above.

3. Symplectic NB-series.

3.1. The case of Hamiltonian parts. Assume that (1) is a Hamiltonian sys-
tem, i.e., that D is even D = 2d and that there exists a real-valued function H(y)
such that

f(y) = J−1 ∂H

∂y
(y),(27)

where ∂H/∂y = (∂H/∂y1, . . . , ∂H/∂y2d)T and J is the 2d× 2d matrix

J =
[

0d Id
−Id 0d

]
.
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1934 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

A transformation ψ : R2d → R2d is symplectic if its Jacobian ψ′ satisfies

ψ′(y)TJψ′(y) = J.(28)

We shall find conditions on the coefficients c(u) of the NB-series NB(c, y) for it to
be symplectic, i.e., for (28) to hold for all y (in the sense of formal power series) for
each decomposition (2) and each Hamiltonian system (1), (27).

We first look at the situation where the individual parts are themselves Hamilto-
nian:

f [ν](y) = J−1 ∂H
[ν]

∂y
(y),(29)

with

H(y) =
N∑
ν=1

H [ν](y).(30)

THEOREM 2. Consider a sequence of coefficients c with c(∅) = 1. Then, the
corresponding NB-series is symplectic for arbitrary Hamiltonian problems (1), (27)
arbitrarily decomposed in Hamiltonian parts (2), (29)–(30) if and only if for each pair
of nonempty N -trees

c(u · v) + c(v · u) = c(u)c(v).(31)

The proof uses a series of lemmata. We begin by associating with each u ∈ NT
a matrix-valued function F ∗(u)(y) of the variable y. The (i, j) entry F ∗ij (u)(y) of
F ∗(u)(y) is recursively defined as follows (cf. the definition of the vector-valued
elementary differentials in (19)). For ν = 1, . . . , N ,

F ∗ij (τ [ν])(y) = f
[ν]i
j (y)

and, if u is the N -tree in (13),

F ∗ij (u)(y) = f
[ν]i
j,i1,...,im

F i1(u1)(y) · · ·F im(um)(y).

The matrices F ∗(u)(y) allow the recursive computation of the Jacobian matrices
F ′(u)(y).

LEMMA 1. Given a (not necessarily Hamiltonian) system (1), a decomposition (2),
and a nonempty N -tree u, the following equalities between matrix-valued functions of
y hold:

F ′(u) = F ∗(u) +
∑

w1,w2∈NT
w1·w2=u

k(u,w2)F ∗(w1)F ′(w2)

=
∑

w1∈NT,w2∈NT
w1·w2=u

k(u,w2)F ∗(w1)F ′(w2).(32)

Proof. Differentiate (19) with respect to yj . Differentiation in the first factor
f

[ν]
i1,...,im

(y) gives rise to the (i, j) entry of F ∗(u)(y). Differentiation in the second
factor F i1(u1)(y) gives rise to the (i, j) entry of F ∗(w1)(y)F ′(w2)(y) with w2 = u1,
w1 = [u2, . . . , um][ν], etc.
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1935

LEMMA 2. Assume that the right-hand side f of the Hamiltonian system (1),
(27) has been decomposed in Hamiltonian parts as in (2), (29)–(30). Then, for each
nonempty N -tree u, the following equality between matrix-valued functions of y holds:

F ∗(u)TJ + JF ∗(u) = 0.(33)

Proof. Since J is skew symmetric, (JF ∗(u))T ≡ −F ∗(u)TJ , and we have to prove
that JF ∗(u)(y) is symmetric. The (α, ω) entry of JF ∗(u)(y) is[

Jαif
[ν]i
ω,i1,...,im

(y)
]
F i1(u1)(y) · · ·F im(um)(y),

and it is sufficient to prove that the expression in square brackets is symmetric in α,
ω. This symmetry is established by noting that from (29),

Jαif
[ν]i
ω (y) =

∂

∂yω
(Jf [ν](y))α = H [ν]

αω(y).

LEMMA 3. In the situation of Lemma 2, for each nonempty N -tree z, the following
equalities between matrix-valued functions of y hold:∑

u∈NT,v∈NT
u·v=z

k(u · v, v)[F ′(u)TJF ′(v) + F ′(v)TJF ′(u)] = 0,(34)

F ′(z)TJ + JF ′(z) = −
∑

u,v∈NT
u·v=z

k(u · v, v)[F ′(u)TJF ′(v) + F ′(v)TJF ′(u)].(35)

Proof. Clearly, (35) is a rewriting of (34). Let us use (32) in the left-hand side of
(34) to get ∑

w1∈NT,w2,v∈NT
(w1·w2)·v=z

k(z, v)k(w1 · w2, w2)

×
[
F ′(w2)TF ∗(w1)TJF ′(v) + F ′(v)TJF ∗(w1)F ′(w2)

]
.(36)

Note that k(z, v)k(w1 ·w2, w2) is not altered by swapping v and w2: this is obvious if
v = w2, while for v 6= w2

k(z, v) = k((w1 · w2) · v, v) = k(w1 · v, v)

and

k(w1 · w2, w2) = k((w1 · w2) · v, w2) = k(z, w2).

Therefore, (36) may be rewritten as∑
w1∈NT,w2,v∈NT

(w1·w2)·v=z

k(z, v)k(w1 · w2, w2)F ′(w2)T
[
F ∗(w1)TJ + JF ∗(w1)

]
F ′(v),

an expression that vanishes in view of (33).
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1936 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

LEMMA 4. Consider an NB-series NB(c, y) with c(∅) = 1 relative to a decom-
position (2) of the (not necessarily Hamiltonian) two-dimensional problem (1). If we
set ψ(y) = NB(c, y), then the following equality of functions of y holds:

ψ′TJψ′ − J =
∑

u,v∈NT
(u,v) 6=(∅,∅)

hρ(u)

σ(u)
hρ(v)

σ(v)
c(u)c(v)F ′(u)TJF ′(v).(37)

If, furthermore, the system (1) is Hamiltonian (27) and has been decomposed in
Hamiltonian parts as in (2), (29)–(30), then

ψ′TJψ′ =
∑

u,v∈NT

hρ(u)

σ(u)
hρ(v)

σ(v)
[c(u)c(v)− c(u · v)− c(v · u)]F ′(u)TJF ′(v).(38)

Proof. The formula (37) is an obvious consequence of (21).
On separating the case where one of u, v is empty, we obtain from (37)

ψ′TJψ′ =
∑
z∈NT

hρ(z)

σ(z)
c(z)[F ′(z)TJ + JF ′(z)]

+
∑

u,v∈NT

hρ(u)

σ(u)
hρ(v)

σ(v)
c(u)c(v)F ′(u)TJF ′(v).(39)

We now use (35) to rewrite the first sum in (39) in the form

−
∑

u,v∈NT

hρ(u·v)

σ(u · v)
k(u · v, v)c(u · v)[F ′(u)TJF ′(v) + F (v)TJF ′(u)].(40)

Then (38) is a consequence of (15).
It is obvious that the theorem is a consequence of formula (38), in view of the

following result whose proof is given in the final section.
LEMMA 5. Given u, v ∈ NT there exists a polynomial Hamiltonian function H

with d = ρ(u) + ρ(v) + 1 degrees of freedom and a Hamiltonian decomposition (30)
such that, if w, z ∈ NT , the entry (1, d+ 2) of F ′(w)T (0)JF ′(z)(0) is nonzero if and
only if z = u and w = v.

3.2. The case of general parts. In this subsection f is Hamiltonian, so that
(27) holds, but the parts f [ν] themselves are not assumed to be Hamiltonian (i.e., (29)
does not necessarily hold). Since we now demand symplecticness for more general
decompositions, it is expected that (31), while still being necessary, is no longer
sufficient. In fact, we have the following result.

THEOREM 3. Consider a sequence of coefficients c with c(∅) = 1. Then the
following statements are equivalent.

(i) The NB-series NB(c, ·) is symplectic for all Hamiltonian systems (1), (27)
and all decompositions (2) (with not necessarily Hamiltonian parts).

(ii) For each pair of nonempty N -trees w, z,

c(w · z) + c(z · w) = c(w)c(z),(41)

and for each pair of nonempty N -trees u, v that only differ in the color of
their roots

c(u) = c(v).(42)
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1937

(iii) The NB-series NB(c, y) is equivalent in the sense in Theorem 1 to a sym-
plectic B-series.

Note that by (iii) it is impossible to have genuinely symplectic methods for decom-
posed systems if the parts f [ν] are arbitrary: a symplectic method for the decomposed
system can always be rewritten as a symplectic method for the undecomposed system.

Proof. We succesively show that (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (i).
Assume that NB(c, y) is symplectic as in (i). Then, by Theorem 2, (41) holds.

That (42) also holds follows, in view of (37), from Lemma 6 below.
Now assume that (ii) holds. We show that NB(c, y) is induced by a B-series,

i.e., that c(u1) = c(u2) if u1 and u2 only differ in the coloring of the vertices. It
is clearly sufficient to consider the case where u1, u2 only differ in the color of one
vertex. If this vertex is the root, then c(u1) = c(u2) by (42). If the vertex that is
colored differently in u1, u2 is a son of the root, then u1 = v · w1, u2 = v · w2, with
w1 and w2 differing only in the color of their roots. Then by (41), for i = 1, 2,

c(ui) = −c(wi · v) + c(v) + c(wi),

and the right-hand side of this expression does not depend on i because the pairs
w1 · v, w2 · v and w1, w2 only differ in the color of their roots. Hence c(u1) = c(u2).
If the vertex that is colored differently in u1, u2 is a son of a son of the root, then
u1 = v · (w · z1), u2 = v · (w · z2), with z1 and z2 differing only in the color of their
roots. From

c(ui) = −c((w · zi) · v) + c(v) + c(w · zi),

we conclude that c(u1) = c(u2) because the pairs (w ·z1) ·v, (w ·z2) ·v and w ·z1, w ·z2
only differ in the color of a son of their roots. By carrying on with this procedure
we show that NB(c, y) is in fact a B-series B(d, y). By (41) the coefficients of this
B-series satisfy the sufficient symplecticness condition in Theorem 2.

The implication (iii) ⇒ (i) is trivial.
The next lemma, whose proof is given in the final section, was required in the proof

of the theorem when showing that (42) follows from the symplecticness of NB(c, y).
LEMMA 6. Given two nonempty N -trees u, v differing only in the color of their

roots, there exists a polynomial Hamiltonian function H with d = ρ(u) + 1 degrees of
freedom and a decomposition (2) in non-Hamiltonian parts such that, if w, z ∈ NT ,
then the (1, d + 2) entry of F ′(w)T (0)JF ′(z)(0) is zero if and only if either w = ∅,
z = v or w = u, z = ∅. Furthermore,

[JF ′(v)(0)]1,d+2 = −
[
F ′(u)T (0)J

]
1,d+2 .

In the proof of the theorem we have showed indirectly that (41) and (42) are
necessary and sufficient for NB(c, y) to be symplectic. A direct argument, along
the lines of the proof of Theorem 2, will now be presented in view of the insight it
provides.

Lemma 1 still applies to the present situation where the parts are not assumed
to be Hamiltonian. Lemma 2 does not. However, f is Hamiltonian and the proof of
Lemma 2 is valid with f replacing f [ν]. This shows that the conclusion of Lemma 2
holds provided that we sum in ν. More precisely, we have the following lemma.

LEMMA 7. Assume that the right-hand side f of the Hamiltonian system (1), (27)
has been decomposed in not necessarly Hamiltonian parts as in (2). Then, for each
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1938 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

nonempty N -tree u,

N∑
ν=1

[F ∗(u[ν])TJ + JF ∗(u[ν])] = 0,

where u[ν] denotes the N-tree obtained from u by painting the root of u with the νth
color.

In turn, the following lemma, which again includes a summation in ν, replaces
Lemma 3.

LEMMA 8. In the situation of Lemma 7, for each nonempty N -tree z,

N∑
ν=1

[F ′(u[ν])TJ + JF ′(u[ν])]

= −
N∑
ν=1

∑
u,v∈NT
u·v=z[ν]

k(u · v, v)
[
F ′(u)TJF ′(v) + F ′(v)TJF ′(u)

]
.

Finally, we show that (38), leading to the equivalence of (i) in the theorem and
(41), still holds. However, to carry our argument through, we need (42) in order to
be able to take c(z[ν]) as a common factor in the summation over colors.

LEMMA 9. In the situation of Lemma 7 assume that c(u) = c(v) whenever u and
v differ only in the color of their roots. Then (38) holds.

Proof. Since ρ(z), σ(z), and c(z) do not change their values when the color of
the root of z is changed, we may rewrite the right-hand side of (39) in the form

∑
z∈NT [1]

hρ(z)

σ(z)
c(z)

N∑
ν=1

[F ′(z[ν])TJ + JF ′(z[ν])]

+
∑

u,v∈NT

hρ(u)

σ(u)
hρ(v)

σ(v)
c(u)c(v)F ′(u)TJF ′(v).

By Lemma 8, the first summation equals (40). After this, the proof is identical to
that of Lemma 4.

4. Order conditions for symplectic NB-series. Assume that a numerical
method for the, not necessarily Hamiltonian, problem (1)–(2) is such that the expan-
sion of yn+1 is an NB-series NB(c, yn) for a method-dependent sequence of coefficients
c(u) with c(∅) = 1. Then, by comparing the NB-series for the true and numerical
solutions, we conclude that the conditions

c(u) =
1

γ(u)
, 1 ≤ ρ(u) ≤ r,(43)

are sufficient for the method to be consistent of order r. The conditions (43) are also
necessary to have order r for arbitrary (1)–(2), because the elementary differentials
are independent, as shown by the following result to be proved in the final section.

LEMMA 10. Given a nonempty N -tree u, there exists a polynomial Hamiltonian
H with d = ρ(u) degrees of freedom and a decomposition (2) in Hamiltonian parts
(29)–(30) such that if v ∈ NT , then F 1(v)(0) 6= 0 if and only if v = u.
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1939

The fact that in this lemma the problem being integrated can be chosen to be
Hamiltonian with a Hamiltonian decomposition implies that the order of an NB-series
method when applied to arbitrary Hamiltonian decompositions of arbitrary Hamilto-
nian right-hand sides is not higher than when applied to arbitrary non-Hamiltonian
right-hand sides. In other words, the order of consistency of a method is not increased
by restricting the attention to Hamiltonian problems with Hamiltonian decomposi-
tion. (It is, on the other hand, well known that the order of a method is in general
higher for scalar problems, than for general problems, because for scalar problems,
not all elementary differentials are independent; see, e.g., [5].)

Now assume that the symplecticness condition (31) is satisfied. Then, it is ex-
pected that the order conditions in (43) are not all independent. This was first
noticed for Runge–Kutta methods in [21] and is a consequence of the fact that sym-
plectic transformations possess a scalar generating function [22] or may be expressed
in terms of a modified Hamiltonian function [22], [10]. From (17), if u, v ∈ NT , then

1
γ(u · v)

+
1

γ(v · u)
=

1
γ(u)

1
γ(v)

.(44)

Therefore, if the symplecticness condition (31) holds and the order conditions for the
N -trees u and v are satisfied, then the order conditions for u·v and v ·u are equivalent.

It is convenient to introduce in NT an equivalence relation ∼ defined as the
finest equivalence relation such that u ·v and v ·u are in the same equivalence class for
u, v ∈ NT (finest equivalence relation means the equivalence relation with smallest
equivalence classes). Since, in the pictorial representation of N -trees, going from u · v
to v · u corresponds to “moving the root one vertex away,” it turns out that u ∼ v if
and only if u and v only differ in the location of their roots, i.e., they are identical as
free (unrooted) graphs. In other words, there is an equivalence class per nonempty
free N -tree.

Following [21], we say that a free N -tree is superfluous if, when seen as an equiv-
alence class of (rooted) N -trees, it contains an N -tree of the form u · u. By taking
u = v in (44) and (31), we see that the order condition for u ·u is implied by the order
condition for u. Summing up, we have arrived at the following extension of Theorem
2.2 in [6].

THEOREM 4. Suppose that an NB-series method possesses order of consistency
≥ r − 1, r ≥ 2 and satisfies the symplecticness condition (31). Then the method has
order ≥ r if (and only if) each nonsuperfluous free N -tree of order r contains an
N -tree z for which the order condition c(z) = 1/γ(z) holds.

A detailed counting of the number of order conditions for symplectic and general
methods cannot be included here for reasons of brevity. The interested reader is
referred to Araújo’s forthcoming thesis.

5. Decompositions based on partitioning the components.

5.1. General Hamiltonians. For Hamiltonian system (1), (27) the components
of y are naturally partitioned into two parts y = (pT , qT )T , p = (y1, . . . , yd)T , q =
(yd+1, . . . , y2d)T . In applications to mechanics, the components pi of p are momenta
and the components qi of q are coordinates. In view of this partition of y, we may
partition f into two parts (cf. (7)):

f [1]i(y) = f i(y) = −∂H(p, q)
∂qi

, i = 1, . . . , d,

f [1]i(y) = 0, i = d+ 1, . . . , 2d,
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1940 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

f [2]i(y) = 0, i = 1, . . . , d,

f [2]i(y) = f i(y) =
∂H(p, q)
∂pi−d

, i = d+ 1, . . . , 2d.

Note that the parts f [1], f [2] are not Hamiltonian. However, nontrivial symplectic
integrators may exist (cf. Theorem 3). This is possible because, due to the block
structure of f [1], f [2] and the matrix J ,

F ′(u)TJF ′(v) = 0, u, v ∈ NT [i]
, i = 1, 2,(45)

so that in (37) the terms where u and v have roots of the same color vanish. The
second part of Lemma 4 is not applicable to investigating symplecticness, and we have
to resort to the alternative Lemma 9, whose application requires that c(u) = c(v)
whenever u and v only differ in the color of their roots. We then obtain the “if” part
of the following theorem.

THEOREM 5. Let N = 2 and consider a sequence of coefficients c with c(∅) = 1.
Then the corresponding 2B-series is symplectic for arbitrary Hamiltonian problems
(1), (27) decomposed by (p, q)-partitioning if and only if the following conditions hold.

(i) If u ∈ 2T
[1]

and v ∈ 2T
[2]

, then c(u · v) + c(v · u) = c(u)c(v).
(ii) If u ∈ 2T

[1]
and v ∈ 2T

[2]
differ only in the color of their roots, then c(u) =

c(v).
The “only if” part is shown by constructions similar to those used in the proofs

of Lemmata 5 and 6; see [17] or [10].
To discuss the order conditions, Hairer [10] introduced an equivalence relation ∼∗

in NT defined as the finest equivalence relation for which (i) u · v ∼∗ v · u if u ∈ 2T
[1]

and v ∈ 2T
[2]

, and (ii) u ∼∗ v, if u ∈ 2T
[1]

and v ∈ 2T
[2]

differ only in the color
of their roots. The equivalence relation ∼ in the preceding section is not finer (i.e.,
does not possess smaller equivalence classes) than ∼∗, because, when u and v have
roots of the same color, u · v and v · u are ∼ related, but not necessarily ∼∗ related.
But ∼ is not coarser than ∼∗ because if u and v differ only in the color of their
roots, then they are ∼∗ related but not necessarily ∼ related. The identification of
the ∼∗ equivalence classes with suitable graphs called H-trees is due to Murua [18].
A result similar to Theorem 4 holds with H-trees playing the role played there by
nonsuperfluous N -trees.

5.2. Separable Hamiltonians. For the particular case of separable Hamilto-
nians,

H(p, q) = T (p) + V (q),(46)

the (p, q)-partitioning leads to Hamiltonian parts f [1], f [2], and therefore this de-
composition is covered by Theorem 2. The relation (45), of course, still applies, but
furthermore, f [1] does not depend on p and f [2] does not depend on q, and this implies
that F (u) ≡ 0 if u ∈ 2T is such that two adjacent vertices possess the same color.
It is then enough to consider the set S2T of special 2-trees comprising those 2-trees
where the color of a son is the opposite of the color of its father. We then obtain the
“if” part of the following theorem.

THEOREM 6. Let N = 2 and consider a sequence of coefficients c with c(∅) = 1.
Then the corresponding 2B-series is symplectic for arbitrary separable Hamiltonian
problems (1), (27), (46) decomposed by (p, q)-partitioning if and only c(u·v)+c(v ·u) =
c(u)c(v) for u ∈ S2T

[1]
and v ∈ S2T

[2]
.
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1941

The “only if” part requires a construction similar to that in Lemma 5 (see [17],
[10]), this time involving a separable Hamiltonian.

To study the order conditions, an equivalence relation is introduced. This time,
each equivalence class corresponds to a free special 2-tree, a tree without a root where
the vertices have been painted with two colors in such a way that adjacent vertices
receive different colors (these graphs are called bicolor (unrooted) trees in [22]). A
result similar to Theorem 4 holds with free special 2-trees playing the role played
there by nonsuperfluous N -trees.

6. Application to ARK Methods.

6.1. A sufficient condition for symplecticness. We begin with sufficient
conditions. Note the low smoothness required.

THEOREM 7. (i) Assume that the system (1) is Hamiltonian with a general de-
composition (2), with f , f [ν] of class C1 in an open subset of R2d. Assume that, for
a given h, the formulae (5)–(6) define a mapping ψ : yn 7→ yn+1 in an open subset of
R2d. Then the conditions

b
[ν]
i = b

[µ]
i , i = 1, . . . , s, µ, ν = 1, . . . , N,(47)

and

b
[ν]
i a

[µ]
ij + b

[µ]
j a

[ν]
ji − b

[ν]
i b

[µ]
j = 0, i, j = 1, . . . , s, µ, ν = 1, . . . , N,(48)

are sufficient for ψ to be a symplectic transformation.
(ii) If in (i) the parts f [ν] are themselves Hamiltonian, then (48), on its own, is

sufficient for ψ to be symplectic.
Proof. It is similar to the proof for Runge–Kutta and partitioned Runge–Kutta

methods [22] and will not be given.
We now describe the family of methods satisfying (48). It is possible to assume

that if, for given i and ν, b[ν]
i = 0, then a

[ν]
ji = 0 for each j = 1, . . . , s. In fact, the

conditions b[ν]
i = 0, a[ν]

ji 6= 0 substituted in (48) imply b[µ]
j = 0 for all µ, and then the

stage Yn,j is not used by the method. Therefore, after suppressing redundant stages,
we may parameterize the a[ν]

ij , i, j = 1, . . . , s, ν = 1, . . . , N , in the form a
[ν]
ij = λ

[ν]
ij b

[ν]
j ;

if b[ν]
j 6= 0, then λ[ν]

ij = a
[ν]
ij /b

[ν]
j , while for b[ν]

j = 0, the value of λ[ν]
ij is of no consequence.

With this parameterization (48) becomes

b
[ν]
i b

[µ]
j (λ[µ]

ij + λ
[ν]
ji − 1) = 0, i, j = 1, . . . , s, µ, ν = 1, . . . , N,(49)

a system that possesses the family of solutions

b
[ν]
i free, i = 1, . . . , s, ν = 1, . . . , N,

λ
[ν]
ii =

1
2
, i = 1, . . . , s, ν = 1, . . . , N,

λ
[ν]
ij = µij , , i, j = 1, . . . , s, j > i, ν = 1, . . . , N,

λ
[ν]
ij = 1− µji, , i, j = 1, . . . , s, j < i, ν = 1, . . . , N,(50)

where µij , j > i are free parameters. It is not difficult to show that, for methods
without redundant stages, (50) provides all solutions of (49), in the sense that other
possible solutions are obtained from (50) by changing the value of the λ[ν]

ij ’s for which
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1942 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

the corresponding b[ν]
j vanishes. In conclusion, for methods without redundant stages,

the solutions of (48) are given by the following family with sN + s(s − 1)/2 free
parameters:

b
[ν]
i free, i = 1, . . . , s, ν = 1, . . . , N,

a
[ν]
ii =

b
[ν]
i

2
, i = 1, . . . , s, ν = 1, . . . , N,

a
[ν]
ij = b

[ν]
j µij , , i, j = 1, . . . , s, j > i, ν = 1, . . . , N,

a
[ν]
ij = b

[ν]
j (1− µji), , i, j = 1, . . . , s, j < i, ν = 1, . . . , N.(51)

All these methods are implicit. To obtain diagonally implicit methods with a
[ν]
ij = 0

for j > i, we have to set all the µij = 0, and this leaves a family with sN free
parameters. By choosing some of the b[ν]

i to be zero, it is possible to gain favorable
sparsity patterns, as examplified by method (10).

From (51), it is clear that a method that satisfies both (47) and (48) is equivalent
to a symplectic standard Runge–Kutta method, as one may have conjectured from
Theorem 3.

6.2. NB-series approach. After the sufficient condition in Theorem 7, we ap-
ply the results of section 2 to the investigation of necessary and sufficient conditions
for the NB-series associated with an ARKN method to be symplectic. The techniques
are similar to those in [11]. We shall use the following lemma. An ARKN is said to
be S-reducible if it has two identical stages Yn,i ≡ Yn,j .

LEMMA 11. For the ARKN method (4), consider the Ns ×∞ matrix G, whose
columns are given by(

g[1]
1 (u), . . . ,g[1]

s (u); . . . ; g[N ]
1 (u), . . . ,g[N ]

s (u)
)T

,(52)

where u ranges over NT . Then the method is S-irreducible if and only if G has full
rank Ns.

Proof. If the method is not S-irreducible, then s > 1 and there are indices i, j,
i 6= j, such that Yn,i ≡ Yn,j and hence g[ν]

i (u) = g[ν]
j (u) for u ∈ NT and all ν. Then

G has, at most, rank N(s− 1).
Assume now that the method is S-irreducible. We observe that (26) implies that

if u has root of color ν, then the column vector (52) has 0 entries except for the block(
g[ν]

1 (u), . . . ,g[ν]
s (u)

)T
.(53)

Therefore, G has rank Ns if and only if each of the s×∞ matrices G[ν] with columns
(53) (u ∈ NT [ν]

) has full rank s. Fix ν = 1, . . . , N . It is clear that it is sufficient to
show that there exists an∞× s matrix C with columns Ci, i = 0, . . . , s−1, such that
G[ν]C is an invertible Vandermonde matrix.

Assume that the N -trees in NT
[ν]

have been ordered in such a way that the first
column in G[ν] corresponds to τ [ν]. Then, by (25), the choice C0 = (1, 0, 0, . . .)T

ensures that the first column of G[ν]C is the vector (1, . . . , 1)T . In point (i) below
we show that C1 can be chosen (with finitely many nonzero components) so that
G[ν]C1 = (η1, . . . , ηs)T with ηi 6= ηj for i 6= j. Finally, in point (ii) below, we show
how to choose C2, . . . , Cs−1 so that G[ν]Cl = (η`1, . . . , η

`
s)
T . This concludes the proof

of the lemma.
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1943

(i) Since the method is S-irreducible, to each pair (i, j) with i 6= j, there corre-
sponds u ∈ NT [ν]

such that di(u) 6= dj(u). By (26),

g[ν]
i ([u][ν]) = di(u) 6= dj(u) = g[ν]

j ([u][ν]).

It is clear that we may select finitely many constants αk and N -trees uk ∈
NT

[ν]
such that

ηi =
∑
k

αkg
[ν]
i ([uk][ν])

are such that ηi 6= ηj for i 6= j.
(ii) Take the `th power of ηi:

η`i =
(∑

k

αkg
[ν]
i ([uk][ν])

)`
=

∑
k1,...,k`=1

αk1 · · ·αk`g
[ν]
i ([uk1 ][ν]) · · ·g[ν]

i ([uk` ]
[ν]).

According to (26),

η`i =
∑

k1,...,k`=1

αk1 · · ·αk`di(uk1) · · ·di(uk`)

=
∑

k1,...,k`=1

αk1 · · ·αk`g
[ν]
i ([uk1 , · · · , uk` ][ν]).

The next result shows that the condition (48), which has been proved to be
sufficient for symplecticness in the case of Hamiltonian parts, is also necessary. Note
that, in Theorem 2, (31) is necessary for symplecticness in the sense of formal series
for polynomial Hamiltonians (see Lemma 5). For h small enough, the series actually
converge, so that we shall in fact prove that (48) is necessary for the method to
define a symplectic transformation when applied with small step-sizes to polynomial
Hamiltonians decomposed in Hamiltonian parts. By implication, the family (51)
comprises all irreducible symplectic ARKN methods.

THEOREM 8. Assume that the ARKN method (4) is S-irreducible. Then the
necessary and sufficient condition (31) for the symplecticness of the corresponding
NB-series for arbitrary Hamiltonian systems (1), (27) decomposed in Hamiltonian
parts (2), (29)–(30) is equivalent to (48).

Proof. Denote by m
[ν,µ]
ij the left-hand side of (48). If u, v ∈ NT , then, by the

definition of m[ν,µ]
ij ,

s∑
i,j=1

N∑
ν,µ=1

m
[ν,µ]
ij g[ν]

i (u)g[µ]
j (v) =

s∑
i=1

N∑
ν=1

b
[ν]
i g[ν]

i (u)di(v)

+
s∑
j=1

N∑
µ=1

b
[µ]
j dj(u)g[µ]

j (v)

−
( s∑
i=1

N∑
ν=1

b
[ν]
i g[ν]

i (u)
)( s∑

j=1

N∑
µ=1

b
[µ]
j g[µ]

j (u)
)
.
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1944 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

By (26), the right-hand side of this expression equals

s∑
i=1

N∑
ν=1

b
[ν]
i g[ν]

i (u · v) +
s∑
i=1

N∑
ν=1

b
[ν]
i g[ν]

i (v · u)

−
( s∑
i=1

N∑
ν=1

b
[ν]
i g[ν]

i (u)
)( s∑

i=1

N∑
ν=1

b
[ν]
i g[ν]

i (u)
)
,

which, by (24), coincides with

c(u · u) + c(v · u)− c(u)c(v).

Thus (31) is equivalent to GTMG = 0, where M is the block matrix with blocks

M [ν,µ] =


m

[ν,µ]
11 · · · m

[ν,µ]
1s

...
. . .

...
m

[ν,µ]
s1 · · · m

[ν,µ]
ss

 ,
and G is as in the preceding lemma. If the method is S-irreducible, G has full rank
and GTMG = 0 if and only if M = 0.

The last result in this section implies that if an ARKN method defines a symplectic
transformation when applied with small h to polynomial Hamiltonians decomposed
in non-Hamiltonian parts, then (47) and (48) hold. As we discussed above, this in
turn implies that the method is equivalent to a (symplectic) standard Runge–Kutta
method.

THEOREM 9. Assume that (4) is S-irreducible. Then the condition (ii) in Theorem
3, guaranteeing symplecticness for non-Hamiltonian parts, is equivalent to (47)–(48).

Proof. After the preceding theorem we have to show that (47) and (42) are
equivalent. We now introduce the quantities

p
[ν,µ]
j = b

[ν]
j − b

[µ]
j

and the matrix P with blocks

P [ν,µ] =
[
p

[ν,µ]
1 · · · p

[ν,µ]
s

]
.

By using techniques similar to those in the preceding proof it is possible to show that
(42) is equivalent to PG = 0. Since G has full rank, the later condition amounts to
P = 0.

7. Technical results.
Proof of Lemma 10. We monotonically label the vertices of u with the labels

{1, 2, . . . , d} and consider the Hamiltonians

H [ν](y) =
∑

i=1,...,d
vertex i has color ν

qi
∏

j is a son of i

pj ,

with the standard convention that a product over an empty set of indices is 1.
In the corresponding Hamiltonian system, for i = 1, . . . , d,

f [µ]i(y) = −δµνi
∏

j is a son of i

pj ,(54)
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SYMPLECTIC METHODS BASED ON DECOMPOSITION 1945

where νi is the color of vertex i. By setting i = 1 in (54), we conclude that, if
F 1(v)(0) 6= 0, then the root of v must have color ν1, i.e., the color of the root of u.
Furthermore, if the root of u has k sons, then all partial derivatives of∏

j is a son of 1

pj

of order different from k vanish at the origin. Therefore, F 1(v)(0) 6= 0 also implies
that in v the root has k sons. We now consider (54) with i a son of the root and apply
a similar argument to conclude that, if F 1(v)(0) 6= 0, then, in u and v, the sons of
the roots are equally colored and have the same number of sons. The iteration of this
argument concludes the proof.

Proof of Lemma 6. Given u and v differing only in the color of the root, we label
the vertices of u other than the root with the labels {3, 4, . . . , d} and construct the
Hamiltonian

H(y) = p1q2
∏

j is a son
of the root

pj +
d∑
i=3

qi
∏

j is a son of i

pj .

The equations of motion for p1, p2, q1, and q2 are

ṗ1 = f1 ≡ 0,

ṗ2 = f2 = −p1
∏

j is a son
of the root

pj ,

q̇1 = fd+2 = q2
∏

j is a son
of the root

pj ,

q̇2 = fd+2 ≡ 0.

For each ν, we set f [ν]2 = δννuf
2, where νu is the color of the root of u, f [ν]d+1 =

δννvf
d+1 and f [ν]1 = f [ν]d+2 = 0. This makes f [νu] and f [νv ] non-Hamiltonian. The

equations of the motion for the variables pi, i = 3, . . . , d, are

ṗi = −
∏

j is a son
of the root

pj

and are decomposed as follows (cf. (54)):

f [µ]i(y) = −δµνi
∏

j is a son of i

pj .(55)

The fd+i, i = 3, . . . , d, play no role in the argument and, for simplicity, they are
decomposed as f [ν]d+i = δ1νf

d+i; i.e., they are all allocated to f [1].
We now prove that for the matrix F ∗(w) in Lemma 1, if w ∈ NT ,

F ∗k1 (w)(0) 6= 0⇔ k = 2, w = u,(56)

and

F ∗kd+2(w)(0) 6= 0⇔ k = d+ 1, w = v.(57)
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1946 A. ARAÚJO, A. MURUA, AND J. M. SANZ-SERNA

The element F ∗k1 (w)(0) involves differentiation with respect to p1. As a consequence,
F ∗k1 (w)(0)6= 0 implies k = 2, because, for k 6= 2, f [ν]k is either independent of p1 or
depends on p1 through the combination p1q2 and fd+2 ≡ 0. Then F ∗k1 (w)(0) 6= 0
implies that w is of the form [w1, . . . , w`][νu] and

F ∗k1 (w) =
∂`

∂yi1∂yi2 · · · ∂yi`
∂f [ν]2

∂p1 F i1(w1) · · ·F i`(w`).

By definition of f [ν]2,

F ∗k1 (w) = − ∂`

∂yi1∂yi2 · · · ∂yi`

 ∏
j is a son

of the root

pj

F i1(w1) · · ·F i`(w`).

From this formula and (55) we conclude that w = u by using exactly the same
argument as in the proof of Lemma 10. Thus (56) holds; (57) is dealt with in a
similar way.

Next, by using (32) and induction on the order of w, it is possible to show that
(56) and (57) imply, for w ∈ NT ,

F k1 (w)(0) = F ∗k1 (w)(0),
F kd+2(w)(0) = F ∗kd+2(w)(0).

Now the lemma is a consequence of the formula(
F ′(u)T (0)JF ′(v)(0)

)
1,2+d

=
2d∑
k=1

±F k1 (u)T (0)F k2+d(v)(0),

where k is the index conjugate to k (i.e. k = k + d if k ≤ d and k = k − d if
k > d).

Proof of Lemma 5. Given u and v, we label the vertices of u differently from the
root with the labels {4, . . . , ρ(u) + 2} and label the vertices of v differently from the
root with labels {ρ(u) + 3, . . . , d}. With each vertex of u or v we associate a “piece”
of Hamiltonian function as follows:

Root of u −→ q2q3
∏

j is a son of
the root of u

pj ,

Root of v −→ p1p3
∏

j is a son of
the root of v

pj ,

Vertex i ≥ 4 in u or v −→ qi
∏

j is a son of i

pj .

Now, for ν = 1, . . . , N , H [ν] is defined by summing the pieces of the vertices of color
ν. For instance, if u and v are, respectively, the last and the last but one N -trees in
Table 1, the construction above leads to

H [1](y) = q5 + q6, H [2](y) = q4p5 + p1p3p6p7 + q7, H [3](y) = q2q3p4.

To prove that the Hamiltonians H [ν] constructed here satisfy the conclusion of the
lemma we follow an argument similar to that used in the proof of Lemma 6. See also
the proof of Lemma 2.2.7 in [17].
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tegrating the system ẍ = ∂U/∂x, U.S.S.R. Comput. Math. and Math. Phys., 29 (1989),
pp. 138–144.

D
ow

nl
oa

de
d 

01
/0

3/
14

 to
 1

57
.8

8.
33

.3
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


