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Abstract

We show that, for highly-oscillatory ordinary differential equations problems,
the modulated Fourier expansion approach can be advantageously used to under-
stand and analyze the Heterogenous Multiscale Methods introduced by E, Engquist
and their co-workers.

1 Introduction
Heterogenous Multiscale Methods (HMMs) provide a general methodology for the
numerical simulation of systems with widely different scales. Their aim is ‘to capture
the macroscale behavior of the system with a cost that is much less than the cost of
full microscale solvers’ and they consist of a ‘macroscale solver and a procedure for
estimating the missing numerical data from the microscale model’ (E et al. 2007). They
were introduced by E & Engquist 2003 and may be applied in very different fields; an
extensive survey has been provided by E et al. 2007. Here we focus on HMMs as
applied to highly-oscillatory ordinary differential equations (E 2003, Engquist & Tsai
2005, Sharp et al. 2005, Ariel et al. 2008, cf. Li et al. 2007) and show how the analysis
of these algorithms may benefit from the use of modulated Fourier expansions.

Modulated Fourier expansions, i.e. Fourier expansions where the amplitudes of
the Fourier modes do not remain constant but vary slowly, are a very common tool
throughout Applied Mathematics. In Numerical Analysis they were first employed by
Hairer & Lubich 2000 and their application is gaining momentum, as witnessed by the
list of references in the monograph by Hairer et al. 2006.

Even though the modulated Fourier expansion approach to the analysis of HMMs
possesses a wide applicability, we have preferred to restrict this short article to a single
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case study: the inverted pendulum. In 1908 the physicist Stephenson showed experi-
mentally that an inverted pendulum (i.e. a pendulum where the rod is directly above the
pivot) will not fall down if the pivot is subjected to vertical vibrations of small ampli-
tude and sufficiently high frequency. Stephenson’s discovery has spawned in impres-
sive body of physical and mathematical literature that includes Nobel-prize-winning
work (see e.g. Levi 1999, Sanz-Serna 2008b). There are at least two factors that render
the inverted pendulum a good model for the application of HMMs. The most obvious
reason is that in the inverted pendulum the fast vibration of the pivot (microscale), in
spite of being of a possibly very small amplitude, influences substantially the motion
of the bob. In fact, the macroscale effect is so large that gravity is overcome and the
bob is prevented from falling down. On the other hand, in the inverted pendulum the
connection between the macroscale and microscale variables is more complicated than
in other systems (the angular velocity of the macroscale bob motion may be widely
different from the instantaneous angular velocity). It is likely that these reasons led
Engquist and his co-workers to consider in detail the application of HMMs to the in-
verted pendulum (Sharp et al. 2005, see also Ariel et al. 2008). Their analysis of the
numerical technique is built on the analytical study of the pendulum provided by Levi
1999 and based on the method of averaging (i.e. essentially in the iteration of changes
of variables to reduce the full dynamics of the system to the dynamics of a set of
slowly varying, averaged variables). Here, as in several recent contributions by Hairer,
Lubich and their co-workers, changes of variables are avoided and, alternatively, mod-
ulated Fourier expansions are used to identify the slow variables and the corresponding
(macroscale) differential equations. The estimates in this paper are stronger than those
in Levi 1999 or Sharp et al. 2005 (but this does not necessarily imply that our estimates
cannot be derived via changes of variables).

This article has been divided into five sections. Section 2 presents the inverted
pendulum equations and the corresponding modulated Fourier expansions. The nu-
merical algorithm is described in Section 3 and analyzed, in a straightforward manner,
in Section 4. Numerical experiments are presented in the final section that, once more,
clearly show that the HMMs are capable of finding accurately the macroscale dynamics
of the pendulum with a low computational cost. In fact, it turns out that, in a relevant
parameter range, the HMM algorithm employed here provides O(H2) approximations
uniformly in the pivot frequency.

2 Modulated Fourier expansions

2.1 Problem specification
Our starting point is the pendulum equation

d2q

dt2
= `−1g sin q,

where g > 0 is the acceleration of gravity, ` denotes the pendulum length and q mea-
sures the angle between the upward vertical axis and the rod; we are primarily inter-
ested in the behavior near the unstable top-most equilibrium at q = 0. When the pivot
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Figure 1: Behavior of q and dq/dt for ω = 200

of the pendulum is subjected to a vertical acceleration a(t), the equation of motion
becomes

d2q

dt2
= `−1(g + a(t)) sin q. (1)

(Here a(t) > 0 when the acceleration is upwards.) We focus on the simplest choice
where a(t) is sinusoidal; in this case, we write

a(t) = vmax ω cosωt; (2)

vmax > 0 measures the maximum value of the velocity v(t) = vmax sinωt of the
pivot and ω � 1 is the ‘large’ parameter in the perturbation analysis that follows.
Thus, with respect to this parameter, a(t) is an O(ω) quantity, while v(t) = O(1). It
is well known (and will be proved below), that, for fixed initial conditions, the solution
q(t) of (1) behaves as the superposition of an ‘averaged’ solution, that varies slowly,
and a rapid oscillation with frequency O(ω) and small, O(ω−1), amplitude. For the
angular velocity dq/dt, the superimposed fast oscillation has O(1) amplitude. This
behavior is illustrated in Fig. 1, where ω has the moderate value 200 (larger values
of the parameter, like those used in the numerical experiments below, give a blurred
picture for dq/dt and a smooth cosine-like curve for q).

For the analysis, in lieu of (1)–(2), we consider the more general format

d2q

dt2
= (a0 + a1ωe

iωt + cc)f(q),

or, equivalently,

dp

dt
= (a0 + a1ωe

iωt + cc)f(q),
dq

dt
= p, (3)
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where q are f are real vectors, a0 is a real constant, a1 a complex constant, ω is a
positive parameter and the short-hand notation cc means ‘complex conjugate of the
preceding term.’ Many extensions of (3) may be treated without much additional effort,
but we are not interested in them here.

2.2 Formal expansions
The modulated Fourier expansion ansatz for the solutions of (3) is given by

p(t) = P (t) + w(1)(t)eiωt + cc+ w(2)(t)ei2ωt + cc+ · · · , (4)
q(t) = Q(t) + z(1)(t)eiωt + cc+ z(2)(t)ei2ωt + cc+ · · · , (5)

where the ‘averaged’ variables P , Q and the modulation functions w(k), z(k) are
bounded, along with all their derivatives, independently of ω. Furthermore, P,Q =
O(1), w(k) = O(ω−k+1), z(k) = O(ω−k), k = 1, 2, . . . (compare with the behavior
borne out in Fig. 1) and, in view of the second equation in (3), we take at the outset

dQ

dt
= P. (6)

The modulation functions may be determined recursively in a step-by-step fashion.
First step. We begin by taking the ansatz (4)–(5) to the first equation in (3) to get

iωw(1)eiωt = a1ωe
iωtf(Q) +O(1).

Therefore, we may write

w(1) = −ia1f(Q) +O(ω−1), (7)

so that, at leading order, the component of frequency ω in the angular velocity p is
‘enslaved’ to the slow variation of the angle q.

Second step. We now use (7) in (4) and then substitute the ansatz (4)–(5) in the
second equation of (3) and obtain

dQ

dt
+ iωz(1)eiωt = P − ia1f(Q)eiωt +O(ω−1).

By equating the terms involving eiωt, we find the enslavement, at leading order, of z(1)

to Q,
z(1) = −ω−1a1f(Q) +O(ω−2). (8)

Third step. We turn again to the first equation in (3). Substitution of the ansatz
(4)–(5), with (7) and (8) taken into account, yields, by equating the terms involving
ei1ωt, ei2ωt, the O(ω−1) components of the fast variation of p. After completion of the
third step, the ansatz reads

p = P + [−ia1f(Q) + ω−1a1f
′(Q)P + · · ·]eiωt + cc

+
i

2
ω−1a2

1f
′(Q)f(Q)ei2ωt + cc+ · · · , (9)

q = Q+ [−ω−1a1f(Q) + · · ·]eiωt + cc+ · · · . (10)
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n-th step. The procedure we are following may be iterated to determine all mod-
ulation functions in (4)–(5) as formal power series in ω−1 with coefficients given by
functions of P and Q. The vector expressions f(Q), f ′(Q)P , f ′(Q)f(Q), . . . that
appear in (9)–(10) clearly coincide with the familiar elementary differentials for the
system dP/dt = f(Q), dQ/dt = P , as found in the analysis of Runge-Kutta-Nyström
methods (Hairer et al. 1993, II.14, Sanz-Serna & Calvo 1994, 4.6). By using this ob-
servation, it would not be difficult to obtain a general expression for the modulation
functions; however such a task would lead us astray and will not be pursued here.

Modulated expansion for the force. Differentiation of (4) with respect to t leads to
the modulated Fourier expansion for the force dp/dt:

dp

dt
=
dP

dt
+ [a1ωf(Q)eiωt + cc] − [a2

1f
′(Q)f(Q)ei2ωt + cc] + · · · . (11)

Differential equation for P . Once the modulation functions, to any desired order in
ω−1, have been determined in terms of the averaged P and Q, we carry the ansatz to
the first equation in (3) and retain the non-oscillatory component to obtain a differential
equation for P . At leading order, one finds:

dP

dt
= a0f(Q) − 2|a1|

2f ′(Q)f(Q) +O(ω−2). (12)

2.3 Bounds
We now employ the preceding formal results to obtain rigorous estimates for the dif-
ference between the solutions of the system (3) we wish to integrate and solutions of
the averaged system

dP

dt
= a0f(Q) − 2|a1|

2f ′(Q)f(Q),
dQ

dt
= P, (13)

obtained by discarding the O(ω−2) remainder in (12).

Theorem 1 Consider the IVP on 0 ≤ t ≤ T <∞ given by

p(0) = p0, q(0) = q0, (14)

and (3), where f is assumed to be sufficiently smooth. Then

p(t) = P (t) − ia1e
iωtf(Q(t)) + cc+Rp(t), (15)

q(t) = Q(t) +Rq(t), (16)

where P and Q solve (13) with initial conditions

P (0) = p0 + ia1f(q0) + cc, Q(0) = q0, (17)

and, for ω > ω0, the remainder functions Rp and Rq have bounds of the form Cω−1.
Here ω0 and C are constants independent of t and ω (that may depend on f , a0, a1,
p0, q0, T ).
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Proof. The idea is to use the truncation of (9)–(10) given by

p∗ = P + [−ia1f(Q) + ω−1a1f
′(Q)P ]eiωt + cc

+
i

2
ω−1a2

1f
′(Q)f(Q)ei2ωt + cc,

q∗ = Q+ [−ω−1a1f(Q)]eiωt + cc,

with P and Q as in the statement of the theorem, and bound p − p∗ and q − q∗ by
a Gronwall-lemma argument. Care should be exercised due to the O(ω) Lipschitz
constant in the first equation of the system (3).

We change dependent variables (p, q) → (m, q), with

m = p+ (ia1e
iωt + cc)f(q) (18)

(a physical interpretation is given in Sanz-Serna 2008b); the equations (3) become

dm

dt
= a0f(q) + (ia1e

iωt + cc)f ′(q)m− (ia1e
iωt + cc)2f ′(q)f(q), (19)

dq

dt
= m− (ia1e

iωt + cc)f(q); (20)

a system whose Lipschitz constant is O(1). If we define

m∗ = p∗ + (ia1e
iωt + cc)f(q∗), (21)

then the functions m∗ and q∗ satisfy (19)–(20) up to an O(ω−1) residual and the result
follows from the standard Gronwall lemma.

By using (15)–(16), it is then possible to express, except for an O(ω−1) error,
the solution of the initial value problem (3), (14) in terms of the ‘easier’ initial value
problem (13), (17). We emphasize that P by itself does not provide an O(ω−1) ap-
proximation to p and that the initial values for p and P are different. The result by Levi
1999 on which the analysis by Sharp et al. 2005 is based has a weaker, O(ω−1/2),
estimation rather than O(ω−1).

We shall also use a rigorous result in connection with the formal expansion of the
force found in (11):

Theorem 2 In the situation of the preceding theorem,

dp

dt
=
dP

dt
+ [a1ωf(Q)eiωt + cc] − [a2

1f
′(Q)f(Q)ei2ωt + cc] +Rf , (22)

where, for ω > ω0, the remainder functions Rf has a bound of the form Cfω
−1. Here

ω0 and Cf are constants independent of t and ω (that may depend on f , a0, a1, p0, q0,
T ).

Proof. Use (18) (resp. (21)) to express the derivative dm/dt in terms of p and q
(resp. the derivative dm∗/dt in terms of P and Q) and note that, by (19), these two
derivatives differ by terms of size O(ω−1).
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2.4 Stabilization by vibration
The force in the averaged system (13) differs from the force in (3) in that the O(ω)
oscillatory terms have disappeared and, furthermore, in the appearance of an extraO(1)
contribution given by −2|a1|

2f ′(Q)f(Q). In the particular case of the pendulum (1)–
(2), the extra contribution reads −[v2

max/(2`)] cosQ sinQ. Near the top-most Q = 0
position, this extra force opposes the gravitational force (g/`) sinQ in the standard
pendulum equation; for v2

max > 2`g the extra force overcomes gravitation and Q = 0
becomes a stable equilibrium of the averaged system

dP

dt
=

(

g

`
−
v2

max

2`
cos q

)

sin q,
dQ

dt
= P.

This observation is the key in deriving stability results for the the inverted pendulum
equation (1) (Levi 1999, Sanz-Serna 2008b).

3 Heterogeneous Multiscale Methods
In this Section it is convenient to rewrite the system (3) and the averaged system (13)
in the compact forms respectively given by

dp

dt
= φ(q, ωt;ω), φ(q, τ + 2π, ω) ≡ φ(q, τ, ω),

dq

dt
= p (23)

and
dP

dt
= Φ(Q),

dQ

dt
= P. (24)

For simple model problems, including the pendulum, it is perfectly feasible, given (23),
to determine analytically the averaged system (24) and then to perform a numerical in-
tegration of the latter with a step-length H dictated by the rate of variation of the aver-
aged solutions and independent of ω. Such numerical integration will be referred to as
a macrointegration; H is the corresponding macrostep-size. The HMM can be thought
of as a method to perform a macrointegation without using explicit knowledge of the
force Φ, thus bypassing the need to carry out analytically the process of averaging.

In the HMM, the values of Φ required by the macrointegrator are found as numer-
ical averages of values of φ(q, ωt;ω); these averages are obtained with the help of a
filter function K. In turn, the values of q that feature among the arguments of the vec-
tors φ(q, ωt;ω) being averaged are computed by numerically integrating the original
system (23). These auxiliary numerical integrations are called microintegrations.

The overall HMM thus depends on the choices of macrointegrator, filter and mi-
crointegrator. To simplify the exposition, we restrict the attention to a single, simple
choice for each of these three elements.

3.1 Macrointegration
The macrointegration is carried out with the well-known Verlet scheme, so that the step
from tn = nH to tn+1 = tn +H reads:

Pn+1/2 = Pn +
H

2
Φn,
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Qn+1 = Qn +HPn+1/2,

Pn+1 = Pn+1/2 +
H

2
Φn+1.

Here Φn is an approximation to Φ(Qn) and, of course, the starting P0, Q0 are taken
from (17).

3.2 Filter
If K is given by (Engquist & Tsai 2005)

K(ξ) = C exp

(

5

ξ2 − 1

)

, −1 < ξ < 1,

with C chosen so that
∫ 1

−1

K(ξ) dξ = 1,

the forces Φn required by the macro-integrator are obtained through the convolution

Φn =
2

η

∫ tn+η/2

tn−η/2

K

(

s− tn
η/2

)

φ(qn(s), ωs;ω) ds, (25)

where η > 0 is a scale factor and qn, to be discussed later, is an approximation to the
solution q of (23).

To gain some insight into the process of filtering, note first that for

ψ(t) = Ψ(t) exp(ikωt),

with Ψ slowly varying and k 6= 0, the output of the filter

2

η

∫ tn+η/2

tn−η/2

K

(

s− tn
η/2

)

ψ(s) ds, (26)

will be small: the positive and negative lobs of (the real or imaginary parts of) the
integrand cancel in the integration. On the other hand, for ψ slowly varying and η
small, (26) is an O(η2) approximation to ψ(tn). Now Theorem 2 along with (23)–(24)
show that φ(q, ωs;ω) is composed of (i) Φ(Q), (ii) rapidly oscillatory components and
(iii) the O(ω−1) reminder Rf . The rapid oscillations will hopefully be annihilated by
the filter and therefore (25) is expected to approximate Φ(Q(tn)).

We remark that similar filters (there called weight functions) are used by the Mol-
lified Impulse Method (Garcı́a-Archilla et al. 1998, Sanz-Serna 2008a) in order to sup-
press the rapidly oscillatory components of the force. However the Mollified Impulse
Method does not qualify as an HMM because it builds up complete knowledge of the
microscale.
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3.3 Microintegration
Assume that, in macrointegration step n − 1 → n, n ≥ 1, we have found Pn−1/2,
Qn and are ready to use (25) to determine the force value Φn to be employed in the
computation of Pn that closes the step (the same value of the force is used again at the
beginning of the next step n→ n+ 1). We compute a prediction

P̂n = Pn−1 +HΦn−1,

based on available information, and define qn through the initial value problem given
by the original system (23) along with the initial data (cf. Theorem 1)

pn(tn) = P̂n − ia1 exp(iωtn)f(Qn) + cc, qn(tn) = Qn. (27)

(At n = 0, this formula is used with P̂0 = P0.)
In practice, the integral in (25) has to be replaced by a quadrature rule. In our

experiments, we apply the trapezoidal rule on a fine uniform grid obtained by dividing
the interval [tn − η/2, tn + η/2] into subintervals of length h. The values of qn at the
points of the fine grid are obtained by a microintegration of the original system (23)
with initial condition (27) through the Verlet algorithm with (micro)step-length h. (In
fact, at each tn the microintegration requires a forward leg from tn to tn + η/2 and a
backward leg from tn to tn − η/2.)

4 Analysis
We now discuss the behavior of the errors in the algorithm. We consider a0, a1 and f
in the differential equation, the initial conditions p0 and q0 and the integration interval
0 ≤ t ≤ T as fixed and study the effect of changing the values of the parameters ω, H ,
η, h.

We begin by noticing that the error consists of an O(ω−1) averaging error in-
troduced by approximating the true solution (p, q) by means of the averaged (P,Q)
through formulas (15)–(16) in Theorem 1 and a numerical error resulting by replacing
(P (tn), Q(tn)) by the numerical approximations (Pn, Qn).

In turn, the numerical error is of course the global error in the application to the
averaged system of the Verlet algorithm with step-size H and inexact force values Φn.
By means of a standard stability plus consistency analysis of the Verlet method, it
follows that

max
n

(||Pn − P (tn)|| + ||Qn −Q(tn)||) = O(H2 + ε) (28)

where the term H2 stems from the local truncation error and

ε = max
n

|Φ(Q(tn)) − Φ∗

n|

bounds the differences between the exact forces Φ(Q(tn)) and the values Φ∗

n that the
algorithm would use if the computation of the forces Φn started from data P (tn),
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Q(tn) taken from the exact averaged solution. The different sources of error that build
up ε will now be discussed successively.

Effect of the filter. Consider (25) with qn equal to the exact q and recall the dis-
cussion around formula (26). The function being filtered differs from Φ(Q) in rapidly
oscillatory components and in an O(ω−1) residual. The filter reproduces the slowy
varying Φ(Q) except for an O(η2) error. For the rapidly oscillatory components (of
size O(ω)), we integrate by parts an arbitrary number m of times. The boundary con-
tributions are zero, because the filter function K vanishes with all its derivatives at
ξ = ±1, and each integration introduces in the integral a factor (ηω)−1. Thus the filter
annihilates the oscillatory components except for an O(ω(ηω)−m) residual. Summing
up, the error originating from the filter is then (cf. Engquist & Tsai 2005, Theorem 2.5)

εfilter = O(η2 + ω(ηω)−m + ω−1).

Effect of the quadrature rule. Standard results for the trapezoidal rule on a partition
of diameter h of an interval of length η show this effect to be

εquad = O(ηh2ω3).

The factor ω3 corresponds to the size of the second derivative of the force φ with
respect to time.

Effect of the microintegration. The investigation of the error induced by the mi-
crointegration is rendered easier if, for the analysis, the system (23) is rewritten in terms
of the new time variable τ = ωt, so that corresponding Lipschitz constant is reduced
from O(ω) to O(1). Then each microintegration leg spans an interval 0 ≤ τ ≤ ηω/2
and is performed with a step-size ωh. Since the derivatives of q with respect to τ are
O(ω−1), the errors in q are of the order of χ(ηω)(ωh)2ω−1 and they will originate
errors

εmicro = O(χ(ηω)(ωh)2)

in the function φ in (25) that has an O(ω) Lipschitz constant. Here χ(ηω) is a constant
whose value depends on the product ηω; the exact functional dependence will vary
with the system being integrated. Often, global errors in oscillatory problems grow
linearly with time and in those cases χ will be proportional to ηω, but worse rates of
growth are of course also common.

Effect of the predictor. The Euler-like predictor clearly introduces a perturbation

εpred = O(H2).

This concludes our straightforward error analysis, that may be compared with that
provided by Sharp et al. 2005.

In the numerical experiments to be reported in the next section, we have used the
following approach. We write η = M(ω/2π), so that, at each tn, the microintegration
spans M fast periods, and determine the integer M so as to have a negligible filtering
error (for the given problem and for a given range of the values of the parameters
ω, h, H). Too large a value of M results in inaccuracies due to the smearing of the
slow-varying component of the force and if M is too small the rapid oscillations will
not be filtered out. With M fixed, η is no longer a free parameter. Furthermore, we
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H HMM Averaged
Microsteps ω = 104 ω = 106 ω = 108

1/10 4,000 4.04(-1) 4.08(-1) 4.04(-1) 2.74(-1)
1/20 16,000 1.05(-1) 1.07(-1) 1.08(-1) 7.43(-2)
1/40 64,000 2.51(-2) 2.70(-2) 2.61(-2) 1.90(-2)
1/80 256,000 4.76(-3) 6.72(-3) 6.69(-3) 4.72(-3)

1/160 1,024,000 2.80(-4) 1.68(-3) 1.65(-3) 1.18(-3)

Table 1: Errors in q for the inverted pendulum

set H = T/N and h = (ω/2π)/N , so that there are as many macrosteps in the
interval [0, T ] as microsteps in a period of the fast oscillation (obviously one may more
generally consider h = α(ω/2π)/N with α a moderate constant). With this set-up
only ω andN (or equivalently ω andH) are free parameters and the preceding analysis
shows that, as long as εfilter is negligible, then ε in (28) is O(H2) uniformly in ω.
At the same time, the number of microsteps —which is a reasonable yardstick for
measuring the cost of the algorithm— behaves like O(Nηh−1) = O(N2) and is thus
independent of ω! Halving the errors requires halving the value of H; a behavior one
associates with first-order methods.

5 Numerical results
We have applied the HMM to the inverted pendulum equations (1)–(2) when ` = 20cm,
g = 9.8ms−2 and vmax = 4ms−1, a choice of constants for which the period of the
small (stable) oscillations near the usually unstable equilibrium q = 0 is ≈ 0.51s. The
initial conditions are p0 = 0, q0 = 0.5 and we took T = 1. With the approach outlined
at the end of the preceding section, we found that for M = 40 the error arising from
the filter is negligible.

Table 1 gives the maximum over 0 ≤ t ≤ T of the error |Qn − Q(tn)| of the
computed solution Qn with respect to the exact solution of the averaged system. (The
maximum over t of |q(t) − Q(t)| is ≈ 20ω−1.) The column ‘Averaged’ refers to the
case where the Verlet integrator with step H is applied directly to the averaged system
(i.e. it corresponds to ε = 0 in (28)). As pointed out previously, εfilter is negligible
and therefore the differences between the column ‘Averaged’ and the three columns
corresponding to the HMM are due to the effects of the microintegrations, the numeri-
cal quadratures and the predictor. The errors in the HMM possess theO(H2) behavior,
uniformly in ω, established by our analysis. Indeed the HMM results displayed are
hardly dependent on ω; the only exceptions corresponds to ω = 104 and H = 1/80
or H = 1/160, where it is likely that a cancellation takes place between errors arising
from different sources.

From the Table it is clear that the HMM results are comparable with those one
would obtain from a macrointegration of the averaged equations; this is in agreement
with the HMM concept ‘integrate for the macrobehavior without knowing the corre-
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sponding equation’. Let us remark that for ω = 108 andH = 1/20 the HMM produces
errors of size 0.1 with only 16,000 microsteps; a number three orders of magnitude
smaller than the number (≈ 1.6× 107) of full cycles that have taken place in the vibra-
tion of the pendulum pivot. The advantages of the HMM would be more marked if the
Verlet integrators were replaced by more sophisticated choices.

For values of ω significantly lower than those considered in the table (say ω = 102),
the HMM looses its appeal: the averaged system does not provide a sufficiently accu-
rate description of the pendulum motion and furthermore a straightforward integration
of the original system by any conventional method is feasible. On the other hand, the
only difficulty that the HMM experiences with larger values of ω (say ω = 1010) comes
from the use of finite precision arithmetic: the algorithm retrieves the O(1) averaged
force Φ essentially by subtracting O(ω) values of the true force φ.
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