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MOLLIFIED IMPULSE METHODS FOR HIGHLY OSCILLATORY
DIFFERENTIAL EQUATIONS∗
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Abstract. We introduce a family of impulselike methods for the integration of highly oscillatory
second-order differential equations whose forces can be split into a fast part and a slow part. Methods
of this family are specified by two weight functions φ, ψ; one is used to average positions and the
other to mollify the force. When the fast forces are conservative and φ = ψ, the methods here
coincide with the mollified impulse methods introduced by Garćıa-Archilla, Sanz-Serna, and Skeel.
On the other hand, the methods here extend to nonlinear situations a well-known class of exponential
integrators introduced by Hairer and Lubich for cases of linear fast forces. A convergence analysis is
presented that provides insight into the role played by the processes of mollification and averaging in
avoiding order reduction. A simple condition on the weight functions is shown to be both necessary
and sufficient to avoid order reduction.
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1. Introduction. We consider numerical methods for the integration of multiple-
time-scale problems of the form

M
d2

dt2
q = f(q) + g(q),(1)

where M is a symmetric positive-definite mass matrix and the forces are split into
a soft or slow part g that does not contribute any fast modes to the solution and a
strong or fast part f such that the reduced problem

M
d2

dt2
q = f(q)

possesses highly oscillatory modes (and possibly slow modes as well). These problems
arise in many situations including molecular dynamics, astronomy, and the time in-
tegration of partial differential equations describing wave phenomena. The fast/slow
splitting is of interest in situations where the computational cost of integrating the
reduced system is much smaller than that of integrating the full system. For instance,
in an N -body problem, the evaluation of the fast force is cheaper than that of the
slow force if the former is composed only of next-neighbor interactions and the latter
includes interactions between all particles. A second example is provided by cases
where the reduced problem can be solved analytically with a cost that is independent
(or almost independent) of the step length. In such situations the aim is to sample
the slow forces as sparingly as possible and, certainly, at a rate that is not determined
by the periods of the fast motions, i.e., by the stiffness of the reduced problem.
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MOLLIFIED IMPULSE METHODS 1041

The impulse method was devised to cater to these situations. The time stepping
of the impulse method intersperses evaluations of the slow forces at intervals of length
h with integrations of the reduced system that are taken to be exact, either because
an analytic integration is feasible or because, in a multiple time-step approach [7],
[8], [17], a numerical integration is performed with a time step much smaller than h.
Unfortunately, the impulse method, which is formally of second-order accuracy, leads
only to errors that behave O(h2) if h is small as compared with the smallest period
of the reduced system. An alternative family of methods, the mollified impulse meth-
ods, was introduced in [5]; there is one mollified impulse method for each choice of a
so-called weight function. Proved in [5] is the fact that, for several choices of weight
functions, the mollified impulse method yields errors in q that behave as O(h2), where
the implied constant is independent of the size of the fast forces and depends only on
the energy of the solution and on bounds for g and its derivatives. It is then possible
to apply the mollified impulse methods with a given time step h to faster and faster
problems without impairing the accuracy. This is feasible because, for a given oscilla-
tion amplitude, the energy grows with the frequency; therefore, in solutions of limited
energy, fast oscillations are present with small amplitudes and need not be accurately
resolved. In conclusion, for problems with fast oscillations, the scenario here is then
similar to that found in the development of stiff solvers [3], [12] for problems with fast
rates of decay: Good stiff solvers perform satisfactorily with step lengths independent
of the stiffness of the problem and determined only by the smoothness of the solution,
and this is possible because they need not accurately resolve fast components. As in
the (nonoscillatory) stiff situation [3], [12], methods for highly oscillatory problems
have a conventional order that is brought out in simulations where the step length h
is small when compared to the stiffness of the problem and a stiff order that manifests
itself in the cases where h is not small. In general the stiff order is smaller than the
conventional order, and one speaks of an order reduction.

In this paper we reconsider the ideas behind the mollified impulse method. In
section 2 we introduce a large family of methods, the (φ, ψ)-methods, which extends
in two ways the family in [5]. In the first place, (φ, ψ)-methods are specified by two
independent weight functions: one, ψ, that defines the so-called mollification and one,
φ, that is employed in an averaging. On the other hand, our description here of the
mollification process depends on the Alekseev–Groebner formula [11] and applies to
cases where the fast forces are nonconservative. This should be compared with the
methods in [5] that depend on one weight function and apply only to conservative
fast forces (Hamiltonian reduced problems). In section 3, it is shown that, if φ and ψ
are taken to coincide and the reduced problem is Hamiltonian, the family of methods
considered here coincides with the mollified methods of [5].

When the fast forces are linear, the reduced problem may in principle be inte-
grated analytically, and we show in section 4 that the (φ, ψ)-method can be imple-
mented in terms of two filters defined in terms of the Fourier transforms of the weights
φ and ψ. In this case of linear fast forces, the family of (φ, ψ)-methods essentially
mimics a by now well known family of exponential integrators first described by Hairer
and Lubich [9] (see also, among others, [2] and Chapter XIII in the monograph [10];
an error analysis has been provided in [6]). The relation between weights and filters
is explored in further detail in section 7, where filters are characterized via a classical
Fourier analysis result of Paley and Wiener.

Sections 5 and 6 contain an analysis of the accuracy of (φ, ψ)-methods as applied
to problems with linear fast forces. The approach here resembles in a way that in [5],
because it is based on the weight functions rather than on the corresponding filters.
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1042 J. M. SANZ-SERNA

The analysis here is then completely different from those in the convergence proofs
presented in [6] and (for a particular model problem with only one fast frequency)
in Chapter XIII of [10]; both proofs are carried out in terms of the filters. We
show how a study in terms of weights makes it possible to identify in a natural way
simple conditions on the methods that are both necessary and sufficient to ensure that
no order reduction takes place. Essentially, no order reduction is equivalent to the
requirement that the translation of the weight function are a basis set for a consistent
interpolation scheme. On the other hand, our analysis differs from that in [5] in a
number of points that we believe to be of some importance. We cater here to weight
functions of arbitrary bounded support; in [5] the support had to be contained in
[−1, 1]. Our analysis applies to cases where the mollification filter ψ is different from
the averaging filter φ; this not only means that more methods are covered but also
tells apart the effects of the averaging from those of the mollifier. We finally mention
that section XIV.2.4 of [10] presents an analysis for the long-average mollified impulse
method that covers fast forces more general than those considered by us.

Extensive numerical experiments based on the new methods will be provided in
a forthcoming paper.

2. Description of the methods. For numerical work, we rewrite the system
(1) in the first-order format

d

dt
p = f(q) + g(q),

d

dt
q = M−1p,(2)

with the reduced version

d

dt
p = f(q),

d

dt
q = M−1p.(3)

If we denote by Pn and Qn the numerical approximations to the true solution
values of the momenta pn = p(tn) and coordinates qn = q(tn), respectively, at the
step point tn = nh, a step n → n + 1 of any of the methods considered in this paper
may be fit into the following composition or split-step pattern.

Kick. Compute an approximation Ḡn to the value of the slow force g(qn), and
then set P+

n = Pn + h
2 Ḡn.

Oscillation. Use the h-flow of the reduced problem (3) to advance from (P+
n , Qn)

to (P−
n+1, Qn+1). In other words, (P−

n+1, Qn+1) is obtained by integrating, over a time
interval of length h, the system (3) with initial conditions (P+

n , Qn).
Kick. Set Pn+1 = P−

n+1 + h
2 Ḡn+1.

Of course, the force Ḡn+1 at the second kick of the current step coincides with
the force at the first kick of the next step, so that the methods essentially consist
of a sequence of oscillations (P+

n , Qn) → (P−
n+1, Qn+1) followed by kicks P−

n+1 =

P+
n+1 + hḠn+1; it is not necessary to compute the vector Pn+1 unless output at tn+1

is required.
Different methods within the class considered here differ in the way in which the

forces Ḡn are computed. The simplest and earliest choice, that of the original impulse
method, is given by Ḡn = g(Qn) and, unfortunately, suffers from an order reduction
in p from 2 to 0 and in q from 2 to 1 in the stiff oscillatory situations considered here
[5]. An improvement that may ensure (stiff) order 1 in p and (stiff) order 2 in q was
presented in [5]. The family of mollified impulse methods introduced there have

Ḡn = M(Qn, h)g(A(Qn, h)),(4)
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where, given Qn and h, A(Qn, h) represents an average of values of q and M is a so-
called mollifier matrix. The use of A avoids [5] the dangers associated with sampling
at grid points a quickly varying g(q(t)), and the role of M is to mimic the way in
which extra external forces contribute to build up the momentum in highly oscillatory
problems (see the analysis and counterexamples in sections 5 and 6 below).

As discussed in [5], there is much freedom within the class of mollified impulse
methods, both in how M and A may be mathematically specified and in the analytic
or numerical technique employed to actually compute them. Here we add to this
freedom by further enlarging the class of possible choices in (4).

Before we proceed, we need some notation. We denote by P(p, q, t), Q(p, q, t) the
flow of the reduced system (3), so that p(t) = P(p0, q0, t), q(t) = Q(p0, q0, t) is the
value at time t of the solution of (3) with initial conditions p(0) = p0, q(0) = q0.
Thus P−

n+1 = P(P+
n , Qn, h), and Qn+1 = Q(P+

n , Qn, h). For compactness, it is useful
to combine Pn and Qn into a single vector Yn = (Pn, Qn) and similarly write y(t) =
(p(t), q(t)), Y = (P,Q), etc. If d represents the number of degrees of freedom in the
problem, we will also use the (2d) × (2d) Jacobian matrix Y ′(α, t) of Y(α, t) with
respect to its argument α, which can be found by integrating the variational equation

∂

∂t
Y ′(α, t) =

[
0 f ′(Q(α, t))

M−1 0

]
Y ′(α, t),(5)

with initial condition Y ′(α, 0) = I2d. It is clear that Y ′ possesses a natural block
structure corresponding to the partition of y:

Y ′ =

[
Pp Pq

Qp Qq

]
.

Each of the methods considered here is defined by two weight functions. For the
purpose of this paper, a weight function is a bounded, integrable real-valued function
χ(t) that is assumed to be even χ(−t) ≡ χ(t) and to satisfy∫ ∞

−∞
χ(s)ds = 1.(6)

(Note that we do not require χ ≥ 0.)
We may now describe the new methods. As in [5], to construct A, we start by

choosing a weight function φ and then define

A(Qn, h) =
1

h

∫ ∞

−∞
q∗(t)φ

(
t

h

)
dt =

∫ ∞

−∞
q∗(hs)φ(s) ds,(7)

where q∗(t) is obtained by solving the reduced problem (3) with initial conditions
q = Qn, p = 0, i.e., q∗(t) = Q(0, Qn, t). Since q∗ is an even function of t, the integrals
in (7) are in practice replaced by twice their value over (0,∞).

To define the mollifier, we choose a second weight function ψ, and, at each time
step, we find a matrix-valued function Y ′ of the independent variable t

Y ′(t) =

[
Pp(t) Pq(t)
Qp(t) Qq(t)

]

by integrating the variational problem (q∗(t) is as above)

d

dt
Y ′ =

[
0 f ′(q∗(t))

M−1 0

]
Y ′,(8)
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with initial condition Y ′(0) = I2d, and then set

M(Qn, h) =
1

h

∫ ∞

−∞
R(t)ψ

(
t

h

)
dt =

∫ ∞

−∞
R(hs)ψ(s) ds,(9)

where R(t) is the upper left d× d block of the inverse matrix Y ′(t)−1, i.e.,

R(t) = [Id, 0d]Y
′(t)−1[Id, 0d]

T .

Note that q∗, Y ′, R depend on Qn, but this dependence is not reflected in the notation,
and that again, in practice, the required integrals may be replaced by twice their value
over (0,∞). (Reversing the sign of t in (8) shows that the (1, 1) and (2, 2) diagonal
blocks of Y ′(t) are even functions of t, while the off-diagonal blocks are odd functions
of t. The inverse Y ′(t)−1 inherits this odd/even structure, and therefore R(t) is even.)

To sum up, for any pair of weight functions φ and ψ, we have introduced a numer-
ical scheme, to be referred to as the (φ, ψ)-method, that uses the kick/oscillation/kick
structure with kicking forces Ḡn given by (4) and A and M defined in (7) and (9).
We will stretch somehow the notation and understand that (δ, ψ), with δ the standard
Dirac function, refers to a method with mollification but no averaging; (φ, δ) refers
to a method with averaging but no mollification, and (δ, δ) is the original impulse
method. All methods are symmetric or time-reversible [16], [10] and therefore conver-
gent of the second order (in nonstiff situations). Furthermore, since individual kicks
and oscillations preserve volume in phase space, all methods are volume-preserving.

The methods require at each step two integrations of the reduced problem: one to
carry out the oscillation (P+

n , Qn) → (P−
n+1, Qn+1) and one to compute the auxiliary

q∗(t) that features in (7) and (9). Furthermore the latter is to be carried out in tandem
with the integration of the variational problem (8); see [5]. In some applications (see
section 4 below) these integrations may be performed analytically, and in other cases
one has to resort to a numerical technique with a small time step. If numerical
integration is used, the weight functions φ and ψ have to possess bounded support
so that the auxiliary problems are integrated only over a bounded time interval. The
integrals in (7) and (9) can be computed along the integrations for q∗ and Y ′ if
one appends extra unknown functions b, c that evolve in time according to db/dt =
φ(t/h)q∗(t) and dc/dt = ψ(t/h)R(t); cf. [5].

We end this section by presenting the motivation for the definition of the mollifier.
The original impulse method can be expressed [18] in terms of the Dirac delta function
as an exact integration of the approximation

d2

dt2
q = f(q) +

∑
n

δ

(
t− tn
h

)
g(Qn),

and the idea behind the mollification is to employ less abrupt versions [5]

d2

dt2
q = f(q) +

∑
n

ψ

(
t− tn
h

)
G∗

n,(10)

where G∗
n is the force g(A(Qn, h)) to be mollified.

In order to incorporate the forces ψ((t−tn)/h)G∗
n into the solution of the reduced

problem, we use here the Alekseev–Groebner (AG)/nonlinear variation of constants
formula [11] as distinct from the approach used in section 5 of [5], which is limited
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to the case where the reduced system is Hamiltonian. According to the AG formula,
solutions of (2) can be expressed in terms of the reduced flow Y as

y(tb) = Y(y(ta), tb − ta) +

∫ tb

ta

Y ′(y(s), tb − s)

[
g(y(s))

0

]
ds.

Assume then that, at the step n − 1 → n, we have performed the corresponding
oscillation and we wish to additionally incorporate the effect of ψ((t−tn)/h)G∗

n, acting
while t ≤ tn. (The effect of the force acting in the interval t ≥ tn is incorporated at
the first kick of the next step in a symmetric way.) We set tb = tn and let ta ↓ −∞,
to conclude that

(∫ tn

−∞
Y ′(y(s), tn − s)ψ

(
s− tn

h

)
ds

)[
G∗

n

0

]
(11)

is the change in solution caused by the extra force. Therefore, the extra momentum
is

(∫ tn

−∞
Pp(y(s), tn − s)ψ

(
s− tn

h

)
ds

)
G∗

n,

and we would like to add this expression to P−
n to obtain Pn. There are two difficulties

to be tackled. The first stems from the fact that (11) contains the solution y(t) being
sought; it is readily circumvented by using an approximation to y(t). The second is
that present in (11) is a family of Jacobian matrices, one for each vector y(s), so that,
in principle, we may fear that, for each s, in order to find Y ′(y(s), tn − s) we would
have to solve a different initial value problem for (5). However, differentiation of the
identity Y(Y(α, t),−t) ≡ α (group property of the flow) yields for the corresponding
Jacobian matrices the well-known relation

Y ′(Y(α, t),−t) = Y ′(α, t)−1.(12)

We then approximate the unknown y(s) by Y((0, Qn), s − tn), use the relation (12)
with α = (0, Qn), t = s− tn), and rewrite (11) as

(∫ tn

−∞
Y ′((0, Qn), s− tn)−1ψ

(
s− tn

h

)
ds

)[
G∗

n

0

]
,

an expression that, after shifting the integration variable and multiplying by 2 to
account for the effect of ψG∗

n acting while t ≥ tn, leads to (9).

3. Conservative fast forces. When the fast forces are conservative, f(q) =
−∇W (q), with W a scalar potential function, the system (3) is Hamiltonian [16], [10],
[14], and the symmetries associated with Hamiltonian flows allow a simplification of
the mollification procedure. The key observation is as follows.

Lemma 1. Assume that the reduced problem (3) is Hamiltonian. Then

Y ′(α, t)−1 = J−1Y ′(α, t)TJ,

where J is the matrix that defines the canonical symplectic form of the Hamiltonian
formalism. In particular, the upper left block of the inverse of Y ′(α, t) coincides with
Qq(α, t)

T (transposed lower right block).
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Proof. Due to the symplecticness of Hamiltonian flows, K = Y ′(α, t) satisfies the
relation KTJK = J , or K−1 = J−1KTJ .

After this result, in the Hamiltonian case, the matrix R averaged in (9) can be
found without inverting the (2d) × (2d) Jacobian Y ′; instead we set

R(t) = Qq(t)
T ,(13)

with Qq found from solving

d

dt

[
Qp(t)
Qq(t)

]
=

[
0 f ′(q∗(t))

M−1 0

] [
Qp(t)
Qq(t)

]
,

with initial condition Qp(t) = 0d, Qq(t) = Id. The left upper and lower blocks of Y ′

have been discarded from the variational equation (8) as they are not coupled to the
lower right block Qq to be used in (13).

The mollified impulse method was conceived by Skeel [5] in a context where much
relevance was attached to the symplectic character [16], [10], [14] of the numerical
schemes considered, and, for this reason, the paper [5] deals only with the case of
conservative fast forces. In [5] the weight function φ may be freely chosen, but the
mollifier is determined by

M(Qn, h) = A′(Qn, h)T(14)

(a prime denotes differentiation with respect to Q), a choice that ensures that, when-
ever the force g is conservative with g(q) = −∇U(q), the force Ḡn used in the kicks is
itself conservative as the negative gradient of the averaged potential U(A(Qn+1, h)).
In the present work, fast forces need not be conservative, and there are two weight
functions φ and ψ to be chosen. Nevertheless, if the fast forces are conservative and
if ψ is chosen to coincide with φ, the (φ, φ)-methods defined here coincide with the
methods introduced in [5]: Differentiating the average of q∗ and transposing as in (14)
is equivalent to averaging the transposed of the corresponding Jacobian as in (9) and
(13).

4. Linear fast forces. We now address the case where the fast forces are linear:
f(q) = −Sq, with S a stiffness matrix. We do not assume S to be symmetric, but,
in order to deal with oscillatory problems, we suppose that M−1/2SM−1/2 possesses
only real nonnegative eigenvalues and can be diagonalized. The material below would
remain valid even if the conditions on S may be relaxed considerably; for instance,
M−1/2SM−1/2 could be allowed to have complex eigenvalues close to the positive
real axis. An abstract situation where S is the generator of a cosine operator [1] in a
Banach space could also be catered to, but we will not concern ourselves with such
extensions.

Under the hypothesis above, there exists a unique (in general, nonsymmetric)
matrix Ω such that Ω2 = M−1/2SM−1/2 and all eigenvalues of Ω are nonnegative;
the solution flow of the reduced problem is given in terms of Ω by y(t) = R(t)y(0),
where R(t) is the rotation matrix

R(t) =

[
M1/2 cos tΩM−1/2 −M1/2Ω sin tΩM1/2

M−1/2Ω−1 sin tΩ M−1/2 M−1/2 cos tΩM1/2

]

or, in the spirit of the theory of cosine operators [1],

R(t) =

[
M1/2C(t)M−1/2 M1/2 d

dtC(t)M1/2

M−1/2
∫ t

0
C(s)ds M−1/2 M−1/2C(t)M1/2

]
,
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with C(t) = cos tΩ. The second formula for R possesses the merit of deemphasizing
the dependence of the material presented here on special properties of the trigonomet-
ric functions; the occurrence of the derivative and the integral is a direct consequence
of the fact that p is essentially the time derivative of q. The upper left block of R(t)
is bounded by a constant, and therefore the lower left block possesses an estimate of
the form O(t); the analysis below is based on these facts. On the other hand, from
the group properties of the flow, R(t)R(s) = R(t + s), so that, in particular, R(−t)
is the inverse of R(t); these properties are not contingent on trigonometric identities
and will also be crucial below. It is perhaps of some interest to point out that, in
agreement with section 3, if the problem is Hamiltonian, then Ω is symmetric and
the upper left block of R(−t) coincides with the transpose of the lower right block of
R(t).

The definition (7) now yields, since R(t)−1 = R(−t),

A(Qn, h) = M−1/2

(
1

h

∫ ∞

−∞
cos tΩφ

(
t

h

)
dt

)
M1/2 Qn

= M−1/2

(∫ ∞

−∞
cos shΩφ(s) ds

)
M1/2 Qn,

an expression that, after introducing the Fourier transform of the even function φ

φ̂(ω) =

∫ ∞

−∞
exp(−iωt)φ(t) dt =

∫ ∞

−∞
cosωtφ(t) dt,(15)

can be rewritten as

A(Qn, h) = AhQn =
(
M−1/2φ̂(hΩ)M1/2

)
Qn.

Similarly, (9) now reads

Mh = M−1/2

(
1

h

∫ ∞

−∞
cos tΩψ

(
t

h

)
dt

)
M1/2

= M−1/2

(∫ ∞

−∞
cos shΩψ(s) ds

)
M1/2

or

Mh = M−1/2ψ̂(hΩ)M1/2,

with

ψ̂(ω) =

∫ ∞

−∞
exp(−iωt)ψ(t) dt =

∫ ∞

−∞
cosωtψ(t) dt,(16)

and we conclude that the kicking force is given by

Ḡn = M−1/2ψ̂(hΩ)M1/2g
(
M−1/2φ̂(hΩ)M1/2Qn

)
.(17)

For cases of linear fast forces where the stiffness matrix S is symmetric, a number
of recent contributions starting from [9] have considered a family of kick-oscillate-
kick algorithms whose kicking force includes four independent filtering functions (see
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Chapter XIII of [10], [6], and references therein). If the attention is restricted to sym-
metric (time reversible) methods within that family, then the number of independent
filters is reduced to two and the format for the kicking force is precisely (17) (see
section 7).

Some final remarks: The real filter functions φ̂, ψ̂ are even. Since weight functions
are assumed throughout to satisfy the normalizing condition (6), we have φ̂(0) =

ψ̂(0) = 1. Furthermore the integrability of the weights implies that φ̂ and ψ̂ are

continuous, vanish at ∞, and possess the estimates ‖φ̂‖∞ ≤ ‖φ‖1, ‖ψ̂‖∞ ≤ ‖ψ‖1. If

in particular φ or ψ are nonnegative, then ‖φ̂‖∞ = 1 or ‖ψ̂‖∞ = 1. When φ or ψ are
the Dirac function, then the Fourier transform is the unit function and the average
or mollification filters become the identity, as they should.

5. Analysis: Mollification. Throughout this section and the next, we assume
that the mass matrix M is the identity. What follows may easily be extended to the
case M 
= I (but the formulas soon become cluttered with powers of M); alternatively,
a problem with M 
= I may be reduced to the case M = I by a linear change
of variables [5]. Similarly, we assume that the stiffness matrix S is symmetric and
positive-semidefinite, so that, in the Euclidean norm, ‖ cos tΩ‖ ≤ 1; again the analysis
below may be easily extended to cover the more relaxed hypotheses on S considered
in section 4, but this brings a bound for ‖ cos tΩ‖ as an additional constant in many
of the formulas.

The analysis begins with the following result, which is Lemma 3 of [5] (but there
is a square root missing from some formulas in that paper). To simplify the writing,
we denote by ḡ(·) = Mhg(Ah ·) the function that provides the kicking force and
furthermore set ḡn = ḡ(qn). Similarly we set g∗(·) = g(Ah ·) and g∗n = g∗(qn).
Furthermore we denote by L0, L1, and L2 a bound for g, a Lipschitz constant for g,
and a Lipschitz constant for the derivative of g, respectively, when they exist; it follows
from the boundedness of the filters that, if g is Lipschitz continuous, ḡ and g∗ are
then also Lipschitz continuous with constants L̄1 = ‖ψ‖1L1‖φ‖1 and L∗ = L1‖φ‖1,
respectively.

Theorem 1. Assume that the problem (2) with linear fast forces satisfies the
hypotheses above, with g Lipschitz continuous, and is solved with P0 = p(0) and
Q0 = q(0) by means of a (φ, ψ)-method (φ and/or ψ may be taken to be δ). Then the
global error satisfies

‖Qn − qn‖ ≤ cosh(tn
√
L̄1) · max

1≤j≤n
‖σq,j‖

and

‖Pn − pn‖ ≤ ‖σp,n‖ + L̄1tn cosh(tn
√
L̄1) · max

1≤j≤n
‖σq,j‖,

where σp,n σq,n are the quadrature errors

[
σp,n

σq,n

]
=

n∑
j=0

h1j

[
cos(tn − tj)Ω

Ω−1 sin(tn − tj)Ω

]
ḡj −

∫ tn

0

[
cos(tn − t)Ω

Ω−1 sin(tn − t)Ω

]
g(q(t)) dt(18)

(1j is defined to be 1 except for 10 = 1n = 1/2).
This theorem, based on a Gronwall lemma argument, provides a basic stability

result for all of the methods in the class considered in this paper. To be noted is
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the fact that the truncation error perpetrated at each step does not explicitly feature
in the global error bound; instead the stepwise truncation errors up to tn have been
compounded into a single quadrature error σn. Integrated forms of the truncation
error may lead to sharper error bounds than a stepwise approach whenever error
cancellations are to be expected. This is an old theme in the analysis of numerical
methods that, for ordinary differential equations, goes back at least to Spijker’s thesis
(see the discussion in [15]).

If ḡn = g(Qn) (original impulse method), σ coincides with the error in the trape-
zoidal quadrature rule. In the highly oscillatory scenario considered here where hΩ is
not assumed to be small, the function cos(tn − t)Ω has an unbounded first derivative,
and one cannot expect to derive O(h) error bounds for σp that are uniform in Ω. A
counterexample is provided by the case of a scalar harmonic oscillator of frequency ω
subject to a constant external force g with hω = 2π (the situation presented in [5] to
prove that the global error—not the quadrature error—of the impulse method has stiff
order 0 in the p variables). In the p component, the integral in (18) vanishes, while
the trapezoidal quadrature rule takes the O(1) value tng. For the q component the
situation is not as bad: Ω−1 sin(tn − t)Ω has a bounded first derivative, and standard
theory leads to O(h) error bounds for σq and hence for Qn − qn in the application of
the original impulse method to stiff oscillatory situations.

The proof of the next lemma essentially reverses the construction of the mollifier
in section 2: There we incorporated into the kicking force Ḡn the “distributed” force
ψ((t − tn)/h)G∗

n (see (10)) by way of the mollification matrix; we now recover the
distributed force from the mollification matrix. The meaning of the lemma is clear:
While the impulse method approximates the oscillatory integral in (18) by interpola-
tion of the whole integrand, mollified methods interpolate only the soft force g(q(t)).
This is precisely the idea behind Filon-type methods for the quadrature of oscillatory
functions; see, e.g., [13].

Lemma 2. The quadrature error (18) may be rewritten as

[
σp,n

σq,n

]
=

∫ ∞

−∞

[
cos(tn − t)Ω

Ω−1 sin(tn − t)Ω

] n∑
j=0

1jψ

(
t− tj
h

)
g∗j dt

−
∫ tn

0

[
cos(tn − t)Ω

Ω−1 sin(tn − t)Ω

]
g(q(t)) dt.(19)

Furthermore, for a mollified method (φ, ψ) (φ may be the Dirac function) in which
ψ has bounded support and vanishes for | t |> μ > 0, the quadrature error is of the
form

[
σp,n

σq,n

]
=

∫ tn

0

[
cos(tn − t)Ω

Ω−1 sin(tn − t)Ω

]
I(t) dt + βn,(20)

where I(t) is the interpolation error

I(t) =

⎛
⎝ n∑

j=0

ψ

(
t− tj
h

)
g∗j

⎞
⎠− g(q(t))(21)

and βn represents boundary effects and can be estimated as

‖βn‖ ≤ 2μ(1 + t2n)1/2‖ψ‖1L0h.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1050 J. M. SANZ-SERNA

Proof. By the definition of the mollifier and since the integral of sin(tj−t)Ωψ((t−
tj)/h) vanishes, the jth term Tj of the sum in (18) can be written as

h1jR(tn − tj)

[
ψ̂(hΩ)g∗j

0

]

= 1j

∫ ∞

−∞
R(tn − tj)

[
cos(tj − t)Ω

Ω−1 sin(tj − t)Ω

]
ψ

(
t− tj
h

)
g∗j dt

= 1j

∫ ∞

−∞

[
cos(tn − t)Ω

Ω−1 sin(tn − t)Ω

]
ψ

(
t− tj
h

)
g∗j .

Away from the boundary, when j is such that 0 ≤ tj − μh, tj + μh ≤ tn, the
last integral may be taken between the limits 0 and tn and incorporated into the
integral in (18). There are at most 2μ boundary values of j (μ near 0 and μ
near tn). For those values, the corresponding term Tj is incorporated only in part
to the integral. The lemma follows after noticing that each Tj can be bounded by
h(1 + t2n)1/2‖ψ‖1L0.

After Theorem 1 and Lemma 2, global error estimates depend on bounds for the
interpolation error (21), and we now turn to these. It is well known that a minimum
requirement for any linear interpolation scheme is that it reproduces with no error
the constant functions:

∞∑
j=−∞

ψ(t− j) ≡ 1,(22)

a condition that was featured in [5]. We recall from the standard theory behind the
Poisson summation formula that the 1-periodic function

Ψ(t) =
∞∑

j=−∞
ψ(t− j)

(the sum is well defined if ψ has bounded support) has a Fourier series

Ψ(t) =
∑
n

cn exp(i2πnt)

whose coefficients are values of the Fourier transform of ψ:

cn =

∫ 1

0

exp(−i2πnt)Ψ(t) dt =

∫ ∞

−∞
exp(−i2πnt)ψ(t) dt = ψ̂(2πn).

Therefore (22) is equivalent to the condition

ψ̂(2πn) = 0, n = ±1,±2, . . .(23)

that appears in the analysis of [10], [6]. We now prove that these conditions are
essentially necessary and sufficient to achieve stiff order of convergence 1.

Theorem 2. With the hypotheses of Theorem 1, assume that g has a bounded
derivative and that the weight function ψ has bounded support and satisfies (22) or
(23) (φ may be the Dirac function). Then the global error possesses a bound

‖Pn − pn‖ + ‖Qn − qn‖ ≤ Ch,
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where the constant C depends on ψ, φ, tn, L0, and L1 and also on a bound E for the
reduced energy of the true solution

E = max
−μh≤t≤tn+μh

(
1

2
‖p(t)‖2 +

1

2
‖Ωq(t)‖2

)
.

Conversely, if the (ψ, φ)-method, where ψ is boundedly supported and φ may be
δ, possesses a global error bound of this form, then (22) and (23) hold true.

Proof. Consider a method such that ψ̂(2kπ) 
= 0 for k 
= 0 an integer. In the
case of a scalar harmonic oscillator with frequency ω = 2kπ/h forced by a constant
g, the global errors can be found explicitly, and Pn − pn turns out to possess an O(1)
behavior as h → 0.

Let us next derive the error bound when φ = δ. It is standard to show (by approx-
imating m(t) by a constant) that, when interpolating a function m, the interpolation
error

⎛
⎝ ∞∑

j=∞
ψ

(
t− tj
h

)
m(tj)

⎞
⎠−m(t)

can be bounded by KψK1h, where Kψ depends only on ψ and K1 is a bound for the
derivative (d/dt)m(t). In our situation, where m(t) = g(q(t)) and (d/dt)m(t) = g′p,
this yields an upper bound of the form KψL1

√
Eh for the interpolation error in (21)

for t away from the boundary μh ≤ t ≤ tn − μh. The remaining intervals 0 ≤ t ≤ μh
and tn − μh ≤ t ≤ tn have length O(h), and in them I(t) is bounded. This, along
with Lemma 2 and Theorem 1, yields the error bound for the global error.

The effect of an averaging operation with φ 
= δ is to perturb the interpolation
by bringing in approximate values g∗n = g(Ahqn) for the function values gn = g(qn).
Since (I − Ah)(hΩ)−1 can be bounded independently of h and Ω (see the proof of
(28) below), the differences g∗n − gn are O(h), with the implied constant depending
on L1, φ, and a bound for ‖Ωqn‖. Then a global error bound O(h2) also holds in the
presence of averaging.

6. Analysis: Averaging. In this section we prove that, for suitable averaging
operators, the (φ, ψ)-method yields O(h2) errors in q uniformly in the stiffness of the
problem. After Theorem 2, we consider only situations where ψ is of bounded support
and (22) holds.

The analysis begins by observing that, from the Alekseev–Groebner variation of
constants formula:

p(t) = P(p(0), q(0)) +

∫ t

0

cos sΩ g(q(s)) ds,

and

q(t) = Q(p(0), q(0)) +

∫ t

0

Ω−1 sin sΩ g(q(s)) ds,

or, after integration by parts,

q(t) = Q(p(0), q(0)) +

∫ t

0

cos sΩ

∫ t

s

g(q(u)) du ds.
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Thus, there is one quadrature of the force to build up the momentum and two in the
evolution of q. In numerical methods, global errors are built up from local errors in a
way analogous to that in which forcing terms build up the true solution. We showed
in section 5 how the global error for p and q is obtained after one quadrature, and we
shall presently show how the global error for q may be obtained by two quadratures.
To avoid order reduction, each of these quadratures has to employ a weight function,
and this essentially explains why methods that include mollification but no averaging
cannot achieve stiff order 2 in q.

Led by the preceding insight, the idea now is to integrate by parts in (19) (note
that (20) is of no use because the boundary terms βn are O(h)). The analysis is
straightforward except for problems with the boundary, and to soften these we proceed
as follows. The functions ψ((t − tj)/h), 0 ≤ j ≤ n, do not add up to 1 near the
boundaries of the interval In = [0, tn] (this is because, for tj near the boundary,
ψ((t − tj)/h) “spreads” out of In, and, correspondingly, there are basis functions
ψ((t − tj)/h), with tj < 0 or tj > tn, that “intrude” into In). For fixed h and tn, a
system of n + 1 functions λj with the partition of unity property

n∑
j=0

λj(t) = 1, 0 ≤ t ≤ tn,

is easily constructed by setting, for 0 ≤ t ≤ tn,

λ0(t) = ψ

(
t− t0
h

)
,

λj(t) = ψ

(
t− tj
h

)
+ ψ

(
−t− tj

h

)
, 0 < j < μ,

λj(t) = ψ

(
t− tj
h

)
, μ ≤ j ≤ n− μ,

λj(t) = ψ

(
t− tj
h

)
+ ψ

(
−t + 2tn − tj

h

)
, n− μ < j < n,

λn(t) = ψ

(
t− tn
h

)
.

(Near the boundaries the basis function ψ((t − tj)/h) have been “reflected” about 0
or tn to compensate for the functions with j = −1,−2, . . . or j = n + 1, n + 2, . . .
missing from the new basis.) The introduction of this corrected set of basis functions
makes it possible to extend to the common interval 0 ≤ t ≤ tn the integrals in (19).

Lemma 3. If ψ is of bounded support as in Lemma 2, the quadrature error σq,n

satisfies

σq,n =

∫ tn

0

Ω−1 sin(tn − t)Ω

n∑
j=0

λj(t)g
∗
j dt

−
∫ tn

0

Ω−1 sin(tn − t)Ω g(q(t)) dt + β∗
n,(24)

where β∗
n represent boundary contributions, with

‖β∗
n‖ ≤ 2μ2‖ψ‖1L0h

2,
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so that, after integration by parts,

σq,n =

∫ tn

0

cos(tn − t)Ω I∗(t) dt + β∗
n,

with I∗ equal to the integrated interpolation error

I∗(t) =

∫ t

0

⎡
⎣
⎛
⎝ n∑

j=0

λj(s)g
∗
j

⎞
⎠− g(q(ts))

⎤
⎦ ds.(25)

Proof. The q-component of the first integral in (19) differs from the first integral
in (24) only because of the contributions of values of j in the summation corresponding
to tj near the boundary. For 0 ≤ j < μ there is a difference

1j

∫ 0

tj−μh

Ω−1 sin(tn − t)Ω ψ

(
t− tj
h

)
g∗j dt

−1j

∫ μh−tj

0

Ω−1 sin(tn − t)Ω ψ

(
−t− tj

h

)
g∗j dt

or

1j

∫ 0

tj−μh

[
Ω−1 sin(tn − t)Ω − Ω−1 sin(tn + t)Ω

]
ψ

(
t− tj
h

)
g∗j dt,

whose Euclidean norm is ≤ 2μh× (h/2)‖ψ‖1 ×L0 (note that Ω−1 sin(tn− t)Ω is Lips-
chitz continuous in t with Lipschitz constant 1 so that the term in square brackets has
norm ≤ 2μh). The estimate for β∗

n follows readily by summing over the contributions
of j near the boundary at 0 and by treating in a similar way the boundary at tn.

In particular, at t = tn,

I∗(tn) =

n∑
j=0

h1jg
∗
j −

∫ tn

0

g(q(s)) ds,(26)

and we find once more the trapezoidal quadrature rule. For methods without averag-
ing, g∗n = g(qn) and second-order accuracy cannot be achieved in stiff cases where g
oscillates with periods of the order of h. A simple counterexample is as follows. We
take d = 2 and (the subindex refers to the components of the vectors)

d2

dt2
q(1) = −ω2q(1),

d2

dt2
q(2) = −q(1);(27)

the force −ω2q(1) driving the first component is taken to be fast, and the force q(1)
driving the second component is taken to be soft. We focus on the initial data
q(1)(0) = ω−1, q(2)(0) = ω−3, p(1)(0) = 0, p(2)(0) = 0, leading to the solution
q(1)(t) = ω−1 cosωt, q(2)(t) = ω−3 cosωt, that has reduced energy bounded inde-
pendently of ω ≥ 1. If hω = 2π, then, in (26), the integral vanishes, while the value
of the quadrature rule is the O(h) vector [0, ω−1tn]. Computation of the actual global
error shows that in this instance Qn − qn is also O(h) and not O(h2).

The next and last lemma is relevant in understanding why averaging works: While
g∗j is only an O(h) approximation to the true value g(q(tj)) of the function being
integrated in (25) or (26), hg∗j provides a higher-order approximation to the integral
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of g(q(t)) in the neighborhood of tj . Note that below we use, without loss of generality,
the same upper bound μ for the supports of φ and ψ.

Lemma 4. Under the hypotheses of Theorem 2, the following estimate holds:

‖q(t) −Ahqj‖ ≤ (| t− tj | +‖φ‖1)
√

2E h, −μh ≤ t ≤ tn + μh,(28)

so that, in particular,

‖gj − g∗j ‖ = ‖g(q(tj)) − g(Ahq(tj))‖ ≤ L1‖φ‖1

√
2E h.

Furthermore, if g possesses a Lipschitz continuous derivative and φ is boundedly
supported with φ = 0 for | t |> μ > 0, then

hg∗j =

∫ tj+μh

tj−μh

φ

(
t− tj
h

)
g(q(t)) dt + hrj ,(29)

where rj can be estimated as

‖rj‖ ≤ ‖φ‖1

[
L2(μ + ‖φ‖1)

2E +
1

2
μ2L0L1

]
h2.

Proof. To bound q(t)−Ahqj , add and subtract qj . Then q(t)− qj may be written
as the integral of p, and (I − Ah)qj is given, by the definition of Ah, as an integral
involving the expression (1 − cos tΩ)qj , which can be bounded by ‖hΩqj‖.

Next, by expanding g around Ahqj we get

g(q(t)) = g∗j + Jj [q(t) −Ahqj ] + dj , tj − μh ≤ t ≤ tj + μh,

where Jj is the relevant Jacobian and the residual dj may be bounded, according to

(28) as (1/2)L2[(μ + ‖φ‖1)
√

2E h]2. Integration yields

−rj = Jj
1

h

∫ tj+μh

tj−μh

φ

(
t− tj
h

)
[q(t) −Ahqj ] dt + ej ,

where the integrated residual ej is bounded by ‖φ‖1 times the bound for dj . We
are therefore left with the task of estimating the last integral. We note that, by the
definition of averaging,

1

h

∫ tj+μh

tj−μh

φ

(
t− tj
h

)
Ahqj dt = Ahqj =

1

h

∫ tj+μh

tj−μh

φ

(
t− tj
h

)
cos(t− tj)Ω qjdt,
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while, by using the form of the true flow,

1

h

∫ tj+μh

tj−μh

φ

(
t− tj
h

)
q(t) dt =

1

h

∫ tj+μh

tj−μh

φ

(
t− tj
h

)
[cos(t− tj)Ωqj + sin(t− tj)Ωpj + Δj ] dt,(30)

where Δj = Δj(t) is the integral contribution from the variation of constant formula

Δj(t) =

∫ t

tj

Ω−1 sin(t− s)Ω g(q(s)) ds.

In (30) the integral of the sine term vanishes by symmetry and that of the cosine term
is cancelled with the same contribution from Ah. This leaves us the term with Δj ,
and we note that, for tj − μh ≤ t ≤ tj + μh,

‖Δj‖ ≤
∫ t

tj

| t− s | L0 ds ≤
1

2
μ2L0h

2.

After combining all of these estimates, we obtain the bound being sought.
Equipped with (29), we return to (25). Away from the integration limits, the

integral of λj(s) is h so that the jth term in the summation matches, except for an
O(h3) residual, the integral of φ((s − tj)/h)g(q(s)). Therefore it is appropriate to
impose the condition

∞∑
j=−∞

φ(t− j) ≡ 1,(31)

as this would ensure that, except for boundary effects, the sum matches the whole
integral. This leads us to the next theorem, where, for completeness, we refer to the
equivalent formulation

φ̂(2πn) = 0, n = ±1,±2, . . .(32)

of the last condition.
Theorem 3. With the hypotheses of Theorem 1, assume that g has a bounded,

Lipschitz continuous derivative and that the weight functions φ and ψ have bounded
support and satisfy (22)–(23) and (31)–(32). Then the global error possesses a bound

h‖Pn − pn‖ + ‖Qn − qn‖ ≤ Ch2,

where the constant C depends on ψ, φ, tn, L0, L1, L2, and E.
Conversely, if the (ψ, φ)-method with boundedly supported φ and ψ possesses a

bound of this form, then (22)–(23) and (31)–(32) hold.
Proof. The necessity of the condition for φ is proved by considering the coun-

terexample (27).
To prove the bound we construct a set of interpolation basis functions κj , j =

0, 1, . . . , n, by applying to the functions φ((t− tj)/h) the construction that was used
to derive the λj ’s from the ψ((t− tj)/h)’s. Then, the κj ’s add to 1 and

I∗(t) =

n∑
j=0

[∫ t

0

λj(s)g
∗
j ds−

∫ t

0

κ(s)g(q(ts)) ds

]
.
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If k is the largest j such that tj ≤ t, we split I∗ as I∗ = I∗1 + I∗2 , with

I∗1 =

n∑
j=0

[∫ tk

0

λj(s)g
∗
j ds−

∫ tk

0

κ(s)g(q(ts)) ds

]
,

I∗2 =

n∑
j=0

(∫ t

tk

λj(s)

)
g∗j −

∫ t

tk

g(q(s)) ds.

Both expressions being subtracted in I∗2 can be approximated with O(h2) errors
by (t − tk)gk. For I∗1 , and as noted above, if tj is away from the integration limits,
the jth term in the sum is O(h3). For j < μ, the term is only O(h2), because there
κj does not quite match φ((t− tj)/h). The terms with tj near t can be dealt with in
a similar way.

7. Filters and weights. As discussed in section 4, when applied to cases with
linear fast forces, the methods in this paper can be specified and implemented in
terms of the two filter functions φ̂ and ψ̂ in (17). However, both the implementation
of the methods in nonlinear cases and the analysis in sections 5 and 6 require the
weight functions themselves φ and ψ. Let us then address the question of whether
given two real, even filter functions there exist corresponding weight functions that
generate them as in (15)–(16). We furthermore recall that weights are assumed to be
bounded and that the interest should be restricted to weights with bounded support
if one is to compute numerically the averaging and mollifier operators.

The answer to our question is well known in Fourier analysis: According to a
classical result by Paley and Wiener, a square integrable function χ̂(ω) of the real
variable ω is the Fourier transform of a square integrable function χ supported in
[−ν, ν], ν > 0, if and only if χ̂ can be extended to a holomorphic function of ω in the
whole complex plane such that for all complex ω

| χ̂(ω) |≤ C exp(ν | ω |).

For given ν, the space of all such χ̂ of exponential type is referred to as the Paley–
Wiener space PW[−ν,ν]. Hence any reversible method for linear fast forces of the
family considered in [10], [6] for which the filter functions belong to some PW[−ν,ν]

space can be extended to a (φ, ψ)-method applicable to nonlinear fast forces simply
by taking as weights the inverse Fourier transforms of the filters. An example will be
provided at the end of this section.

From the classical theorems of Weierstraß and Hadamard, it is well known that
entire functions (functions holomorphic in the whole complex plane) are not deter-
mined by their zeros. However, a result by Titchmarsh (see, e.g., [4]) implies that any
function χ̂ in PW[−ν,ν] can be expressed in terms of its infinitely many zeros ωn as

χ̂(ω) = χ̂(0)
∏
n

(
1 − ω

ωn

)
;

for the optimal convergence of the numerical method, χ̂(0) = 1 and the set of zeros
must at least contain all nonzero even multiples of π. In this sense, the choice called
short in [5],

χ̂s(ω) =
∏
k=1

(
1 − ω2

4k2π2

)
=

sin(ω/2)

ω/2
,
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appears as a minimal filter: Filters of all potentially useful (φ, ψ)-methods can be
obtained by multiplying χ̂s by suitable factors that bring in additional zeros. The
corresponding weight function χs equals 1 for −1/2 ≤ t ≤ 1/2 and vanishes else-
where. Obviously, no weight function may have support smaller than [−1/2, 1/2] if
its translations are to add to 1 (see (22), (31)).

Two other weight functions were explicitly discussed in [5]. The long weight χl,
with value 1/2 for −1 ≤ t ≤ 1 and 0 elsewhere, is a dilation of the short weight:
χl(t) = (1/2)χs(t/2). The linear weight function is the convolution of the short
weight with itself, χlin = χs ∗χs; it is the well-known hat basis function for piecewise
linear interpolation with χlin(0) = 1 and χlin(t) = 0 for | t |≥ 1. The filter functions
are, respectively, given by χ̂l(ω) = χ̂s(2ω) (zeros at kπ, k 
= 0) and χ̂lin(ω) = χ̂s(ω)2

(double zeros at 2kπ, k 
= 0). Of course, convolution of the weights means product of
the filters, and dilations translate into rescalings of ω.

The way to further generalizations by using convolutions and dilations is clear;
these generalizations include the spline weights χs ∗ · · · ∗ χs (or χl ∗ · · · ∗ χl) obtained
by iterating the convolution of χs (or χl) with itself; the filters are the powers of
χ̂s (or χ̂l). More factors in the convolution mean higher-order zeros in the filter,
and hopefully a better filtering, at the price of a longer support that entails higher
computational work. The uncertainty principle implies that there is a limit on how
much one can simultaneously concentrate near t = 0 the mass of χ and near ω = 0
the mass of χ̂: Thus low computational cost and the drastic suppression of high
frequencies are contradictory goals.

It is not our purpose here to settle the question as to the best choice of weight
functions. We feel that the answer would very much depend both on the problem
being solved and on the relation between the computational costs of integrating the
reduced problem and of sampling the soft forces.

We shall finish the paper by presenting an example that illustrates how methods
for linear fast forces based on filters can be extended to nonlinear fast forces by
using weights. Grimm and Hochbruck have suggested [6] the filters ω−1 sinω for the
average and ω−2 sin2 ω for the mollifier. These functions have exponential type 1 and
2, respectively, and, via the Paley–Wiener theorem, the method introduced in [6] can
be extended to nonlinear fast forces by the (φ, ψ)-method that uses as weights the
corresponding inverse Fourier transforms with supports [−1, 1] and [−2, 2]. In fact,
the weights are readily seen to be φ = χl and ψ = χl ∗ χl.

For a numerical test of this method, we use the nonlinear fast forces problem in
section 4 of [5] and consider a system consisting of two unit point masses in the plane.
The first mass is attached to one end of a (potentially strong) spring of unit length
with stiffness ω2 (in the experiments 0 ≤ ω2 ≤ 900). The other end of this spring is
fixed at the origin. The second mass is attached to the first through a (soft) spring
of unit length and stiffness 1/2. Initially the first mass is at (1, 0) and the second
at (2, 0) so that the potential energy of the system is 0. The corresponding initial
velocities are (

√
2/4,

√
2/4) and (−

√
2/4,

√
2/4), and the integration takes place for

0 ≤ t ≤ 16, with step lengths h = 1/2 and h = 1/4.
Numerical results are presented for the (χl, χl ∗ χl)-method and, for comparison,

also for the original impulse (δ, δ)-method and for the short filter (χs, χs)-method of
[5]. The figure plots as a function of ω, 0 ≤ ω ≤ 30, the maximum over 0 ≤ t ≤ 16
of the Euclidean norm of the error in the 4-dimensional vector of positions of the
masses. For small values of ω the first spring is not really strong, and (χl, χl ∗ χl)
performs worse than the other two methods. For ω larger than, say, 10, the results
of the original impulse method are clearly inferior to those of the methods that use
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Fig. 7.1. Two spring nonlinear problem: error in positions against ω.

averaging and mollification. For the (χs, χs)-method the maximum over ω of the error
is 0.1461 when h = 1/2 and 0.0354 when h = 1/4; for (χl, χl ∗ χl) the corresponding
figures are 0.4618 and 0.1227; thus both methods show in this nonlinear problem an
O(h2) error behavior (as that ensured by Theorem 3 for the linear case). For the
impulse method halving h brings down the error from 0.3931 to 0.1686, so that an
order reduction manifests itself. In Figure 7.1 it is apparent that the order reduction
is more pronounced if the attention is restricted to ω larger than, say, 20: Near ω = 8π
the errors for h = 1/4 are hardly smaller than those for h = 1/2.
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[2] D. Cohen, E. Hairer, and Ch. Lubich, Numerical energy conservation for multi-frequency
oscillatory differential equations, BIT, 45 (2005), pp. 287–305.

[3] K. Dekker and J. G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differ-
ential Equations, North-Holland, Amsterdam, 1984.
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