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Abstract. We study the propagation of errors in the numerical integration of relative equilibria

solutions of differential equations with symmetries. In the Hamiltonian case and for stable
equilibria, the error growth is typically quadratic for ‘general’ schemes and linear for schemes
that preserve the invariant quantities of the problem. Numerical results are presented.

AMS classification scheme numbers: 65L05, 70H05

1. Introduction

The purpose of this paper is to study the propagation of errors in the numerical integration
of relative equilibria. In recent years there has been a growing interest in the construction
and analysis of so-called geometric integrators [15], i.e. of numerical methods for the
integration of initial-value problems that take into account geometric properties of the system
of differential equations under consideration. The most extensively researched case is that
of symplectic integrators for Hamiltonian problems [11, 16]. Geometric integrators may be
superior not only from a qualitative point of view but also quantitatively; some cases studied
in the literature include periodic orbits [2-5, 8] and integrable systems [2, 10]. A reference
of particular relevance to us is [9], that deals with the time-integration of travelling wave
solutions of partial differential equations. The study in [9] uses the Korteweg—de Vries
equation as a model problem: it is shown that while for ‘general’ schemes the error growth
is quadratic, conservative schemes exhibit linear error growth. The results of [9] are based
on an investigation of the direction in phase space of the local error: conservative methods
align their local errors along directions that are not very harmful. The analysis of [9] does
not identify the geometric mechanisms that lead to favourable error propagation in geometric
integrators; the reader may be left with the impression that the cancellations obtained are a
matter of luck and would only hold for the specific case of the Korteweg—de Vries equation
and travelling wave solutions. In this paper and in the subsequent article [7] (both based
on the thesis [6]) we show that the situation investigated in [9] is not exceptional and
typically holds for stable relative equilibria of Hamiltonian problems, including travelling
wave solutions of Hamiltonian partial differential equations. Earlier studies of error growth
in the simulation of integrable systems and periodic orbits are also subsumed in the geometric
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1548 A Duran and J M Sanz-Serna

framework considered in this paper. Our framework clearly identifies the geometric reasons
that underlie the ‘success’ of geometric integrators in many applications. This paper deals
with the more geometric aspects of the matter and, to avoid technicalities, treats the case
of ordinary differential equations. In [7] we shall consider travelling wave solutions. The
main conclusion is that, for a wide class of equations, the error in the integration of a
relative equilibrium solution grows quadratically for ‘general’ methods and only linearly for
‘conservative methods’. While the mathematical proofs are restricted to relative equilibria,
the conclusions of the study on the benefits of conservative schemes appear experimentally
to be valid for other classes of solutions (see section 4 below).

This paper is structured as follows. Section 2 summarizes definitions and basic results
about differential equations with symmetries and their relative equilibria [1, 13, 14]. In
order to be accessible to as wide a readership as possible, we have tried to present a self-
contained approach that can be read without a deep geometric background. The main results
are presented in section 3 and section 4 contains some numerical illustrations.

2. Relative equilibria

2.1. Vector fields and flows

We consider vector fieldg, defined in a given domai® of R”, and the corresponding
differential systems

u=gu). 1)

For eacht, the phase flowy, , is a mapping inR” such thaty, ,(«) is the value at
time ¢ of the solution of (1) that at time O takes the initial value For simplicity, we
assume that for eache R the domain ofy; , is the whole<, i.e. that all solutions of (1)
exist for allr € (—o0, 00). As ¢ varies, the mappingg: , form a one-parameter group of
diffeomorphismsp; , : Q@ — Q,

Dt+s,8 = Pt,g © Ps.g» $o,g = Id,

whose phase velocity field s,

d

afﬂzfg(u) = g(¢r¢()), ueQ. )
In particular,g can be recovered by evaluating (2)rat 0,

d

E(pl,g(u”l:O =g(u), ucQ. ©)

The vector fieldg is said to be the infinitesimal generator of the grdup,}.

If f andg are vector fields o2, the corresponding flows generally do not commute.
The commutativity condition for the flows can be written in terms of the Lie bracket of the
vector fields [14]:

Vs, t, @t f OPs,g = Y5, 0Pt f < [fv g] =0, (4)
where [f, g] is the vector field
[f, gl(w) = g'(u) f(u) — f'w)g(u), u e 2.

Here and later, the prime denotes the corresponding Jacobian matrix.
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2.2. Symmetry groups of differential equations

Let f be a vector field or2. A group G of diffeomorphisms inQ is a symmetry group
[14] of the systemi = f(u) or f admitsG as a symmetry group if

Vt,YG € G,Vu € Q, 01, ((Gu)) = G(gr, r(u)). (5)

The condition (5) means that the solution— ¢, ;(G(u)) corresponding to the
transformed initial datun®; (1) is obtained by transforming bg the solutiong, f(u).

If we differentiate (5) with respect tp, evaluate at = 0 and use (3), we obtain the
symmetry condition in terms of the fiell of the system; namely

YG G, YueQ F(Gw) =G (u) f(u). (6)
We can also use Lie brackets to express the symmetry conditignisl&n infinitesimal
generator of the grou@ (i.e. {¢; , : t € R} is a one-parameter subgroup@fand f admits

G as a symmetry group then, by (4) and (§) §g] = 0. Conversely, if [, g] = 0 for all
the generators of then f admits the groupy.

2.3. The Abelian case

From now on, we consider vector fields g, ..., g, defined in a domai2 ¢ R? and
satisfying the following conditions.
(H1) For eachu € , the vectorsi(u), ..., g,(u) are linearly independent.

(H2) [f.g1=0, j=1,...v.
(H3) [gi.g1=0, i, j=1,...,v.

We still suppose that the phase flows,, ¢, ,,,i = 1,..., v are defined in the whole
of Q. For each(zy, ..., 1,) € R’ we have a diffeomorphism a2
G(T15~~~~,Tv) = Pr1,81 © Pr2,82 0" O P10 (7)

The hypothesis (H3) implies that the transformations (7) form an Abeliparameter
groupG: Go=1d,G,,...,) © Gioy,....00) = G(riton....to+0,)- The condition (H2) shows that
G is a symmetry group for the system

u= f(u), ue Q. (8)

Due to the presence of the symmetry gratipthe dynamics of (8) can be studied
by means of a simpler system called tieeluced systemSince (H1) holds, all the orbits
{Grp...r,(u) : (11,...,7,) € R} of the group arev-dimensional submanifolds (this is a
simple consequence of the implicit function theorem). We can construcethueed phase
spacewith dimensionD — v by identifying points inQ that belong to the same orbit of
the group{G(u) : G € G}. Thus a point in the reduced space is an orbit of the group.
The system (8) inQ2 gives rise in a natural way to a new system in the reduced phase
space, the so-called reduced system. We describe how to write the reduced system in local
coordinates. Givemg € 2, due to (H1), (H3) [14] there is a neighbourhobdof «, and

a local change of variables i that carriesg;,i = 1, ..., v into the constant vector field
equal to theith coordinate vecto(0, 0, ...,1,0,...,0)7 (the 1 is in theith place). Thus,
there are coordinate&, y) = (x1,..., Xy, ¥1,..., Yyp—y) in U for which the elements of
the groupG can be expressed in the form
G(‘rl,...,‘tv)(-x’ )’) = (X]_ + Tl ooy Xy + Ty, Y1, -+ yD—l))v (-xv y) eU. (9)
The system (8) can then be written as
x = Fi(y), (10)

y = Fa(y), (12)
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(x is not an argument of;, F, as these admit the group of translations (9)) and the reduced
system is locally (11). Therefore, the integration of the origibatlimensional system is
reduced to the integration of (11), which (® — v)-dimensional, and t@ quadratures to
recoverx(r) = [ Fi(y(t)) dr.

An example will now be presented. The planar system

Uy = ui/uz, Uy = u%/ul, (12)

is invariant with respect to the one-parameter group of dilat@n@:1, uy) = (€' u1, €uy).

(To see this, note that the infinitesimal generator of the groufis, u,) = (u1, u2) and

check that [, ¢g] = 0; alternatively one may see geometrically that (6) holds.) The group
orbits are rays through the origin and the reduced phase space may be identified with the unit

circumference. In this example, thevariable is given by = Iog,/uﬁ + u% because the

transformation(uy, uz) — (€ u1, € uy) increasesc by r. Furthermore we take = uy/u;
(any function of the quotient = u;/u, may do as well). In terms of the new variables
(12) becomes

1+y*
=T 02
yad+y9)
Essentially, the second equation in (13) (i.e. the reduced system) describes the evolution of
the argument of the poin:1, u) in the plane. The first equation governs the evolution of
the modulus,/u? + u2, i.e. the drift along group orbits. After integration of theequation

by separation of variables one may fin@) by quadrature. We have more or less reproduced
the elementary technique of integration of the ‘homogeneous’ equatipfdieh = u3/u3
by takingui/u, as a new variable.

2.4. Relative equilibria and their variational equations

The equilibria of the reduced system play an important role in many applications. In the
situation described in the preceding section, a peit 2 is arelative equilibrium[1, 13]
if there exist real numbersé, ..., Ay such that

fwo) = Mogi(uo) =0. (14)

i=1
The following lemma shows the implications of the condition (14).

Lemma 2.1. Assume that, for the system (8), the conditions (H1)-(H3) hold.
(i) Let ug be a relative equilibrium as in (14). Then

@, f(uo) = G(ml ;)L(V))(MO), (15)

which in particular shows that
{¢r.r(uo) 11 € R} C{Gry,.ry(0) © (11, ..., T) € RYY, (16)

I.e. that, for each, ¢, r(uo) is contained in the group orbit throughy.
(i) Conversely, if (16) holds then there are real numbgjggor which (14) is satisfied.

Thus, relative equilibria are precisely the points that project to an equilibrium of the
reduced system. For instancepit= 1, D = 2 andg consists of all planar rotations around
the origin, a relative equilibrium would be a poimg such that for all, ¢, (1) can be
obtained by rotating.o by a suitable angle:(r). Note that by (15)(¢) is necessarily of
the forma(r) = /\ét, i.e. ¢ r(uo) rotates at a uniform rate.
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In the particular case where in (14) alj vanish we havef (ug) = 0 and the relative
equilibrium is in fact an equilibrium.
In the example (12) the condition (14) is given by

2 2
(ﬂ, @> — A1, uz) = O. (17)

Elimination of A leads tou? = u2, so that the relative equilibria are given by the points
on the diagonals; = +u,. These points have = u;/u; = £1 so that they project to
equilibria of the reduced system (see (13))= y? — 1. Furthermore, ifu; = uy, from
(17), we haver = 1 leading to the solutions of the foram () = €«, us(t) = €a. For

up = —uy, (17) yieldsr = —1, leading tou;(t) = € ‘«, ux(t) = —e'a. These are the
only solutions of (12) whose trajectories on tha, u,) plane are rays through the origin,
i.e. orbits of the group.

.....

8i (G([A%,,,,ﬁz)\s) (uo)) = G/(t)né t)»(‘;)(uO)g[ (MO), i = 1, s Ve (18)

.....

.....

= fu().

That proves (i). If a solutiom(z) of (8) is contained in the orbi{G (o) : G € G} then the
phase velocity vectoy (1) must be tangent aty to the orbit. This implies (14) because
the g; (up) span the tangent space to the orbit. O

The variational equation governs the way in which the local errors in a numerical
integration build up to give the global error. The next result describes the properties of the
variational equation near a relative equilibrium.

Lemma 2.2. Assume that, for the system (8), the conditions (H1)—(H3) hold lif a
relative equilibrium as in (14) ang, r(uo) = u(t) then the following results hold.
(i) The solutions of the homogeneous variational equation

8() = f' ()8 ()
resulting from linearizing (8) around(z) are of the form

5(l‘) = /(t)\é IAB)(uO)A(I)’ (19)

.....

whereA(t) is a solution of the linear system with constant coefficients
v

AW =LA@, L= f'(uo) = Y rgi(uo) (20)

i=1
resulting from linearizing the differential equation
v
= fu)— Y rgiw)
i=1

around its equilibrium.
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(i) Ois an eigenvalue of. and g; (ug) e KerL,i =1,...,v.
(iii) Let s be a vector field that admits the one-parameter gréGp,: . ;) 7 € R} as
a symmetry group. Then, the solution of the nhonhomogeneous variational problem

5ty = fw®)8() + su()), 500)=0 (21)
can be written in the form (19) wher(z) satisfies
A(t) = LA(t) + s(uo), A(0) =0, (22)
that is
A1) = / =" drs (uo). (23)
0

Proof. Note first that since for each value ofG ;1 ..y is a diffeomorphism, the linear

operatorG’ a0 is an isomorphism and we may interpret the relation (19) as a (time-
2ol

dependent) change of variablég) — A(z). Now, we can write, by differentiating (19),

v
50 =" 48/ iy UG s WOAD) + Gy (M0 A®D). (24)
i=1

,,,,,,,,,,

On the other hand, sincesatisfies the homogeneous variational equation arang
we have

8) = /(G @D = /(G rag.ngy oD G s 0 (U)A(). (25)

..............

Comparing (24) and (25), we obtain
A = Gy e @) Gy g (0)

.....

= Y M8 (G iy MONG s (40 A). (26)

.....

.....

FGuy iy @)Giys @) =Gl ) f @) + Gl

,,,,,,,,,,,,,,,

o O f' @), ueQ.
Evaluating this expression at= ug, using (14) and substituting in (25), we obtain

AN = Gy @) (G iy @0G sy O AWD)

yeeey

= f'(uo) A1) = LA(t)
with L given by (20).
Now, using (H2), (H3) and (14), observe that

Lgj(uo) = f'(u0)g; (o) — »_ A8} (u0)gj (uo)
i=1
= g}(uo) f (o) — Y _ A8} (10)g: (ito)
i=1

= (o) (f (o) — ) 1ygi(u)) =0.
i=1

for j =1,...,v. That proves (ii). Finally, the proof of (iii) is analogous to that of (i}l



The numerical integration of relative equilibrium solutions 1553

According to (19), there are two sources of growth with time in the solution of (21).
First, the growth 011|G(m1 m>(”0)” and, on the other hand, the growth &fz). In many
,,,, v

applications the symmetry group consists of isometries such as rotations and translations
and then||G(Ml m)(uo)|| = 1. In what follows we concentrate on the behaviourAat).
<<<<< 0

The constant coefficient system (22) can be solved easilyM_be the uniqud.-invariant
supplementary subspace ®” of the generalized kernel of (i.e M is the sum of the
invariant subspaces corresponding to the nonzero eigenvalues oiVe can decompose
the vectors (ug) in the form

s(uo) = sy + Y sV, (27)

j=1

wheresy,;, € M, o is the maximum of the sizes of the Jordan blocksLofssociated with
the elgenvalue 05 e KerL ands") e KerL/\KerL/™!, j = 2,3,...,0. There exists
a uniqueL sy, € M whereL denotes the restrlctmﬂ]M M — M and after simple
manipulations, (23) can be written as

AW) = Ay(0) + Akerlt), (28)
with
A = 325 ko,
P (k+ 1)!

Ay (@) = €L = DT sy).

The following result shows the behaviour Afz) in the (typical) case of nondegenerate
relative equilibrium.

Lemma 2.3. Assume that, in addition to the conditions of lemma 2.2, the relative equilibrium
ug is a nondegenerate equilibrium of the reduced systemQiig.not an eigenvalue of the
operator Ly of the linearization of the reduced system around (the orbitugf) Then we
have the following.

(i) The geometric and algebraic multiplicities @fas an eigenvalue df equalv and the
vectorsg; (uo),i = 1, ..., v form a basis oKer L. The eigenvalues and Jordan structure of
L= L|,, coincide with those of z.

(i) Near ug, every relative equilibrium is of the ford .,
and has the same multipliekﬁ'J asug.

(iii) Aker(t) = tsD.

TU)(MO) with T1,..., T, €ER

.....

Proof. We first note that, since the system (8) can be written, in a neighbourhaag iof
the form (10), (11), the matrixX. in (20) is similar to theD x D matrix

(0 F{(yo)>

0 F(y) /)’

whereug = (xo, yo) and, sincexg is nondegenerate;;(yo) is a nonsingulaD — v block.
This proves that the algebraic and geometric multiplicities of the eigenvalueid &g (ii)

in lemma 2.2, they; (o) are a basis of Kek. Furthermore the operatdr can be expressed

by the matrix F(yo), which in turn is the Jacobian of the reduced systemdd = F»(y)
at the reduced equilibriumgy = (xo, yo). This proves (i).
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The implicit function theorem implies that in a sufficiently small neighbourhoodof
there is no equilibrium of the reduced system different frggn Hence, neakg, every
relative equilibrium is of the form

G(,l ,,,,, fv)(l/to)a T1, ..., Ty € R.

FGrgny0) = > 151 (Grry...ot) ) = Gl (t0) (f(uo) Y e (Mo)> —0,

2 A08i B m) W) = Gy, £
and that proves (ii). The part (iii) is trivial. O

For a nondegenerate relative equilibrium(r) consists of a parf\ker(r) = tsV that
grows linearly in time and is tangent to the group orbit and of a complementary term
Ay (t). The complementary term grows like eitd.z); in particular, if ug is a linearly
stable equilibrium of the reduced systeny, (¢) is a bounded function for & ¢ < co.

2.5. The Hamiltonian case

Let us now assume that the system (8) being integrated is Hamiltonian. This means [1, 14]
that the dimensioD is evenD = 24 and the vector field is of the form f (u) = EVH (),
where E is the constant, skew-symmetric, invertible matrix

~_ (0 —I

=~ \1 o
and VH (u) is the gradient of a functiorH : @ — R called the Hamiltonian. We
additionally assume that the group generatgrsare also Hamiltonian vector fields,

g = EVI; associated with Hamiltonian functiors satisfying the conditions:
(H2) {1i, H} =0, i=1..,v,

(H3) {I;, I;} =0, ij=1...,v,
where{-, -} denotes the Poisson bracket determinedgby
{F,G}u) =VFuTEVG), ue .

Since [f, g/] = EV{H, I;}, the relation (H2 implies (H2). Furthermore (HRimplies that
each/; is a first integral of (8). In a similar way, (MBimplies (H3) and that each is a
first integral of the Hamiltonian system with Hamiltonian functifyn

The existence of the conserved quantitieplays an important role in the construction
of the reduced phase space for this case. The phase Spadoliated by level sets of
I, ..., I,, that are manifolds invariant by the symmetry group. In turn each of these level
manifolds is foliated by group orbits. This is described next in terms of local coordinates.
(The reader may now wish to see the example in section 4 below.)

Let us introduce locally new coordinatég,, p,, x, y), px,x € R", py,y € R
in such a way thatp,, = I, i = 1,...v and that the change: — u* =
(px(u), py(u), x(u), y(u)) is canonical (i.e. any two components:ifpossess zero Poisson
bracket except fofp,,,x;} =1,i =1,...,v, {p,,, ¥} =1,j=1,...,d —v). Since the
Hamiltonian system with Hamiltonian functiop,, = I; is p,, = 0, p,, = 0, x; = §;;,
¥; = 0, the corresponding flow is translation.ify this implies that, in the new variables a
symmetric Hamiltonian depends only ¢n, p,, y. Therefore the equations of motion are

Py =0, i=1,...,v, (29)

) 0 .
Dy, =—8—yH(px,p_\,,y), i=1...,d—v, (30)
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. el .

X = H(px, py, ¥)s i=1...,v, (31)
apx,

. 0 .

Vi = H(px, py, ), i=1...,d—v, (32)
ap)‘f

and the reduced system considered in section 2.3 would be given by (29), (30), (32).
However, in the Hamiltonian case one proceeds in a slightly different way [1, 14]. One

fixesc = (c,...,¢") € R” and considers the given system (29)—(32) restricted to the
invariant level sep,, =¢;, i =1,...,v, i.e.
. 0 .
2% =_8_yH(C’ Pys ¥), i=1...,d—v, (33)
. 0 .
X = H(c, py,y), i=1...,v, (34)
Opx,
. 0 .
yi = —H(c, py, y), i=1...,d—v. (35)
opy, :

The system (33)—(35) i$2d — v)-dimensional and is still symmetric with respect te
translations. Then we reduce (33)—(35) by ignoring theariables; this yields the reduced
2(d — v)-dimensional system given by (33), (35). With this reduction the reduced system
is Hamiltonian with Hamiltonian functiorﬁ(py, y) = H(c, py, y).

Having discussed the Hamiltonian reduction, we note that, if we restrict the attention
to a level setl; = ¢}, i = 1,...,v, then a relative equilibriunxy must satisfy (recall that
now in (14) f = EVH, g = EVI;)

V(H(uo) — Y Ak (uo)> =0, (36)
i=1

I; (ug) = cg, i=1...,v. (37)

Thusug is a stationary point oH restricted to the level set.

We can now study the solutions of the variational equation of a symmetric Hamiltonian
system around a relative equilibrium. As in lemma 2.2 we denotd. kipe linearized
operator

L= f'(uo) = ) 2pgi(uo),
i=1

by L the restriction ofL to the invariant supplemernt of the generalized kernel df and
by Ly the linearization of the reduced system.
The following lemma summarizes the structurelofn the Hamiltonian case.

Lemma 2.4. Assume that (H1), (HRand (H3) hold and letxo be a relative equilibrium as
in (36), (37). Then we have the following.

(i) VI;j(mo), j =1, ..., v are left eigenvectors df with O eigenvalue.

Furthermore, ifug is a nondegenerate equilibrium of the reduced Hamiltonian system
(33), (35), then:

(ii) There are (nonunique) smooth mappings= u(c), 2 = A(c) such thatu(co) = uo,
A(co) = Ao and that forc close tocg

V(H(u@) D AG) (u(c))) =0, (38)
i=1
I;(u(c)) = ¢, i=1,...,v, (39)
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i.e. for each fixed, u(c) is a relative equilibrium with multipliers. (c).

(iii) The algebraic multiplicity of zero as an eigenvaluelofs 2v. Moreover, %< |, e
KerL?,i =1,...,v with
du(c
VI,»(uo)TL =8, ij=1,...,v. (40)
ac.i c=cop
and the2v vectorsags) le=co» BV I;(ug), j = 1,..., v form a basis of the generalized kernel

of L, Ker L2. The eigenvalues and Jordan structurelotoincide with those of. .

(iv) Near uq every relative equilibrium is of the forr@, ., (u(c)) with multipliers
)\,[ :)\,[(C),l. :1,,1)

(v) If the matrix(B;'Ci”) le=co)i. j=1....v IS NONsingular, the geometric multiplicity of zero as
an eigenvalue ol is v; the vectorsg; (ug) = EVI;(uo), j =1, ..., v form a basis oKer L

and Z’gf) le=c» J = 1, ..., v form a basis of a supplement i§ér L in KerL2. Moreover
"]

2
t
Axer(t) = tsD + (1 + EL)s<2),

S0 thatAer(f) grows quadratically withr unlesss® = 0, which happens if and only if
V1I;(uo)" s(uo) = 0, i=1...,v, (41)

Proof. Note that, since (36) holds, fgr=1, ..., v we have
VI (uo)" (f(uo) - g (Mo)> =0,
i=1

which, after differentiating and applying (36), leads to
VI(ug)'L =0, i=1...,v.

On the other hand, ifip is a nondegenerate equilibrium of (33), (35), we can obtain
(i) by using the implicit function theorem. In local coordinates, we have to write, for a
relative equilibrium, the local variables,, p,, x, y and the multipliers. as functions of
c. By settingp,, =0,y =0,i =1,...,d — v in the reduced system (36), (37) we
obtain uniquelyy(c), py(c); furthermore in local coordinates, = c¢. Thex variables can
be chosen freely and the multipliers are givenddy/dp,..

Now, differentiating (38) with respect tg and evaluating at = co, We have

ou LY
L) =3 giuo) =0, 42
e, =0 ~ 24 3¢, e 81 (U0) (42)
Hence,g‘fT“jL\:C0 e KerL?, j =1,...,v and if we differentiate (39) with respect t9 and

evaluate the resulting expressioncat cp, we obtain (40). Note that, since (H3olds,
eachg; (ug) is orthogonal to eaclVI;(up). This result and (40) imply that thev2rectors
;’Tﬂczm, gi(wo), j =1,...,v are linearly independent. Therefore, the algebraic multiplicity
of zero as an eigenvalue df is at least 2. But, in local coordinates, the matrik is
similar to a block matrix with a nonsingular submatrix of order— 2v (becauseug is
nondegenerate) so that the algebraic multiplicity is exactly Phe proof of (iv) is based

on the implicit function theorem and (ii).

.....

| —, € KerL?\KerL,j = 1,...,v. To conclude the proof note that, by (40), the
component® vanishes if and only if (41) holds. O
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Thus for a nondegenerate relative equilibrium, the behaviour of the complementary term
Ay (2) is governed by exfrLg); the difference with the situation in the preceding section
is that nowL ;z has dimensiorD — 2v rather thanD — v. On the other hand the generalized
kernel has dimensionvZrather thany and we expect quadratic growth &ke(z). Note that
if the source vectos (up) is orthogonal to the surfacds(u) = I;(ug), the growth ofAger(?)
is only linear. Note also that in (vi) the dominant teéfm,s(2> belongs to KeLL and therefore
(see (v)) lies in a direction spanned by #&uo)s. Thus the leading part of the errarcan
be interpreted as an error tangent to the group @€hit, .. -,)(uo) : (t1, ..., 7,) € R'}. This
can be interpreted as an error in the values of the group paramiglers. , 4. If s@ =0,
then the leading term iss™Y, which also belongs to K.

3. Numerical approximation

Our purpose now is to apply the preceding results to analyse the time propagation of the
errors in the numerical integration of differential equations. We are interested in one-step
methods for the system (8), given by mappings; : Q@ — Q that advance the solutid

units of time, whereh is the step size. The may,  approximates the flow,  of the
system and the numerical solution is obtained by iteratiog;0f,

Un+l = Il/.h,f(Un)a n = 0’ 13 ey (43)

so that, ifUg = uo, U, is an approximation to the solution valu€,) = ¢;, r(uo), t, = nh.

The local (truncation) error at a pointy € € is, by definition, the difference
on, r(uo) — Y, r(uo). A numerical method of the form (43) has order of consistency
if the local error is, for eaclyg € Q, O(h'*™Y) ash — 0. The mappingy,, ¢ is therefore
consistent withy;,  of orderr and the global error&/, — u(z,) are Qh") ash — 0. The
smoothness of (8) and the consistency of ondef (43) guarantee that the local error has
an asymptotic expansion of the form

o ) — Y p () = K, 1 (u) + R PER (B, ),

wherel, .1, R are smooth functions such that; is independent ok and R(h, u) — 0 as
h — 0 with u fixed.

3.1. Error propagation

We assume that a scheme of the form (43) with ondet 1 is used to approximate the

make some additional hypotheses about (43).
(Al) The global error admits an expansion

U, — u(tn) = hre(tn) + th(tm h), (44)
wheree is a smooth function that satisfies the variational problem [4]:

e=f'u@®) e—1lLi1(u)),
e(0) =0,

and Q is a remainder that, for fixed tends to zero a8 — 0.

(45)

.....

source term of (45) admits this group as a symmetry group.
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The assumption (Al) is satisfied by virtually all methods used in practice. As far as

(A2) is concerned, this is valid for most methods if the elements of the group are linear
transformations, see e.g. [17]. We can now state the following result, where the notation is
as in Lemma 2.3 ant, is the projection of,; onto M parallel to the generalized kernel

of L.

Theorem 3.1.Under the assumptions of lemma 2.3, suppose that (Al), (A2) hald.idfa
nondegenerate equilibrium of the reduced system, then

..........

(46)

for suitable coefficients;,i = 1,...,v. The functiong is a remainder that, for fixed,
tends to zero ag — 0.

If ug is linearly stable as an equilibrium of the reduced vector field and the elements of
the group are isometries, the second term of the right-hand side of (46) is bounded far

Proof. From (19), the functiore that satisfies (45) can be expressed in the form

.....

where—1, 41 (uo) = Iy +1%, 1y, L=, € M, I* € KerL. By using (i) of lemma 2.3, we can

write
v
=" aigi(uo),
i=1
for someay, ..., @, and substituting into (44) we have

v
Un = G,3.. 1 (M0) + G/(,”,\é iy (U0) (hrtn Zaigi (MO))
=1

i=

G o) (€L — DL Yy + 1" Qty, h). 47)

(tnAgseestnhy)

Now the first two terms on the right-hand side of (47) can be written in the form

v
Gty 0) + G a5 (0) <hrt" D ig (”°)>
i-1

..........

=G, 3

that differs fromG , ;i mray)....., 47 e,y (0) N O(h?) terms, which can be hidden in the
remainder, along with the functio@. The last part of the Theorem is proved by using (i)
of lemma 2.3. |

Note that the numerical solution consists of three components: (i) a term
The velocitiesij+h"e; differ in O(h") from the true velocities)) in the relative equilibrium.
The differences,h”«; in parameters grow linearly with time. (ii) Aomplementary term

h’G;t o m(”‘)) (e’"z—l)ffllM which comprises contributions that while being of leading
nhQsees n/Q
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order cannot be interpreted as changes in the group parameters. This term, under suitable
hypothesis, remains bounded. (iii) A third tewfy (4, 1,,), that is an ok") remainder.

The expansion (46) is not uniform, in the sense that the remaitdgr:, r,) will in
general grow with time; a discussion of the growth of this remainder has been presented in
the final section of [4].

3.2. The Hamiltonian case

In the Hamiltonian case, we have the following result, whete, A(c) are the mappings

in lemma 2.4 (ii). The proof is similar to that of theorem 3.1 and will not be given.
Theorem 3.2. Assume that (H1), (HR (H3), (Al), (A2) hold and letuy be a relative
equilibrium as in (36), (37) such that is a nondegenerate equilibrium of the reduced system.
Then

Un=G . mlco+ tnh’0)) + hrG/(tnA_é ..... tnis)(uo)(e{”L - [)z_llM +h'q(h,1,) (48)
for suitabled = (04, ...,0,),a = (ay, ..., a,) and

- . t, i .

A=A <co+§h’9> +a;h”, cg = Ii (uo), i=1...,v.

The functiory is a remainder that, for fixed, tends to zero a8 — 0.

If ug is linearly stable as an equilibrium of the reduced system and the elements of the
group are isometries, the second term of the right hand side of (48) is boundeg:for

If (agci?) le=co)i, j=1,...v is invertible thery = 0 if and only if the method (43) satisfies the
conditions

VIi(uo) l,41(up) =0,j =1,...,v. (49)
In particular, (49) holds if the method preserves exactly the invariant quantities
I; (Y, r (no)) = I; (uo).

Comparing this result with theorem 3.1 we see that now the error in velogities\’
that were bounded in time in theorem 3.1, now grow linearly. This leads to a quadratic
growth in the parameters..

Before closing this section we point out that it is straightforward to extend our analysis
in several directions. As in [4], first we may have considered variable step sizes. Secondly,
we may have considered not only the leadin@d'Q term of the expansion of the local error
but all terms Qr°), 0 =r,...,2r — 1, as these satisfy variational problems similar to that
satisfied by the leading term.

4. Numerical experiments

We now show some numerical examples to illustrate the preceding results. We focus on
the Hamiltonian case.

4.1. Test problem

We integrate numerically the Hamiltonian problem with four degrees of freedom and
Hamiltonian functionH =T + V.
T = 3(p% + p3 + P§ + P).
Ve _ 1 _ 1 _ € 7 (50)
\/qf~|—q22 \/q§+q§ \/(41 — q3)% + (92 — q4)?
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wheree is a positive parameter. We are thus studying the planar motion of two bodies
attracted to the origin and to each other with forces inversely proportional to the distance
squared. The Hamiltonia# and the total angular momentum

M = p2q1 — p1g2 + pags — paqa

are conserved quantities of the problem. The invariant quaMitys the Hamiltonian
function that generates the one-parameter group of rotations that maps-
(p1, P2, P3, P4, q1, 42, 43, 4) INt0 G (1) = R.u whereR. is the block matrix

R, 0 0 O
0O R, 0 O __(cost —sint
Re = O 0O R, O] R. = <sinr cost )

0O 0 0 R

Therefore, this is a group of symmetries of the equations of motion for (50).

In order to obtain the reduced system that will be required for analytical purposes, it is
advisable to introduce polar coordinates, 61) and (r,, 62) in the planedqi, q2), (g3, g4)
respectively. Then the Hamiltonian (50) becontés= T + V with

1 Pé, . Ph
T == | p? 244
2 <pr1 + Py, + rf + }’22
1 1 €

Ve—Zo -
ri r2

}’f +}’22 — 2rirs co96; — 6)
where the momenta are
— — 25 o
Dr, =T Do, =116}, =12

Observe that in polar coordinaté$ = pg, + pg,. We now use the new set of canonical
variables

Px = 3(Po, + Do), x = —(61+62),
p: = 3(po, — Pey), 7= (02— 01),
Dris 1,

Pras ra.

(Note that the new momentum,. = M/2 is a conserved quantity and that in this example
y = (z,r1,r2).) Now H = T + V with

1 x = 2 x+ 2
T=—Oﬁ+Pi+Q)z&)+U7zm))
2 ry rs
1 1 ¢ (51)
| ,

fior r2 4+ 13 — 2ryrp COSZ

and the reduced Hamiltonian is obtained by setiing= c in the last expression faof. It
is easy to see that, at relative equilibrias a multiple ofr, i.e. the two bodies are aligned
with the origin.
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4.2. Numerical methods

The numerical schemes being considered are as follows.
(RK) The classical third-order Runge—Kutta method with Butcher tableau [11]

RN O

‘ 1
6
which is chosen as an example of a nonconservative method, because it does not preserve
either of the two invariants of the equations of motion for (50).
(V) Verlet's algorithm

OlH NI
WIN N

pn+l/2 — pn + ﬁfn
2 9
qn+1 — qn + hpn+1/2
h
n+l _ n+1/2 4 7 rn+l
P P + 2f ,
where p = (p1, p2, p3, Pa), ¢ = (91,492,493, 94), [" = (f{. f3. f3. f3) and theith
component of the force is given bff' = —V,,(¢"), i = 1(1)4. This method has order two,

is time symmetric and conserves the moment¥nbut not the Hamiltonian [16].
(EC) The second-order method

h
pn+1/2 — pn + Efn(+)’ (52)
h
qn+1/2 — qn + Z-(pn+1/2 4 pn)’ (53)
h
anrl — pn+1/2 + Efn+l(7)7 (54)
h
qn+1 — qn+1/2 + Z(pn-',-l + pn+1/2)’ (55)
where the components of the forcgg™ and £+ are given by
+1/2
o V@ a8 ah ap) = Vdh 4. b a)
1 - 1/2 s
a7 —qp
+1/2 +1/2 ¥ +1/2
V@ e ah ah) = V™ ah, 4 dh
2 - 1/2 s
0 - q
1/2 1/2 1/2 1/2 1/2
v V@ g g g = Vg g gl g
3=~ n+1/2 n ’
q3 —dq3
1 +1/2 +1/2 +1/2 +1/2
[T = — (V@ g g gl
44 —dqa
1/2 1/2 1/2
~Vig ™2, a2, a5, g,
1/2
o _ V@t et as ™t gt - vier T g as ™ gt
1 = il n+l)2 :

q1 q1

n+1/2  p+l o+l ntl n+1/2  n+12  p4+1 o+l

1o Vi ey e e = Vg g e )

2 - 1 112 )
gt — gyt




1562 A Duran and J M Sanz-Serna

1
+1(-) +1/2 412 a4l ntl
f3 = —m(v(‘]; gy T ag )
43  — 43
1/2 1/2 1/2
—Vigy ™2 g g gy,
1
1(— 1/2 1/2 1/2
SO = —m(v(q’f+ e N A
qs —d4a
1/2 1/2 1/2 1/2
—V(gy T2, gyt gy TR gy,
Note that the first component of the vector equation (52) and the first component of
(53) give a system of two scalar equations fdf" "2, g7 "2, Once pi /% ¢7*? are

known, the second components of (52), (53) give two scalar equatiorys;féfz, q;'“/z

etc. To solve (54), (55) one considers the components in reverse order and successively
finds (p; ™, ¢4 ™), (P53, ¢5*h) etc. The idea behind EC, i.e. to obtain force values by
numerically differentiating the potential can be found in [12, 18] and is used to ensure
conservation of the Hamiltonian. The scheme EC is time symmetric but does not exactly

conserve momentum.

4.3. Numerical results

We use the methods above to approximate some solutions of the problem (50) described
in section 4.1. The validity of the conditions (Al), (A2) for the schemes can be easily
proved. Our aim is to see the difference in error propagation. We do not try to compare the
efficiency of the methods nor imply that any of these three methods is a practical method
for the problem at hand.

4.3.1. Relative equilibrium case We start our study of the error propagation by taking the
relative equilibrium (in Cartesian coordinates)

1o = (0, 1,0, —x, 1,0, —1, O),A2=1+2. (56)
In the corresponding solution the two bodies move with angular velociground a
circumference of unit radius. An easy analysis based on (51) shows that this relative
equilibrium is linearly stable for 0< ¢ < % Taking ¢ = 0.1 we integrate with
the three methods up to 100 periods of time= 100I', T = 2n/) and step sizes
h = T/128Q T/256Q T/5120. Figure 1 gives, in a log—log scale, the Euclidean norm
of the global error as a function of time, with the full lines corresponding to EC, the broken
lines to V and the dotted lines to RK; plotted is the error at the end of every period. The
distance between parallel lines corresponding to a given method shows/theb®haviour
of the errors of the Verlet's method and EC method, while for RK errors behavé/gs.0
For fixedt, the third-order scheme gives smaller errors than the other methods, but if we
focus on the error propagation, we see that for the V and EC methods, errors graw like
and, for RK, they grow like?. This confirms the results stated in theorem 3.2. For the
leading term/ of the local error of the third-order metho®,M (u0)7 - I(ug) # 0, which
leads to the quadratic growth. In the case of Verlet's method, the conservatldrassures
the orthogonality condition (49) and therefore the linear growth. Since EC conserves the
Hamiltonian (52), the leading terfrof its local error at the relative equilibrium is orthogonal
to VH at this point and hence t¥ M as, at relative equilibriay H and VM are parallel
(see (14)).
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10’ 108

Figure 1. Error as a function of time in the integration of a stable relative equilibrium. The full
lines correspond to EC, the chain lines to V and the dotted lines to RK.

4.3.2. Perturbation of the relative equilibriumWe next take the initial condition

o= (0, 1,0, =%, 1+¢,0,—1,0), )\2=1+Z, (57)

with ¢ = 0.1, ¢ = 1E — 04, i.e. we take a small perturbation of the relative equilibrium
(56). We integrated the problem with a standard variable step code wp=t®00 and
sufficiently small tolerance to obtain an ‘exact’ solution. The error propagation for this
case can be seen in figure 2. No significant change is observed with respect to figure 1, so
that the better error propagation that we have proved for relative equilibria also holds for
neighbouring solutions as one may have expected. In figure 2 and in later figures the error
has been plotted at intervals of unit length.

4.3.3. Instability. We can also study unstable relative equilibria. We take an initial
condition of the form (57) but withe = 1. Figure 3 gives the behaviour in time of
the error for V (chain curves) and for RK (dotted curves). The results for the EC method
are similar to those of V and we do not include them. Note that, for all methods, errors
grow, eventually, in an exponential fashion.

4.3.4. Asymptotically uncoupled motionThe initial condition
Uo = (67 4a 1» 07 _17 01 17 1)»

with € = 1 gives rise to a solution in which, asymptoticallyzas oo, one body describes a
Keplerian elliptic orbit around the origin, while the other approaches infinity at a constant
velocity. The system behaves for largeas two uncoupled Kepler problems, one with
positive energy and the other with negative energy. Figure 4 displays the global errors for
the three methods. Observe that, after a transient with exponential growth, errors for the
RK scheme grow quadratically and, in the case of the second-order methods, they grow
linearly, as if we were really integrating a Kepler problem [3].
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10 :
10 10

Figure 2. Error as a function of time near a stable relative equilibrium. The full lines correspond
to EC, the chain lines to V and the dotted lines to RK.

Figure 3. Error as a function of time near an unstable relative equilibrium. The chain curves
correspond to V and the dotted curves to RK.

4.3.5. A symmetric solutionFinally, we show an example for which the two second-order
methods behave in very different ways. For the initial condition

Uo = (17 O’ _17 05 17 15 _17 _1)5
(e = 0.1) the solution represents the two bodies moving symmetrically with respect to the
origin

q1(t) = —q3(1), q2(t) = —qa(t), p1(t) = —ps3(1), p2(t) = —pa(t). (58)
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2

10

10' 10°

Figure 4. Error as a function of for a case where for largeone body describes a Keplerian
ellipse and the other approaches infinity. The full curves correspond to EC, the chain curves to
V and the dotted curves to RK.

10 1 - ‘2
10 10

Figure 5. Error as a function of for a solution where both bodies describe symmetric solutions.
The chain curves corresponds to V and the dotted curves to RK.

Each body describes a Keplerian ellipse with focus at the origin. Due to the symmetry (58),
the eight equations of motion could be reduced to four equationgifaf,, p1, p2. The

error propagation for this case is shown in figures 5 and 6. Figure 5 corresponds to RK
and V, while errors for EC are displayed in figure 6. The RK and V schemes (and any
other Runge—Kutta or partitioned Runge—Kutta method) have the property that if at one step
g7 = —q%,95 = —qj4, P} = —p4, p3 = —pj then the same is true at the next step. They
thus behave as if they were integrating a Kepler problem for one of the bodies. Therefore,
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10’ 107

Figure 6. Error as a function of for a solution where both bodies describe symmetric solutions.
The integrator is EC.

we have quadratic growth for the nonconservative scheme and linear growth for Verlet's
method [4]. But figure 6 shows a very different behaviour in the case of EC. This method
does not preserve the symmetry of the solution: it is clear from (52)—(55)ythand g3,

g2 andg,4 do not play a symmetric role in the algorithm. The lack of symmetry in the local
error triggers an exponential growth.
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