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Abstract. We study the propagation of errors in the numerical integration of relative equilibria
solutions of differential equations with symmetries. In the Hamiltonian case and for stable
equilibria, the error growth is typically quadratic for ‘general’ schemes and linear for schemes
that preserve the invariant quantities of the problem. Numerical results are presented.

AMS classification scheme numbers: 65L05, 70H05

1. Introduction

The purpose of this paper is to study the propagation of errors in the numerical integration
of relative equilibria. In recent years there has been a growing interest in the construction
and analysis of so-called geometric integrators [15], i.e. of numerical methods for the
integration of initial-value problems that take into account geometric properties of the system
of differential equations under consideration. The most extensively researched case is that
of symplectic integrators for Hamiltonian problems [11, 16]. Geometric integrators may be
superior not only from a qualitative point of view but also quantitatively; some cases studied
in the literature include periodic orbits [2–5, 8] and integrable systems [2, 10]. A reference
of particular relevance to us is [9], that deals with the time-integration of travelling wave
solutions of partial differential equations. The study in [9] uses the Korteweg–de Vries
equation as a model problem: it is shown that while for ‘general’ schemes the error growth
is quadratic, conservative schemes exhibit linear error growth. The results of [9] are based
on an investigation of the direction in phase space of the local error: conservative methods
align their local errors along directions that are not very harmful. The analysis of [9] does
not identify the geometric mechanisms that lead to favourable error propagation in geometric
integrators; the reader may be left with the impression that the cancellations obtained are a
matter of luck and would only hold for the specific case of the Korteweg–de Vries equation
and travelling wave solutions. In this paper and in the subsequent article [7] (both based
on the thesis [6]) we show that the situation investigated in [9] is not exceptional and
typically holds for stable relative equilibria of Hamiltonian problems, including travelling
wave solutions of Hamiltonian partial differential equations. Earlier studies of error growth
in the simulation of integrable systems and periodic orbits are also subsumed in the geometric
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framework considered in this paper. Our framework clearly identifies the geometric reasons
that underlie the ‘success’ of geometric integrators in many applications. This paper deals
with the more geometric aspects of the matter and, to avoid technicalities, treats the case
of ordinary differential equations. In [7] we shall consider travelling wave solutions. The
main conclusion is that, for a wide class of equations, the error in the integration of a
relative equilibrium solution grows quadratically for ‘general’ methods and only linearly for
‘conservative methods’. While the mathematical proofs are restricted to relative equilibria,
the conclusions of the study on the benefits of conservative schemes appear experimentally
to be valid for other classes of solutions (see section 4 below).

This paper is structured as follows. Section 2 summarizes definitions and basic results
about differential equations with symmetries and their relative equilibria [1, 13, 14]. In
order to be accessible to as wide a readership as possible, we have tried to present a self-
contained approach that can be read without a deep geometric background. The main results
are presented in section 3 and section 4 contains some numerical illustrations.

2. Relative equilibria

2.1. Vector fields and flows

We consider vector fieldsg, defined in a given domain� of RD, and the corresponding
differential systems

u̇ = g(u). (1)

For eacht , the phase flowϕt,g is a mapping inRD such thatϕt,g(u) is the value at
time t of the solution of (1) that at time 0 takes the initial valueu. For simplicity, we
assume that for eacht ∈ R the domain ofϕt,g is the whole�, i.e. that all solutions of (1)
exist for all t ∈ (−∞,∞). As t varies, the mappingsϕt,g form a one-parameter group of
diffeomorphismsϕt,g : �→ �,

ϕt+s,g = ϕt,g ◦ ϕs,g, ϕ0,g = Id,

whose phase velocity field isg,

d

dt
ϕt,g(u) = g(ϕt,g(u)), u ∈ �. (2)

In particular,g can be recovered by evaluating (2) att = 0,

d

dt
ϕt,g(u)|t=0 = g(u), u ∈ �. (3)

The vector fieldg is said to be the infinitesimal generator of the group{ϕt,g}.
If f andg are vector fields on�, the corresponding flows generally do not commute.

The commutativity condition for the flows can be written in terms of the Lie bracket of the
vector fields [14]:

∀s, t, ϕt,f ◦ ϕs,g = ϕs,g ◦ ϕt,f ⇔ [f, g] ≡ 0, (4)

where [f, g] is the vector field

[f, g](u) = g′(u)f (u)− f ′(u)g(u), u ∈ �.
Here and later, the prime denotes the corresponding Jacobian matrix.
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2.2. Symmetry groups of differential equations

Let f be a vector field on�. A group G of diffeomorphisms in� is a symmetry group
[14] of the systemu̇ = f (u) or f admitsG as a symmetry group if

∀t, ∀G ∈ G, ∀u ∈ �, ϕt,f (G(u)) = G(ϕt,f (u)). (5)

The condition (5) means that the solutiont → ϕt,f (G(u)) corresponding to the
transformed initial datumG(u) is obtained by transforming byG the solutionϕt,f (u).

If we differentiate (5) with respect tot , evaluate att = 0 and use (3), we obtain the
symmetry condition in terms of the fieldf of the system; namely

∀G ∈ G, ∀u ∈ � f (G(u)) = G′(u)f (u). (6)

We can also use Lie brackets to express the symmetry condition. Ifg is an infinitesimal
generator of the groupG (i.e. {ϕt,g : t ∈ R} is a one-parameter subgroup ofG) andf admits
G as a symmetry group then, by (4) and (6) [f, g] ≡ 0. Conversely, if [f, g] ≡ 0 for all
the generators ofG thenf admits the groupG.

2.3. The Abelian case

From now on, we consider vector fieldsf, g1, . . . , gν defined in a domain� ⊂ RD and
satisfying the following conditions.

(H1) For eachu ∈ �, the vectorsg1(u), . . . , gν(u) are linearly independent.
(H2) [f, gj ] ≡ 0, j = 1, . . . ν.
(H3) [gi, gj ] ≡ 0, i, j = 1, . . . , ν.
We still suppose that the phase flowsϕt,f , ϕt,gi , i = 1, . . . , ν are defined in the whole

of �. For each(τ1, . . . , τν) ∈ Rν we have a diffeomorphism of�

G(τ1,...,τν ) = ϕτ1,g1 ◦ ϕτ2,g2 ◦ · · · ◦ ϕτν,gν . (7)

The hypothesis (H3) implies that the transformations (7) form an Abelianν-parameter
groupG: G0 = Id,G(τ1,...,τν ) ◦G(σ1,...,σν ) = G(τ1+σ1,...,τν+σν). The condition (H2) shows that
G is a symmetry group for the system

u̇ = f (u), u ∈ �. (8)

Due to the presence of the symmetry groupG, the dynamics of (8) can be studied
by means of a simpler system called thereduced system. Since (H1) holds, all the orbits
{Gτ1,...,τν (u) : (τ1, . . . , τν) ∈ Rν} of the group areν-dimensional submanifolds (this is a
simple consequence of the implicit function theorem). We can construct thereduced phase
spacewith dimensionD − ν by identifying points in� that belong to the same orbit of
the group{G(u) : G ∈ G}. Thus a point in the reduced space is an orbit of the group.
The system (8) in� gives rise in a natural way to a new system in the reduced phase
space, the so-called reduced system. We describe how to write the reduced system in local
coordinates. Givenu0 ∈ �, due to (H1), (H3) [14] there is a neighbourhoodU of u0 and
a local change of variables inU that carriesgi, i = 1, . . . , ν into the constant vector field
equal to theith coordinate vector(0, 0, . . . ,1, 0, . . . ,0)T (the 1 is in theith place). Thus,
there are coordinates(x, y) = (x1, . . . , xν, y1, . . . , yD−ν) in U for which the elements of
the groupG can be expressed in the form

G(τ1,...,τν )(x, y) = (x1+ τ1, . . . , xν + τν, y1, . . . , yD−ν), (x, y) ∈ U. (9)

The system (8) can then be written as

ẋ = F1(y), (10)

ẏ = F2(y), (11)
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(x is not an argument ofF1, F2 as these admit the group of translations (9)) and the reduced
system is locally (11). Therefore, the integration of the originalD-dimensional system is
reduced to the integration of (11), which is(D − ν)-dimensional, and toν quadratures to
recoverx(t) = ∫ F1(y(t)) dt .

An example will now be presented. The planar system

u̇1 = u2
1/u2, u̇2 = u2

2/u1, (12)

is invariant with respect to the one-parameter group of dilationsGτ(u1, u2) = (eτ u1, eτ u2).
(To see this, note that the infinitesimal generator of the group isg(u1, u2) = (u1, u2) and
check that [f, g] = 0; alternatively one may see geometrically that (6) holds.) The group
orbits are rays through the origin and the reduced phase space may be identified with the unit

circumference. In this example, thex variable is given byx = log
√
u2

1+ u2
2 because the

transformation(u1, u2)→ (eτ u1, eτ u2) increasesx by τ . Furthermore we takey = u1/u2

(any function of the quotienty = u1/u2 may do as well). In terms of the new variables
(12) becomes

ẋ = 1+ y4

y(1+ y2)
, ẏ = y2− 1. (13)

Essentially, the second equation in (13) (i.e. the reduced system) describes the evolution of
the argument of the point(u1, u2) in the plane. The first equation governs the evolution of

the modulus
√
u2

1+ u2
2, i.e. the drift along group orbits. After integration of they-equation

by separation of variables one may findx(t) by quadrature. We have more or less reproduced
the elementary technique of integration of the ‘homogeneous’ equation du1/du2 = u3

1/u
3
2

by takingu1/u2 as a new variable.

2.4. Relative equilibria and their variational equations

The equilibria of the reduced system play an important role in many applications. In the
situation described in the preceding section, a pointu0 ∈ � is a relative equilibrium[1, 13]
if there exist real numbersλ1

0, . . . , λ
ν
0 such that

f (u0)−
ν∑
i=1

λi0gi(u0) = 0. (14)

The following lemma shows the implications of the condition (14).

Lemma 2.1. Assume that, for the system (8), the conditions (H1)–(H3) hold.
(i) Let u0 be a relative equilibrium as in (14). Then

ϕt,f (u0) = G(tλ1
0,...,tλ

ν
0)
(u0), (15)

which in particular shows that

{ϕt,f (u0) : t ∈ R} ⊂ {G(τ1,...,τν )(u0) : (τ1, . . . , τν) ∈ Rν}, (16)

i.e. that, for eacht , ϕt,f (u0) is contained in the group orbit throughu0.
(ii) Conversely, if (16) holds then there are real numbersλi0 for which (14) is satisfied.

Thus, relative equilibria are precisely the points that project to an equilibrium of the
reduced system. For instance, ifν = 1,D = 2 andG consists of all planar rotations around
the origin, a relative equilibrium would be a pointu0 such that for allt , ϕt,f (u0) can be
obtained by rotatingu0 by a suitable angleα(t). Note that by (15)α(t) is necessarily of
the formα(t) = λ1

0t , i.e. ϕt,f (u0) rotates at a uniform rate.
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In the particular case where in (14) allλi0 vanish we havef (u0) = 0 and the relative
equilibrium is in fact an equilibrium.

In the example (12) the condition (14) is given by(
u2

1

u2
,
u2

2

u1

)
− λ(u1, u2) = 0. (17)

Elimination of λ leads tou2
1 = u2

2, so that the relative equilibria are given by the points
on the diagonalsu1 = ±u2. These points havey = u1/u2 = ±1 so that they project to
equilibria of the reduced system (see (13))ẏ = y2 − 1. Furthermore, ifu1 = u2, from
(17), we haveλ = 1 leading to the solutions of the formu1(t) = etα, u2(t) = etα. For
u1 = −u2, (17) yieldsλ = −1, leading tou1(t) = e−tα, u2(t) = −e−tα. These are the
only solutions of (12) whose trajectories on the(u1, u2) plane are rays through the origin,
i.e. orbits of the group.

Proof of lemma 2.1. Due to the invariance ofG(tλ1
0,...,tλ

ν
0)

with respect to the phase flows
of the vector fieldsgi , we can write (see (6))

gi(G(tλ1
0,...,tλ

ν
0)
(u0)) = G′(tλ1

0,...,tλ
ν
0)
(u0)gi(u0), i = 1, . . . , ν. (18)

Therefore, using (H2), (14) and (18), we have

u̇(t) =
ν∑
i=1

λi0gi(G(tλ1
0,...,tλ

ν
0)
(u0)) = G′(tλ1

0,...,tλ
ν
0)
(u0)

( ν∑
i=1

λi0gi(u0)

)
= G′

(tλ1
0,...,tλ

ν
0)
(u0)f (u0) = f (G(tλ1

0,...,tλ
ν
0)
(u0))

= f (u(t)).
That proves (i). If a solutionu(t) of (8) is contained in the orbit{G(u0) : G ∈ G} then the
phase velocity vectorf (u) must be tangent atu0 to the orbit. This implies (14) because
the gi(u0) span the tangent space to the orbit. �

The variational equation governs the way in which the local errors in a numerical
integration build up to give the global error. The next result describes the properties of the
variational equation near a relative equilibrium.

Lemma 2.2. Assume that, for the system (8), the conditions (H1)–(H3) hold. Ifu0 is a
relative equilibrium as in (14) andϕt,f (u0) = u(t) then the following results hold.

(i) The solutions of the homogeneous variational equation

δ̇(t) = f ′(u(t))δ(t)
resulting from linearizing (8) aroundu(t) are of the form

δ(t) = G′
(tλ1

0,...,tλ
ν
0)
(u0)1(t), (19)

where1(t) is a solution of the linear system with constant coefficients

1̇(t) = L1(t), L = f ′(u0)−
ν∑
i=1

λi0g
′
i (u0) (20)

resulting from linearizing the differential equation

u̇ = f (u)−
ν∑
i=1

λi0gi(u)

around its equilibriumu0.
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(ii) 0 is an eigenvalue ofL andgi(u0) ∈ KerL, i = 1, . . . , ν.
(iii) Let s be a vector field that admits the one-parameter group{G(tλ1

0,...,tλ
ν
0)

: t ∈ R} as
a symmetry group. Then, the solution of the nonhomogeneous variational problem

δ̇(t) = f ′(u(t))δ(t)+ s(u(t)), δ(0) = 0 (21)

can be written in the form (19) where1(t) satisfies

1̇(t) = L1(t)+ s(u0), 1(0) = 0, (22)

that is

1(t) =
∫ t

0
e(t−τ)L dτs(u0). (23)

Proof. Note first that since for each value oft , G(tλ1
0,...,tλ

ν
0)

is a diffeomorphism, the linear
operatorG′

(tλ1
0,...,tλ

ν
0)

is an isomorphism and we may interpret the relation (19) as a (time-

dependent) change of variablesδ(t) 7−→ 1(t). Now, we can write, by differentiating (19),

δ̇(t) =
ν∑
i=1

λi0g
′
i (G(tλ1

0,...,tλ
ν
0)
(u0))G

′
(tλ1

0,...,tλ
ν
0)
(u0)1(t)+G′(tλ1

0,...,tλ
ν
0)
(u0)1̇(t). (24)

On the other hand, sinceδ satisfies the homogeneous variational equation aroundu(t),
we have

δ̇(t) = f ′(G(tλ1
0,...,tλ

ν
0)
(u0))δ(t) = f ′(G(tλ1

0,...,tλ
ν
0)
(u0))G

′
(tλ1

0,...,tλ
ν
0)
(u0)1(t). (25)

Comparing (24) and (25), we obtain

1̇(t) = (G′
(tλ1

0,...,tλ
ν
0)
(u0))

−1(f ′(G(tλ1
0,...,tλ

ν
0)
(u0))

−
ν∑
i=1

λi0g
′
i (G(tλ1

0,...,tλ
ν
0)
(u0)))G

′
(tλ1

0,...,tλ
ν
0)
(u0)1(t). (26)

If f̄ is the vector field given bȳf = f−∑ν
i=1 λ

i
0gi , thenf̄ admitsG(tλ1

0,...,tλ
ν
0)

as a symmetry
group and therefore

f̄ ′(G(tλ1
0,...,tλ

ν
0)
(u))G′

(tλ1
0,...,tλ

ν
0)
(u) = G′′

(tλ1
0,...,tλ

ν
0)
(u)f̄ (u)+G′

(tλ1
0,...,tλ

ν
0)
(u)f̄ ′(u), u ∈ �.

Evaluating this expression atu = u0, using (14) and substituting in (25), we obtain

1̇(t) = (G′
(tλ1

0,...,tλ
ν
0)
(u0))

−1f̄ ′(G(tλ1
0,...,tλ

ν
0)
(u0)G

′
(tλ1

0,...,tλ
ν
0)
(u0)1(t)

= f̄ ′(u0)1(t) = L1(t)
with L given by (20).

Now, using (H2), (H3) and (14), observe that

Lgj (u0) = f ′(u0)gj (u0)−
ν∑
i=1

λi0g
′
i (u0)gj (u0)

= g′j (u0)f (u0)−
ν∑
i=1

λi0g
′
j (u0)gi(u0)

= g′j (u0)(f (u0)−
ν∑
i=1

λi0gi(u0)) = 0.

for j = 1, . . . , ν. That proves (ii). Finally, the proof of (iii) is analogous to that of (i).�
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According to (19), there are two sources of growth with time in the solution of (21).
First, the growth of||G′

(tλ1
0,...,tλ

ν
0)
(u0)|| and, on the other hand, the growth of1(t). In many

applications the symmetry group consists of isometries such as rotations and translations
and then||G′

(tλ1
0,...,tλ

ν
0)
(u0)|| = 1. In what follows we concentrate on the behaviour of1(t).

The constant coefficient system (22) can be solved easily. LetM be the uniqueL-invariant
supplementary subspace inRD of the generalized kernel ofL (i.e M is the sum of the
invariant subspaces corresponding to the nonzero eigenvalues ofL). We can decompose
the vectors(u0) in the form

s(u0) = sM +
σ∑
j=1

s(j), (27)

wheresM ∈ M, σ is the maximum of the sizes of the Jordan blocks ofL associated with
the eigenvalue 0,s(1) ∈ KerL and s(j) ∈ KerLj\KerLj−1, j = 2, 3, . . . , σ . There exists
a uniqueL̂−1sM ∈ M where L̂ denotes the restrictionL

∣∣
M

: M → M and, after simple
manipulations, (23) can be written as

1(t) = 1M(t)+1Ker(t), (28)

with

1Ker(t) =
σ∑
j=1

j−1∑
k=0

tk+1

(k + 1)!
Lks(j),

1M(t) = (etL̂ − I )(L̂−1sM).

The following result shows the behaviour of1(t) in the (typical) case of nondegenerate
relative equilibrium.

Lemma 2.3. Assume that, in addition to the conditions of lemma 2.2, the relative equilibrium
u0 is a nondegenerate equilibrium of the reduced system, i.e.0 is not an eigenvalue of the
operatorLR of the linearization of the reduced system around (the orbit of)u0. Then we
have the following.

(i) The geometric and algebraic multiplicities of0 as an eigenvalue ofL equalν and the
vectorsgi(u0), i = 1, . . . , ν form a basis ofKerL. The eigenvalues and Jordan structure of
L̂ = L∣∣

M
coincide with those ofLR.

(ii) Near u0, every relative equilibrium is of the formG(τ1,...,τν )(u0) with τ1, . . . , τν ∈ R
and has the same multipliersλi0 asu0.

(iii) 1Ker(t) = ts(1).

Proof. We first note that, since the system (8) can be written, in a neighbourhood ofu0, in
the form (10), (11), the matrixL in (20) is similar to theD ×D matrix(

0 F ′1(y0)

0 F ′2(y0)

)
,

whereu0 = (x0, y0) and, sinceu0 is nondegenerate,F ′2(y0) is a nonsingularD − ν block.
This proves that the algebraic and geometric multiplicities of the eigenvalue 0 areν. By (ii)
in lemma 2.2, thegi(u0) are a basis of KerL. Furthermore the operator̂L can be expressed
by the matrixF ′2(y0), which in turn is the Jacobian of the reduced system dy/dt = F2(y)

at the reduced equilibriumu0 = (x0, y0). This proves (i).
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The implicit function theorem implies that in a sufficiently small neighbourhood ofu0

there is no equilibrium of the reduced system different fromy0. Hence, nearu0, every
relative equilibrium is of the form

G(τ1,...,τν )(u0), τ1, . . . , τν ∈ R.
Furthermore, by (6)

f (G(τ1,...,τν )(u0))−
ν∑
i=1

λi0gi(G(τ1,...,τν )(u0)) = G′(τ1,...,τν )
(u0)

(
f (u0)−

ν∑
i=1

λi0gi(u0)

)
= 0,

and that proves (ii). The part (iii) is trivial. �

For a nondegenerate relative equilibrium,1(t) consists of a part1Ker(t) = ts(1) that
grows linearly in time and is tangent to the group orbit and of a complementary term
1M(t). The complementary term grows like exp(tLR); in particular, if u0 is a linearly
stable equilibrium of the reduced system,1M(t) is a bounded function for 06 t <∞.

2.5. The Hamiltonian case

Let us now assume that the system (8) being integrated is Hamiltonian. This means [1, 14]
that the dimensionD is evenD = 2d and the vector fieldf is of the formf (u) = 4∇H(u),
where4 is the constant, skew-symmetric, invertible matrix

4 =
(

0 −I
I 0

)
and ∇H(u) is the gradient of a functionH : � → R called the Hamiltonian. We
additionally assume that the group generatorsgi are also Hamiltonian vector fields,
gi = 4∇Ii associated with Hamiltonian functionsIi satisfying the conditions:

(H2′) {Ii, H } = 0, i = 1, . . . , ν,
(H3′) {Ii, Ij } = 0, i, j = 1, . . . , ν,

where{· , ·} denotes the Poisson bracket determined by4:

{F,G}(u) = ∇F(u)T 4∇G(u), u ∈ �.
Since [f, gi ] = 4∇{H, Ii}, the relation (H2′) implies (H2). Furthermore (H2′) implies that
eachIi is a first integral of (8). In a similar way, (H3′) implies (H3) and that eachIi is a
first integral of the Hamiltonian system with Hamiltonian functionIj .

The existence of the conserved quantitiesIi plays an important role in the construction
of the reduced phase space for this case. The phase space� is foliated by level sets of
I1, . . . , Iν , that are manifolds invariant by the symmetry group. In turn each of these level
manifolds is foliated by group orbits. This is described next in terms of local coordinates.
(The reader may now wish to see the example in section 4 below.)

Let us introduce locally new coordinates(px, py, x, y), px, x ∈ Rν , py, y ∈ Rd−ν
in such a way thatpxi = Ii , i = 1, . . . ν and that the changeu 7−→ u∗ =
(px(u), py(u), x(u), y(u)) is canonical (i.e. any two components ofu∗ possess zero Poisson
bracket except for{pxi , xi} = 1, i = 1, . . . , ν, {pyj , yj } = 1, j = 1, . . . , d − ν). Since the
Hamiltonian system with Hamiltonian functionpxi = Ii is ṗxj = 0, ṗyj = 0, ẋj = δij ,
ẏj = 0, the corresponding flow is translation inxi ; this implies that, in the new variables a
symmetric Hamiltonian depends only onpx, py, y. Therefore the equations of motion are

ṗxi = 0, i = 1, . . . , ν, (29)

ṗyi = −
∂

∂yi
H(px, py, y), i = 1, . . . , d − ν, (30)
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ẋi = ∂

∂pxi
H(px, py, y), i = 1, . . . , ν, (31)

ẏi = ∂

∂pyi
H(px, py, y), i = 1, . . . , d − ν, (32)

and the reduced system considered in section 2.3 would be given by (29), (30), (32).
However, in the Hamiltonian case one proceeds in a slightly different way [1, 14]. One
fixes c = (c1, . . . , cν) ∈ Rν and considers the given system (29)–(32) restricted to the
invariant level setpxi = ci , i = 1, . . . , ν, i.e.

ṗyi = −
∂

∂yi
H(c, py, y), i = 1, . . . , d − ν, (33)

ẋi = ∂

∂pxi
H(c, py, y), i = 1, . . . , ν, (34)

ẏi = ∂

∂pyi
H(c, py, y), i = 1, . . . , d − ν. (35)

The system (33)–(35) is(2d − ν)-dimensional and is still symmetric with respect tox-
translations. Then we reduce (33)–(35) by ignoring thex variables; this yields the reduced
2(d − ν)-dimensional system given by (33), (35). With this reduction the reduced system
is Hamiltonian with Hamiltonian functionH̃ (py, y) = H(c, py, y).

Having discussed the Hamiltonian reduction, we note that, if we restrict the attention
to a level setIi = ci0, i = 1, . . . , ν, then a relative equilibriumu0 must satisfy (recall that
now in (14)f = 4∇H , gi = 4∇Ii)

∇
(
H(u0)−

ν∑
i=1

λi0Ii(u0)

)
= 0, (36)

Ii(u0) = ci0, i = 1, . . . , ν. (37)

Thusu0 is a stationary point ofH restricted to the level set.
We can now study the solutions of the variational equation of a symmetric Hamiltonian

system around a relative equilibrium. As in lemma 2.2 we denote byL the linearized
operator

L = f ′(u0)−
ν∑
i=1

λi0g
′
i (u0),

by L̂ the restriction ofL to the invariant supplementM of the generalized kernel ofL and
by LR the linearization of the reduced system.

The following lemma summarizes the structure ofL in the Hamiltonian case.

Lemma 2.4. Assume that (H1), (H2′) and (H3′) hold and letu0 be a relative equilibrium as
in (36), (37). Then we have the following.

(i) ∇Ij (u0), j = 1, . . . , ν are left eigenvectors ofL with 0 eigenvalue.
Furthermore, ifu0 is a nondegenerate equilibrium of the reduced Hamiltonian system

(33), (35), then:
(ii) There are (nonunique) smooth mappingsu = u(c), λ = λ(c) such thatu(c0) = u0,

λ(c0) = λ0 and that forc close toc0

∇
(
H(u(c))−

ν∑
i=1

λi(c)Ii(u(c))

)
= 0, (38)

Ii(u(c)) = ci, i = 1, . . . , ν, (39)
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i.e. for each fixedc, u(c) is a relative equilibrium with multipliersλi(c).
(iii) The algebraic multiplicity of zero as an eigenvalue ofL is 2ν. Moreover,∂u(c)

∂ci
|c=c0 ∈

KerL2, i = 1, . . . , ν with

∇Ii(u0)
T ∂u(c)

∂cj

∣∣∣∣
c=c0

= δij , i, j = 1, . . . , ν. (40)

and the2ν vectors∂u(c)
∂cj
|c=c0, 4∇Ij (u0), j = 1, . . . , ν form a basis of the generalized kernel

of L, KerL2. The eigenvalues and Jordan structure ofL̂ coincide with those ofLR.
(iv) Near u0 every relative equilibrium is of the formG(τ1,...,τν )(u(c)) with multipliers

λi = λi(c), i = 1, . . . , ν.
(v) If the matrix( ∂λ

i (c)

∂cj
|c=c0)i,j=1,...,ν is nonsingular, the geometric multiplicity of zero as

an eigenvalue ofL is ν; the vectorsgj (u0) = 4∇Ij (u0), j = 1, . . . , ν form a basis ofKerL
and ∂u(c)

∂cj
|c=c0, j = 1, . . . , ν form a basis of a supplement ofKerL in KerL2. Moreover

1Ker(t) = ts(1) + (tI + t
2

2
L)s(2),

so that1Ker(t) grows quadratically witht unlesss(2) = 0, which happens if and only if

∇Ii(u0)
T s(u0) = 0, i = 1, . . . , ν, (41)

Proof. Note that, since (36) holds, forj = 1, . . . , ν we have

∇Ij (u0)
T

(
f (u0)−

ν∑
i=1

λi0gi(u0)

)
= 0,

which, after differentiating and applying (36), leads to

∇Ij (u0)
T L = 0, j = 1, . . . , ν.

On the other hand, ifu0 is a nondegenerate equilibrium of (33), (35), we can obtain
(ii) by using the implicit function theorem. In local coordinates, we have to write, for a
relative equilibrium, the local variablespx, py, x, y and the multipliersλ as functions of
c. By setting ṗyi = 0, ẏi = 0, i = 1, . . . , d − ν in the reduced system (36), (37) we
obtain uniquelyy(c), py(c); furthermore in local coordinatespx = c. The x variables can
be chosen freely and the multipliers are given by∂H/∂pxi .

Now, differentiating (38) with respect tocj and evaluating atc = c0, we have

L
∂u

∂cj

∣∣
c=c0
−

ν∑
i=1

∂λi

∂cj

∣∣
c=c0

gi(u0) = 0. (42)

Hence, ∂u
∂cj

∣∣
c=c0
∈ KerL2, j = 1, . . . , ν and if we differentiate (39) with respect tocj and

evaluate the resulting expression atc = c0, we obtain (40). Note that, since (H3′) holds,
eachgi(u0) is orthogonal to each∇Ij (u0). This result and (40) imply that the 2ν vectors
∂u
∂cj

∣∣
c=c0

, gj (u0), j = 1, . . . , ν are linearly independent. Therefore, the algebraic multiplicity
of zero as an eigenvalue ofL is at least 2ν. But, in local coordinates, the matrixL is
similar to a block matrix with a nonsingular submatrix of orderD − 2ν (becauseu0 is
nondegenerate) so that the algebraic multiplicity is exactly 2ν. The proof of (iv) is based
on the implicit function theorem and (ii).

On the other hand, observe that if( ∂λ
i (c)

∂cj
|c=c0)i,j=1,...,ν is invertible, from (42) we have

∂u
∂cj
|c=c0 ∈ KerL2\KerL, j = 1, . . . , ν. To conclude the proof note that, by (40), the

components(2) vanishes if and only if (41) holds. �
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Thus for a nondegenerate relative equilibrium, the behaviour of the complementary term
1M(t) is governed by exp(tLR); the difference with the situation in the preceding section
is that nowLR has dimensionD−2ν rather thanD− ν. On the other hand the generalized
kernel has dimension 2ν rather thanν and we expect quadratic growth in1Ker(t). Note that
if the source vectors(u0) is orthogonal to the surfacesIi(u) = Ii(u0), the growth of1Ker(t)

is only linear. Note also that in (vi) the dominant termt
2

2Ls
(2) belongs to KerL and therefore

(see (v)) lies in a direction spanned by thegj (u0)s. Thus the leading part of the error1 can
be interpreted as an error tangent to the group orbit{G(τ1,...,τν )(u0) : (τ1, . . . , τν) ∈ Rν}. This
will be used below to show that the leading error in computing the solutionG(tλ1

0,...,tλ
ν
0)
(u0)

can be interpreted as an error in the values of the group parameterstλ1
0, . . . , tλ

ν
0. If s(2) = 0,

then the leading term ists(1), which also belongs to KerL.

3. Numerical approximation

Our purpose now is to apply the preceding results to analyse the time propagation of the
errors in the numerical integration of differential equations. We are interested in one-step
methods for the system (8), given by mappingsψh,f : �→ � that advance the solutionh
units of time, whereh is the step size. The mapψh,f approximates the flowϕh,f of the
system and the numerical solution is obtained by iteration ofψh,f ,

Un+1 = ψh,f (Un), n = 0, 1, . . . , (43)

so that, ifU0 = u0, Un is an approximation to the solution valueu(tn) = ϕtn,f (u0), tn = nh.
The local (truncation) error at a pointu0 ∈ � is, by definition, the difference

ϕh,f (u0) − ψh,f (u0). A numerical method of the form (43) has order of consistencyr

if the local error is, for eachu0 ∈ �, O(hr+1) ash → 0. The mappingψh,f is therefore
consistent withϕh,f of order r and the global errorsUn − u(tn) are O(hr) ash→ 0. The
smoothness of (8) and the consistency of orderr of (43) guarantee that the local error has
an asymptotic expansion of the form

ϕh,f (u)− ψh,f (u) = hr+1lr+1(u)+ hr+1R(h, u),

wherelr+1, R are smooth functions such thatlr+1 is independent ofh andR(h, u)→ 0 as
h→ 0 with u fixed.

3.1. Error propagation

We assume that a scheme of the form (43) with orderr > 1 is used to approximate the
solution of (8)u(t) = G(tλ1

0,...,tλ
ν
0)
(u0), whereu0 is a relative equilibrium andU0 = u0. We

make some additional hypotheses about (43).
(A1) The global error admits an expansion

Un − u(tn) = hre(tn)+ hrQ(tn, h), (44)

wheree is a smooth function that satisfies the variational problem [4]:

ė = f ′(u(t)) · e − lr+1(u(t)),

e(0) = 0,
(45)

andQ is a remainder that, for fixedt , tends to zero ash→ 0.
(A2) The mappingψh,f is invariant by{G(tλ1

0,...,tλ
ν
0)

: t ∈ R}. This implies that the
source term of (45) admits this group as a symmetry group.
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The assumption (A1) is satisfied by virtually all methods used in practice. As far as
(A2) is concerned, this is valid for most methods if the elements of the group are linear
transformations, see e.g. [17]. We can now state the following result, where the notation is
as in Lemma 2.3 andlM is the projection oflr+1 ontoM parallel to the generalized kernel
of L.

Theorem 3.1.Under the assumptions of lemma 2.3, suppose that (A1), (A2) hold. Ifu0 is a
nondegenerate equilibrium of the reduced system, then

Un = G(tn(λ
1
0+hrα1),...,tn(λ

ν
0+hrαν))(u0)+ hrG′(tnλ1

0,...,tnλ
ν
0)
(u0)(e

tnL̂ − I )L̂−1lM + hrq(h, tn),
(46)

for suitable coefficientsαi, i = 1, . . . , ν. The functionq is a remainder that, for fixedt ,
tends to zero ash→ 0.

If u0 is linearly stable as an equilibrium of the reduced vector field and the elements of
the group are isometries, the second term of the right-hand side of (46) is bounded fort > 0.

Proof. From (19), the functione that satisfies (45) can be expressed in the form

e(t) = G′
(tλ1

0,...,tλ
ν
0)
(u0)[(e

tL̂ − I )L̂−1lM + t l1],

where−lr+1(u0) = lM + l1, lM, L̂−1lM ∈ M, l1 ∈ KerL. By using (i) of lemma 2.3, we can
write

l1 =
ν∑
i=1

αigi(u0),

for someα1, . . . , αν and substituting into (44) we have

Un = G(tnλ
1
0,...,tnλ

ν
0)
(u0)+G′(tnλ1

0,...,tnλ
ν
0)
(u0)

(
hr tn

ν∑
i=1

αigi(u0)

)
+hrG′

(tnλ
1
0,...,tnλ

ν
0)
(u0)(e

tnL̂ − I )L̂−1lM + hrQ(tn, h). (47)

Now the first two terms on the right-hand side of (47) can be written in the form

G(tnλ
1
0,...,tnλ

ν
0)
(u0)+G′(tnλ1

0,...,tnλ
ν
0)
(u0)

(
hr tn

ν∑
i=1

αigi(u0)

)
= G(tnλ

1
0,...,tnλ

ν
0)
(u0)+

ν∑
i=1

hr tnαigi(G(tnλ
1
0,...,tnλ

ν
0)
(u0))

= G(tnλ
1
0,...,tnλ

ν
0)
(u0)+

ν∑
i=1

hr tnαi
d

dτi
G(τ1,...,τν )(u0)|τi=tnλi0,

that differs fromG(tn(λ
1
0+hrα1),...,tn(λ

ν
0+hrαν))(u0) in O(h2r ) terms, which can be hidden in the

remainder, along with the functionQ. The last part of the Theorem is proved by using (i)
of lemma 2.3. �

Note that the numerical solution consists of three components: (i) a term
G(tn(λ

1
0+hrα1),...,tn(λ

ν
0+hrαν))(u0) that describes a transformation ofu0 by elements of the group.

The velocitiesλi0+hrαi differ in O(hr) from the true velocitiesλi0 in the relative equilibrium.
The differencestnhrαi in parameters grow linearly with time. (ii) Acomplementary term
hrG′

(tnλ
1
0,...,tnλ

ν
0)
(u0)(etnL̂−I )L̂−1lM which comprises contributions that while being of leading
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order cannot be interpreted as changes in the group parameters. This term, under suitable
hypothesis, remains bounded. (iii) A third termhrq(h, tn), that is an o(hr) remainder.

The expansion (46) is not uniform, in the sense that the remainderhrq(h, tn) will in
general grow with time; a discussion of the growth of this remainder has been presented in
the final section of [4].

3.2. The Hamiltonian case

In the Hamiltonian case, we have the following result, whereu(c), λ(c) are the mappings
in lemma 2.4 (ii). The proof is similar to that of theorem 3.1 and will not be given.

Theorem 3.2.Assume that (H1), (H2′), (H3′), (A1), (A2) hold and letu0 be a relative
equilibrium as in (36), (37) such that is a nondegenerate equilibrium of the reduced system.
Then

Un = G(tnλ̄1,...,tnλ̄ν )
(u(c0+ tnhrθ))+ hrG′

(tnλ̄
1
0,...,tnλ̄

ν
0)
(u0)(e

tnL̂ − I )L̂−1lM + hrq(h, tn) (48)

for suitableθ = (θ1, . . . , θν), α = (α1, . . . , αν) and

λ̄i = λi
(
c0+ tn

2
hrθ

)
+ αihr , ci0 = Ii(u0), i = 1, . . . , ν.

The functionq is a remainder that, for fixedt , tends to zero ash→ 0.
If u0 is linearly stable as an equilibrium of the reduced system and the elements of the

group are isometries, the second term of the right hand side of (48) is bounded fort > 0.
If ( ∂λ

i (c)

∂cj
|c=c0)i,j=1,...,ν is invertible thenθ = 0 if and only if the method (43) satisfies the

conditions

∇Ij (u0)
T lr+1(u0) = 0, j = 1, . . . , ν. (49)

In particular, (49) holds if the method preserves exactly the invariant quantities
Ii(ψh,f (u0)) = Ii(u0).

Comparing this result with theorem 3.1 we see that now the error in velocitiesλ̄i − λi
that were bounded in time in theorem 3.1, now grow linearly. This leads to a quadratic
growth in the parameterstλ.

Before closing this section we point out that it is straightforward to extend our analysis
in several directions. As in [4], first we may have considered variable step sizes. Secondly,
we may have considered not only the leading O(hr) term of the expansion of the local error
but all terms O(hσ ), σ = r, . . . ,2r − 1, as these satisfy variational problems similar to that
satisfied by the leading term.

4. Numerical experiments

We now show some numerical examples to illustrate the preceding results. We focus on
the Hamiltonian case.

4.1. Test problem

We integrate numerically the Hamiltonian problem with four degrees of freedom and
Hamiltonian functionH = T + V .

T = 1
2(p

2
1 + p2

2 + p2
3 + p2

4),

V = − 1√
q2

1 + q2
2

− 1√
q2

3 + q2
4

− ε√
(q1− q3)2+ (q2− q4)2

, (50)
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where ε is a positive parameter. We are thus studying the planar motion of two bodies
attracted to the origin and to each other with forces inversely proportional to the distance
squared. The HamiltonianH and the total angular momentum

M = p2q1− p1q2+ p4q3− p3q4

are conserved quantities of the problem. The invariant quantityM is the Hamiltonian
function that generates the one-parameter group of rotations that mapsu =
(p1, p2, p3, p4, q1, q2, q3, q4) into Gτ(u) = Rτ u whereRτ is the block matrix

Rτ =


Rτ 0 0 0
0 Rτ 0 0
0 0 Rτ 0
0 0 0 Rτ

 , Rτ =
(

cosτ − sinτ
sinτ cosτ

)
.

Therefore, this is a group of symmetries of the equations of motion for (50).
In order to obtain the reduced system that will be required for analytical purposes, it is

advisable to introduce polar coordinates(r1, θ1) and (r2, θ2) in the planes(q1, q2), (q3, q4)

respectively. Then the Hamiltonian (50) becomesH = T + V with

T = 1

2

(
p2
r1
+ p2

r2
+ p

2
θ1

r2
1

+ p
2
θ2

r2
2

)
,

V = − 1

r1
− 1

r2
− ε√

r2
1 + r2

2 − 2r1r2 cos(θ1− θ2)

,

where the momenta are

pri = ṙi pθi = r2
i θ̇i , i = 1, 2.

Observe that in polar coordinatesM = pθ1 + pθ2. We now use the new set of canonical
variables

px = 1
2(pθ1 + pθ2), x = −(θ1+ θ2),

pz = 1
2(pθ2 − pθ1), z = (θ2− θ1),

pr1, r1,

pr2, r2.

(Note that the new momentumpx = M/2 is a conserved quantity and that in this example
y = (z, r1, r2).) Now H = T + V with

T = 1

2

(
p2
r1
+ p2

r2
+ (px − pz)

2

r2
1

+ (px + pz)
2

r2
2

)
,

V = − 1

r1
− 1

r2
− ε√

r2
1 + r2

2 − 2r1r2 cosz
,

(51)

and the reduced Hamiltonian is obtained by settingpx = c in the last expression forH . It
is easy to see that, at relative equilibria,z is a multiple ofπ , i.e. the two bodies are aligned
with the origin.
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4.2. Numerical methods

The numerical schemes being considered are as follows.
(RK) The classical third-order Runge–Kutta method with Butcher tableau [11]

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

which is chosen as an example of a nonconservative method, because it does not preserve
either of the two invariants of the equations of motion for (50).

(V) Verlet’s algorithm

pn+1/2 = pn + h
2
f n,

qn+1 = qn + hpn+1/2,

pn+1 = pn+1/2+ h
2
f n+1,

where p = (p1, p2, p3, p4), q = (q1, q2, q3, q4), f n = (f n1 , f
n
2 , f

n
3 , f

n
4 ) and the ith

component of the force is given byf ni = −Vqi (qn), i = 1(1)4. This method has order two,
is time symmetric and conserves the momentumM but not the Hamiltonian [16].

(EC) The second-order method

pn+1/2 = pn + h
2
f n(+), (52)

qn+1/2 = qn + h
4
(pn+1/2+ pn), (53)

pn+1 = pn+1/2+ h
2
f n+1(−), (54)

qn+1 = qn+1/2+ h
4
(pn+1+ pn+1/2), (55)

where the components of the forcesf n(+) andf n+1(−) are given by

f
n(+)
1 = −V (q

n+1/2
1 , qn2 , q

n
3 , q

n
4 )− V (qn1 , qn2 , qn3 , qn4 )

q
n+1/2
1 − qn1

,

f
n(+)
2 = −V (q

n+1/2
1 , q

n+1/2
2 , qn3 , q

n
4 )− V (qn+1/2

1 , qn2 , q
n
3 , q

n
4 )

q
n+1/2
2 − qn2

,

f
n(+)
3 = −V (q

n+1/2
1 , q

n+1/2
2 , q

n+1/2
3 , qn4 )− V (qn+1/2

1 , q
n+1/2
2 , qn3 , q

n
4 )

q
n+1/2
3 − qn3

,

f
n(+)
4 = − 1

q
n+1/2
4 − qn4

(V (q
n+1/2
1 , q

n+1/2
2 , q

n+1/2
3 , q

n+1/2
4 )

−V (qn+1/2
1 , q

n+1/2
2 , q

n+1/2
3 , qn4 )),

f
n+1(−)
1 = −V (q

n+1
1 , qn+1

2 , qn+1
3 , qn+1

4 )− V (qn+1/2
1 , qn+1

2 , qn+1
3 , qn+1

4 )

qn+1
1 − qn+1/2

1

,

f
n+1(−)
2 = −V (q

n+1/2
1 , qn+1

2 , qn+1
3 , qn+1

4 )− V (qn+1/2
1 , q

n+1/2
2 , qn+1

3 , qn+1
4 )

qn+1
2 − qn+1/2

2

,



1562 A Durán and J M Sanz-Serna

f
n+1(−)
3 = − 1

qn+1
3 − qn+1/2

3

(V (q
n+1/2
1 , q

n+1/2
2 , qn+1

3 , qn+1
4 )

−V (qn+1/2
1 , q

n+1/2
2 , q

n+1/2
3 , qn+1

4 )),

f
n+1(−)
4 = − 1

qn+1
4 − qn+1/2

4

(V (q
n+1/2
1 , q

n+1/2
2 , q

n+1/2
3 , qn+1

4 )

−V (qn+1/2
1 , q

n+1/2
2 , q

n+1/2
3 , q

n+1/2
4 ).

Note that the first component of the vector equation (52) and the first component of
(53) give a system of two scalar equations forpn+1/2

1 , q
n+1/2
1 . Oncepn+1/2

1 , q
n+1/2
1 are

known, the second components of (52), (53) give two scalar equations forp
n+1/2
2 , q

n+1/2
2

etc. To solve (54), (55) one considers the components in reverse order and successively
finds (pn+1

4 , qn+1
4 ), (pn+1

3 , qn+1
3 ) etc. The idea behind EC, i.e. to obtain force values by

numerically differentiating the potential can be found in [12, 18] and is used to ensure
conservation of the Hamiltonian. The scheme EC is time symmetric but does not exactly
conserve momentum.

4.3. Numerical results

We use the methods above to approximate some solutions of the problem (50) described
in section 4.1. The validity of the conditions (A1), (A2) for the schemes can be easily
proved. Our aim is to see the difference in error propagation. We do not try to compare the
efficiency of the methods nor imply that any of these three methods is a practical method
for the problem at hand.

4.3.1. Relative equilibrium case.We start our study of the error propagation by taking the
relative equilibrium (in Cartesian coordinates)

u0 = (0, λ,0,−λ, 1, 0,−1, 0), λ2 = 1+ ε
4
. (56)

In the corresponding solution the two bodies move with angular velocityλ around a
circumference of unit radius. An easy analysis based on (51) shows that this relative
equilibrium is linearly stable for 06 ε < 1

2. Taking ε = 0.1 we integrate with
the three methods up to 100 periods of timet = 100T , T = 2π/λ and step sizes
h = T/1280, T /2560, T /5120. Figure 1 gives, in a log–log scale, the Euclidean norm
of the global error as a function of time, with the full lines corresponding to EC, the broken
lines to V and the dotted lines to RK; plotted is the error at the end of every period. The
distance between parallel lines corresponding to a given method shows the O(h2) behaviour
of the errors of the Verlet’s method and EC method, while for RK errors behave as O(h3).
For fixed t , the third-order scheme gives smaller errors than the other methods, but if we
focus on the error propagation, we see that for the V and EC methods, errors grow liket

and, for RK, they grow liket2. This confirms the results stated in theorem 3.2. For the
leading terml of the local error of the third-order method,∇M(u0)

T · l(u0) 6= 0, which
leads to the quadratic growth. In the case of Verlet’s method, the conservation ofM assures
the orthogonality condition (49) and therefore the linear growth. Since EC conserves the
Hamiltonian (52), the leading terml of its local error at the relative equilibrium is orthogonal
to ∇H at this point and hence to∇M as, at relative equilibria,∇H and∇M are parallel
(see (14)).
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Figure 1. Error as a function of time in the integration of a stable relative equilibrium. The full
lines correspond to EC, the chain lines to V and the dotted lines to RK.

4.3.2. Perturbation of the relative equilibrium.We next take the initial condition

u0 = (0, λ,0,−λ, 1+ ε′, 0,−1, 0), λ2 = 1+ ε
4
, (57)

with ε = 0.1, ε′ = 1E − 04, i.e. we take a small perturbation of the relative equilibrium
(56). We integrated the problem with a standard variable step code up tot = 200 and
sufficiently small tolerance to obtain an ‘exact’ solution. The error propagation for this
case can be seen in figure 2. No significant change is observed with respect to figure 1, so
that the better error propagation that we have proved for relative equilibria also holds for
neighbouring solutions as one may have expected. In figure 2 and in later figures the error
has been plotted at intervals of unit length.

4.3.3. Instability. We can also study unstable relative equilibria. We take an initial
condition of the form (57) but withε = 1. Figure 3 gives the behaviour in time of
the error for V (chain curves) and for RK (dotted curves). The results for the EC method
are similar to those of V and we do not include them. Note that, for all methods, errors
grow, eventually, in an exponential fashion.

4.3.4. Asymptotically uncoupled motion.The initial condition

u0 = (6, 4, 1, 0,−1, 0, 1, 1),

with ε = 1 gives rise to a solution in which, asymptotically ast ↑ ∞, one body describes a
Keplerian elliptic orbit around the origin, while the other approaches infinity at a constant
velocity. The system behaves for larget as two uncoupled Kepler problems, one with
positive energy and the other with negative energy. Figure 4 displays the global errors for
the three methods. Observe that, after a transient with exponential growth, errors for the
RK scheme grow quadratically and, in the case of the second-order methods, they grow
linearly, as if we were really integrating a Kepler problem [3].
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Figure 2. Error as a function of time near a stable relative equilibrium. The full lines correspond
to EC, the chain lines to V and the dotted lines to RK.

Figure 3. Error as a function of time near an unstable relative equilibrium. The chain curves
correspond to V and the dotted curves to RK.

4.3.5. A symmetric solutionFinally, we show an example for which the two second-order
methods behave in very different ways. For the initial condition

u0 = (1, 0,−1, 0, 1, 1,−1,−1),

(ε = 0.1) the solution represents the two bodies moving symmetrically with respect to the
origin

q1(t) = −q3(t), q2(t) = −q4(t), p1(t) = −p3(t), p2(t) = −p4(t). (58)
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Figure 4. Error as a function oft for a case where for larget one body describes a Keplerian
ellipse and the other approaches infinity. The full curves correspond to EC, the chain curves to
V and the dotted curves to RK.

Figure 5. Error as a function oft for a solution where both bodies describe symmetric solutions.
The chain curves corresponds to V and the dotted curves to RK.

Each body describes a Keplerian ellipse with focus at the origin. Due to the symmetry (58),
the eight equations of motion could be reduced to four equations forq1, q2, p1, p2. The
error propagation for this case is shown in figures 5 and 6. Figure 5 corresponds to RK
and V, while errors for EC are displayed in figure 6. The RK and V schemes (and any
other Runge–Kutta or partitioned Runge–Kutta method) have the property that if at one step
qn1 = −qn3 , qn2 = −qn4 , pn1 = −pn3, pn2 = −pn4 then the same is true at the next step. They
thus behave as if they were integrating a Kepler problem for one of the bodies. Therefore,
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Figure 6. Error as a function oft for a solution where both bodies describe symmetric solutions.
The integrator is EC.

we have quadratic growth for the nonconservative scheme and linear growth for Verlet’s
method [4]. But figure 6 shows a very different behaviour in the case of EC. This method
does not preserve the symmetry of the solution: it is clear from (52)–(55) thatq1 andq3,
q2 andq4 do not play a symmetric role in the algorithm. The lack of symmetry in the local
error triggers an exponential growth.
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