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Abstract. We are concerned with heterogeneous multiscale methods for the numerical integration of the equa-
tions of motion of mechanical systems subjected to fast vibrations. We suggest easily formulated asynchronous
algorithms that bypass the need for explicitly determining the relations between macro and micro-states. The new
algorithms have good geometric properties and in some cases may incorporate a simplified filtering technique that
leads to large savings in computational effort. The problems considered may be modelled either by ordinary differen-
tial equations (state space description) or by differential algebraic equations (descriptor form). A SHAKE-SHAKE
and a RATTLE-SHAKE algorithm are presented but higher-order versions exist.
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1. Introduction. Mechanical systems subjected to very fast vibrations are a natural field
of application of Heterogeneous Multiscale Methods (HMM) [11], [9], [30], [13], [29], [12],
[31], [26], [2], [10] (cf. [21], [18], [5]). Often the system exhibits slow motions very different
from those that would occur in the absence of vibrations. For instance, a fast, small-amplitude
vertical vibration stabilizes the usually unstable equilibrium position of a pendulum where the
bob is directly above the pivot rather than hanging from it [23], [1], [28], [20], [22], [25], [7];
historically this was the first example of stabilization by vibration that would eventually lead
to Paul’s Nobel Physics prize in 1989.

HMMs make it possible to follow the slow motions (macro-scale) without completely
resolving all the details of the fast vibrations (micro-scale), a task that may be prohibitively
expensive and prone to unexpected difficulties [6]. The aim of the present paper is to offer
some new approaches to the design of HMMs for mechanical systems subject to vibrations.

One of the main difficulties when using HMMs to integrate oscillatory ordinary differ-
ential equations (ODEs) stems from the need to relate macro and micro-states. The ‘natural’
micro-variables (i.e. those in which the micro-model is originally formulated and readily
amenable to numerical integration) may not coincide with those fit to describe the slow mo-
tions of the macro-scale. The recent contribution [2] suggests a general algorithm that by-
passes the need for analytically working out the relation between macro and micro-variables
prior to the numerical integration. Here we show how, alternatively, the special structure of
the equations of motion in mechanics may be used to formulate straightforward asynchronous
HMMs that also bypass the need for explicitly relating macro and micro-states.

It turns out that the asynchronous algorithms suggested here possess in some cases addi-
tional advantages: they make it possible to use filtering techniques considerably cheaper than
those used hitherto and they may enjoy favorable geometric properties like reversibility and
symplecticness.

To simplify the exposition, the ideas are first presented in Section 2 as they apply to the
inverted pendulum model problem; this facilitates the comparison with earlier synchronous
approaches in [29], [26]. Sections 3 is devoted to general oscillatory second-order differential
equations and Section 4 considers mechanical systems in descriptor form, so that the model
consists of (index 3) differential algebraic equations (DAEs). Two simple algorithms for
oscillatory DAEs are introduced: one based on a SHAKE-SHAKE combination and the other
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on a RATTLE-SHAKE pair. Two analytical appendices may provide additional insights into
the issues under discussion.

Our focus in this article is on the design of new algorithms rather than in the correspond-
ing analysis, which, in any case, may be performed by a simple extension of the techniques
employed in [26]. Higher-order versions of the algorithms introduced here are possible, see
[8].

2. The inverted pendulum revisited.

2.1. The differential equation. This subsection is based on [26]; our approach here is
informal and the reader is referred to that paper for a rigorous presentation and additional
details (see also [20], [29]). We start from the pendulum equation

q̈ = `−1g sin q,(2.1)

where g, ` and q respectively denote the acceleration of gravity (g > 0), the pendulum length
and the angle between the upward vertical axis and the rod. When the pivot of the pendulum
is subjected to a vertical vibratory acceleration a(t), the equation of motion becomes

q̈ = `−1(g + a(t)) sin q.(2.2)

(With our orientation of the vertical axis, a(t) > 0 when the acceleration is upwards.) For
simplicity, we assume, until further notice, that a(t) is sinusoidal

a(t) = vmax ω cos(ωt + θ0), vmax > 0,(2.3)

so that the (vertical) pivot velocity v(t) and pivot displacement s(t) are given by

v(t) = vmax sin(ωt + θ0), s(t) = −ω−1vmax cos(ωt + θ0).

We are interested in the case where the angular velocity ω is large; with respect to this pa-
rameter, a, v and s are therefore of sizes O(ω), O(1) and O(ω−1) respectively.

The behaviors of the solutions of (2.1) and (2.2) are widely different; in particular the
upward vertical position q = 0 is a stable equilibrium of (2.2). An illustration is provided in
Fig. 2.1, that corresponds to the modest value ω = 200; the pendulum is abandoned without
initial angular velocity from q(0) = 0.5 and oscillates around the upward vertical equilibrium.

The figure also reveals that the solution q(t) is the superposition of an averaged solution
Q(t), that varies slowly, and a rapid oscillation with angular frequency ω and small, O(ω−1),
amplitude. More precisely, it turns out [26] that, up to terms of size O(ω−2),

q ≈ Q + `−1s sinQ,(2.4)

where Q(t) satisfies, except for an O(1/ω) remainder,1 the autonomous, ω-independent dif-
ferential equation

Q̈ = F (Q),(2.5)

1Reference [20], where the method of averaging is applied to (2.2), only provides an O(ω−1/2) bound for
the difference between the solution of the averaged equation (2.5) and the non-oscillatory component of q. An
O(ω−1) bound is derived in [26] via modulated Fourier expansions. The standard method of averaging (see e.g. the
theorem [3], Section 17A) may also be applied to derive the (optimal) O(ω−1) estimate; the key point consists in
first rewriting (2.2) as a first order system for the slow dependent variables q and p− `−1v(t) sin q. (Reference [20]
and several text books miss this point and rewrite (2.2) as a system for q and p. See Appendix A.)
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FIG. 2.1. Behavior of pendulum angle q and angular velocity q̇ for vibratory angular frequency ω = 200

with

F (Q) =
(

g

`
− v2

max

2`2
cos Q

)
sin Q,(2.6)

an expression difficult to guess from a mere inspection of (2.2). It is the presence of the
term −v2

max/(2`2), whose sign opposes that of g/`, that provides the vertical force that, for
vmax sufficiently large, stabilizes the equilibrium Q = 0 of (2.5), which in turn implies the
stabilization of the equilibrium q = 0 of (2.2).

Turning now the attention to the right half of Fig. 2.1, we see that the difference between
the true angular velocity p(t) = q̇(t) and the angular velocity P (t) = Q̇(t) of the averaged
motion is not small. Indeed differentiation in (2.4) shows that p and P differ by an amount
(d/dt)`−1s sin Q, whose leading, O(1), component is `−1v sin Q (recall that s = O(ω−1)).
Therefore

p ≈ P + `−1v sin Q,(2.7)

where now ≈ denotes equality up to terms of order O(ω−1). It is also important to keep in
mind that while P is a slow variable with time derivative Ṗ of order O(1) (see (2.5)), the true
angular velocity has ṗ = O(ω) (see (2.2)).

Going a step further, a new differentiation shows that the leading, O(ω), component
of the acceleration q̈(t) is `−1a sin Q, a term that when taken to the left-hand side of (2.2)
matches, in view of (2.4), the O(ω) leading component of the right-hand side. In fact it is by
imposing this matching that the form of the relation (2.4) may be found in the first place (see
[26] for details, similar material is contained in Appendix B).

We conclude this section by briefly commenting on the derivation of the averaged equa-
tion (2.5)–(2.6). As we have just pointed out, when (2.4) is substituted in (2.2) both sides
of the equation agree up to O(1) terms; these consist of both rapidly oscillatory and slowly
varying components. In the left-hand side, the leading term of the slowly varying component
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is Q̈ (just differentiate twice in (2.4)). In the right-hand side, in addition to the obvious term
`−1g sin Q, we note that a Taylor expansion yields

`−1a(t) sin[Q + `−1s(t) sin Q + · · ·](2.8)
≈ `−1a(t) sin Q + `−2a(t)s(t) cos Q sin Q + · · ·

=
vmaxω

`
cos θ(t) sin Q− v2

max

2`2
[1 + cos 2θ(t)] cos Q sin Q + · · · ;

and (2.6) follows after discarding the terms involving the rapidly varying phase θ(t) = ωt +
θ0.

2.2. Synchronous HMM. HMMs integrate numerically the averaged equation (2.5) in
a time interval 0 ≤ t ≤ T without the explicit knowledge of the analytic expression of the
force F in (2.6). A standard numerical method (the macro-solver), with step-size denoted by
H , is used; whenever the macro-solver requires a value of F this is found by solving (micro-
integrating) the given original differential equation (2.2) over a short time-interval of length
η and then averaging in time the force values `−1(g + a(t)) sin q(t).

Although not required at all to implement the methods, it is useful at this stage to rewrite
(2.2) as a three-dimensional, first-order autonomous system

ṗ = f(q, θ; ω) = `−1(g + a∗(θ)) sin q,(2.9)
q̇ = p,

θ̇ = ω,

by introducing the angular velocity p and the phase θ = ωt + θ0 as new dependent variables;
we have written a∗(θ) = vmaxω cos θ, so that a∗(θ(t)) = a(t).

An HMM suggested by Sharp, Tsai and Engquist in [29] and analyzed there and in [26]
may be described as follows:

Algorithm 1.
1. Initial conditions: Given Q0 = Q(0), P0 = Q̇(0), t0 = 0, set n = 0, P̂0 = P0.
2. Force estimation:

(a) Micro-simulation:
i. Initial data: Set:

p(n)(tn) = P̂n + `−1v(tn) sin Qn,(2.10)
q(n)(tn) = Qn,

θ(n)(tn) = ωtn + θ0.

ii. Micro-integration: Find the functions p(n)(t), q(n)(t), θ(n)(t) in the win-
dow tn − η/2 ≤ t ≤ tn + η/2 by integrating the system (2.9).

(b) Averaging: Set

Fn =
∫ η/2

−η/2

Kη(t− tn)f(q(n)(t), θ(n)(t); ω) dt.(2.11)

3. Macro-step: Use the Verlet/leap-frog formulas:

Pn+1/2 = Pn−1/2 + HFn,

(
if n = 0, P1/2 = P0 +

H

2
F0

)

Qn+1 = Qn + HPn+1/2.
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FIG. 2.2. Schematic description of the relation between macro and micro integration: synchronous algorithm

4. While tn + H ≤ T , set tn+1 = tn + H , P̂n+1 = Pn+1/2 + (H/2)Fn, n = n + 1
and repeat 2. and 3.

Some comments are in order. Of course, the micro-integration in 2. (a) ii. has to be
carried out by means of a numerical integrator; the Verlet algorithm with a small step-size
h was used for that purpose in [26], but other choices, including higher-order methods, may
provide useful alternatives, see [29], [13]. In the averaging formula (2.11), Kη represents a
scaled version

Kη(ξ) =
2
η
K

( ξ

η/2
)

of an even, K(ξ) = K(−ξ), weight function or kernel K with unit-mass
∫ 1

−1

K(ξ) dξ = 1.(2.12)

Again, many choices for K are possible, but the experiments in [26] were limited to the
exponential weight function (Engquist and Tsai [13])

K(ξ) = C exp
(

5
ξ2 − 1

)
, −1 < ξ < 1(2.13)

(the constant C is chosen to ensure (2.12)). Finally, it is clear that the Verlet scheme in step
3. may be replaced by more sophisticated integrators.

The value P̂n is an approximation to P (tn) used only to initialize the micro-integration
at tn, see (2.10). The initial value for p(n)(t) is not simply P̂n; one rather uses the for-
mula (2.7) that relates the values of the variables p and P (with a more pictorial language,
‘enslaves’ the value of p to those of P , Q and θ). As a consequence, if we denote by
(p(t), q(t), θ(t)) the solution of the system (2.9) that corresponds to the initial conditions
p(0) = P0 + `−1v(0) sin Q0, q(0) = Q0, θ(0) = θ0, then, in each window tn − η/2 ≤ t ≤
tn + η/2 the functions p(n)(t), q(n)(t) computed in the micro-integration are approximations
to p(t) and q(t). In this way, the algorithm, while approximating explicitly the functions P (t),
Q(t), implicitly determines approximate values of the fast variable p that incorporates infor-
mation on the phase of the pivot vibration. We therefore refer to Algorithm 1 as synchronous
HMM. Asynchronous HMMs, to be considered later, do not provide approximations to any
variables that do not vary slowly.

Figure 2.2 (adapted from [2], [13], [29]) illustrates the synchronous approach. The up-
per and lower time-axes correspond respectively to the macro-integration of the averaged
equation and the micro-integration of the original highly-oscillatory system. In the second,
numerical work is only performed in small windows of length η.

The original system (2.9) has two characteristic times: the period 2π/ω of the pivot
vibration and the O(1) time-scale Tmacro of the evolution of Q (see Fig. 2.1). The algorithm
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TABLE 2.1
Errors in averaged angle Q for the inverted pendulum, synchronous algorithm, exponential weight function

H HMM Averaged
Microsteps ω = 104 ω = 106 ω = 108

1/10 4,000 4.04(-1) 4.08(-1) 4.04(-1) 2.74(-1)
1/20 16,000 1.05(-1) 1.07(-1) 1.08(-1) 7.43(-2)
1/40 64,000 2.51(-2) 2.70(-2) 2.61(-2) 1.90(-2)
1/80 256,000 4.76(-3) 6.72(-3) 6.69(-3) 4.72(-3)

has in turn three parameters that in a dimensional analysis are times: the macro-step-size
H , the length η of the time-window for each micro-integration and the micro-step-size h.
For the success of the method, H should be small with respect to Tmacro, so as to afford
an accurate integration of (2.5). Similarly h should be small with respect to 2π/ω in order
to ensure the accuracy of the micro-integrations. Finally, η should be small with respect
to Tmacro (for large values of η the micro-integrations become expensive) but large with
respect to 2π/ω (for small value of η the averaging in (2.11) does not filter out the fast
components of f(q(n)(t), θ(n)(t); ω)). The two conflicting requirements on η cannot be met
unless ω À 1, i.e. the two characteristic times of (2.9) are well separated; this is precisely
the kind of situation for which HMMs were conceived; for ω of moderate size (2.9) may of
course be integrated without difficulty by means of any conventional method. The preceding
considerations on the sizes of H , η, h are rendered mathematically rigorous in the detailed
error analysis presented in [29], [26].

We finish this subsection with some representative numerical experiments for Algorithm
1. As in [26], they have ` = 0.2m, g = 9.8ms−2, vmax = 4ms−1, T = 1s, P (0) = 0,
Q(0) = 0.5 and are based on the exponential weight function (2.13) and on the Verlet micro-
integrator. The simulations have η = 40 × 2π/ω (each averaging window comprises 40
vibrational periods) and h = (2π/ω)(H/Tmacro), where we set Tmacro = 1s (for the param-
eter values and initial conditions that we are using the period of the pendulum oscillations
around Q = 0 is ≈ 0.5s, therefore in our simulations there are roughly as many micro-steps
in a period of the pivot vibration as macro-steps in a cycle of the pendulum). Table 2.1 shows,
for ω = 104, 106, 108s−1, the maximum over 0 ≤ t ≤ T of the difference between the com-
puted value of Q and the exact solution of the averaged equation (2.5). The column labelled
‘Averaged’ provides, as a reference, the maximum error in Q when (2.9) is integrated directly
with the Verlet scheme with step-lenght H . The numbers in the table clearly show that, for
the range of parameter values under consideration, errors behave as O(H2) and are almost
independent of ω. Note that, for ω = 108s−1, in the integration interval 0 ≤ t ≤ T = 1,
the pivot of the pendulum completes ≈ 1.7 × 107 cycles and it is therefore remarkable that
the algorithm is able to produce small errors with relatively modest numbers of micro-steps.
At the other extreme of the range of ω, for ω = 104s−1 and H = 1/80s the algorithm em-
ploys 256,000 micro-steps, when a direct integration of (2.2) by the Verlet method applied
with step-length equal to the micro-step h requires only ≈ 127, 000 steps. Therefore for ω
smaller than, say, 103s−1 Algorithm 1 loses its appeal. Also note that experiments show that
the maximum over 0 ≤ t ≤ T of the difference between the solutions of the given (2.2) and
its averaged counterpart (2.5) is ≈ 20ω−1. Therefore for ω = 104s−1 or smaller the exact
solution of (2.5) is not a sufficiently accurate reference solution to measure errors below, say
10−2, a fact to be kept in mind when analyzing the tables in this section.

2.3. An alternative asynchronous HMM. It may be argued that even though Algo-
rithm 1 succeeds in integrating (2.5) without having access to the form of the force F in
(2.6), its application still demands a preliminary analytical investigation of the problem being
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solved. In fact, as we pointed out above, formula (2.10) is based on the non-trivial relation
(2.7) that links the macro and micro-states.

The need for using formulas like (2.7) in the synchronous approach is perhaps best under-
stood from the point of view of the dynamics of the given equation (2.2) rewritten in the au-
tonomous first-order format (2.9). From the standard theory of averaging [3], it is well known
that, locally, the three-dimensional phase space of (2.9) can be seen as a product of a circle
(fibre), parameterized by the rapidly changing phase θ, and a ‘slow’ two-dimensional mani-
fold (basis). To describe the macro-dynamics of the system requires to find a parametrization
(µ(p, q, θ), ν(p, q, θ)) of the basis and then determine the evolution in time of the coordinates
(µ, ν). The micro-integrations in Algorithm 1 have necessarily to be carried out in the vari-
ables (p, q, θ) that feature in the given problem; however the pair of coordinates (p, q) cannot
play the role of (µ, ν) because p does not vary slowly (see Fig. 2.1). As a result, there is a
non-trivial relation between the micro-variables p, q and the (slowly varying) variables used
by the macro-integrator.

A general algorithm (by no means restricted to the inverted-pendulum and related equa-
tions) that bypasses the need for working out analytically the relations between macro and
micro-variables has been introduced in [2]. That new algorithm can still be viewed as be-
ing synchronous in the sense it relates values of the micro- and macro-variables along the
integration.

In this paper we put forward yet another alternative idea to circumvent the shortcomings
of Algorithm 1. The rationale behind our suggestion is in complete agreement with the basic
philosophy of HMMs as phrased in [10]: apply a numerical solver to the macro-equations
and ‘estimate the missing macro-scale data using the micro-scale model.’

We are motivated by the observation that sub-step 2. of Algorithm 1 operates as a sub-
routine to compute Fn, the approximation to the second time-derivative of Q to be used by
the macro-stepper. However if we believe at all that the averaged angle Q satisfies a differ-
ential equation of the form (2.5) (albeit for an F = F (Q) whose expression is unknown to
the user of the algorithm), we should also believe that the output Fn of such subroutine is,
at least approximately, independent of P̂n and of the phase θ(tn), or in other words that the
value of Fn would not change much if the micro-integration were initialized with p = 0 and
θ = 0. This leads to the following alternative to Algorithm 1, where the only argument of the
‘subroutine’ in sub-step 2. is the current value of Qn and there is no need to find a prediction
P̂n.

Algorithm 2.
1. Initial conditions: Given Q0 = Q(0), P0 = Q̇(0), t0 = 0, set n = 0.
2. Force estimation:

(a) Micro-simulation:
i. Initial data: Set:

p(n)(0) = 0, q(n)(0) = Qn, θ(n)(0) = 0.(2.14)

ii. Micro-integration: Find the functions p(n)(t), q(n)(t), θ(n)(t) in the win-
dow −η/2 ≤ t ≤ η/2 by integrating the system (2.9).

(b) Averaging: Set

Fn =
∫ η/2

−η/2

Kη(t)f(q(n)(t), θ(n)(t); ω) dt(2.15)
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FIG. 2.3. Schematic description of the relation between macro and micro integration: asynchronous algorithm

TABLE 2.2
Errors in averaged angle Q for the inverted pendulum, asynchronous algorithm, exponential weight function

H HMM Averaged
Microsteps ω = 104 ω = 106 ω = 108

1/10 2,000 4.10(-1) 4.08(-1) 4.05(-1) 2.74(-1)
1/20 8,000 1.10(-1) 1.07(-1) 1.05(-1) 7.43(-2)
1/40 32,000 2.95(-2) 2.71(-2) 2.51(-2) 1.90(-2)
1/80 128,000 9.11(-3) 6.74(-3) 4.81(-3) 4.72(-3)

3. Macro-step: Use the Verlet/leap-frog formulas:

Pn+1/2 = Pn−1/2 + HFn,

(
if n = 0, P1/2 = P0 +

H

2
F0

)

Qn+1 = Qn + HPn+1/2.

4. While tn + H ≤ T , set tn+1 = tn + H , n = n + 1 and repeat 2. and 3.
Note that, because f(q, θ; ω) is an even function of θ and due to the special form of the

initial data (2.14), the corresponding solution q(n)(t) is an even function and it is therefore
sufficient to compute it in the window 0 ≤ t ≤ η/2; this reduces by half the computational
cost in the micro-integrations. Also in (2.15) the integration interval may be reduced to
[0, η/2] by an argument based on symmetry:

Fn = 2
∫ η/2

0

Kη(t)f(q(n)(t), θ(n)(t); ω) dt.

Figure 2.3 is to be compared to Figure 2.2: in the asynchronous algorithm there is no
implied microintegration on 0 ≤ t ≤ T . Microintegrations are rather seen as part of a
subroutine and always take place starting from t = 0.

Table 2.2 only differs from Table 2.1 in that now the simpler and cheaper Algorithm 2
is used instead of Algorithm 1. A comparison of both tables reveals that, as predicted by our
earlier argument, there is little difference between the accuracy of both algorithms.

2.4. Simple filtering. The symmetry implied by the initial data (2.14) in the asyn-
chronous algorithm may bring in additional benefits. In this subsection we describe a compu-
tationally advantageous alternative to the use within Algorithm 2 of the exponential weight
function (2.13) or the other kernels presented in [13], Section 2.

The suggested new filtering uses η = 2π/ω (i.e. it makes use of the fact that the period
of the fast solutions of (2.2) is exactly known as being determined by the external forcing)
and K(ξ) = 1/2, −1 < ξ < 1. Thus the recipe reads:

Fn =
ω

2π

∫ π/ω

−π/ω

f(q(n)(t), θ(n)(t); ω) dt(2.16)
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TABLE 2.3
Errors in averaged angle Q for the inverted pendulum, asynchronous algorithm, simple filtering

H HMM Averaged
Microsteps ω = 103 ω = 104 ω = 106 ω = 108

1/10 50 3.86(-1) 4.05(-1) 4.07(-1) 4.07(-1) 2.74(-1)
1/20 200 9.11(-2) 1.05(-1) 1.07(-1) 1.07(-1) 7.43(-2)
1/40 800 1.15(-2) 2.55(-2) 2.70(-2) 2.70(-2) 1.90(-2)
1/80 3,200 8.67(-3) 5.20(-3) 6.70(-3) 6.71(-3) 4.72(-3)

=
ω

π

∫ π/ω

0

f(q(n)(t), θ(n)(t); ω) dt.

In order to see why this succeeds in filtering out the fast oscillations in f [26], assume
that f(q(n)(t), θ(n)(t); ω) is of the form κ(t) cos kωt where κ is slowly varying and even and
k 6= 0 is an integer (the simple initial conditions in (2.14) warrant that the forces to be filtered
are superpositions of functions of this kind). Two integrations by parts yield:

∣∣∣∣∣
ω

2π

∫ π/ω

−π/ω

κ(t) cos kωt dt

∣∣∣∣∣(2.17)

=

∣∣∣∣∣−
1

2πk2ω

∫ π/ω

−π/ω

κ̈(t) cos kωt dt +
(−1)k

k2ω2

κ̇(π/ω)− κ̇(−π/ω)
2π/ω

∣∣∣∣∣

≤ 1
k2ω2

M2 +
1

k2ω2
M2

(M2 is an upper bound for |κ̈|) and thus the filtering procedure divides the size of the fast
oscillations in f by a factor ω2. In (2.2) the force to be filtered is itself of order O(ω) and
(2.16) will reduce it to small size O(ω−1). We emphasize that the estimation in (2.17) de-
pends essentially on the fact that the functions being averaged are even; a similar computation
with κ(t) sin kωt in lieu of κ(t) cos kωt would show a division of the size of the oscillations
by an insufficient factor ω rather than ω2.

Table 2.3 differs from Table 2.2 in that averaging with the exponential kernel has been
replaced by the simple filtering in (2.16). Note the enormous computational savings afforded
by the new filtering. With these savings, Algorithm 2 is competitive with a direct integration
of (2.2) even for relatively small values of ω; for this reason we have included in Table 2.3 an
extra column corresponding to ω = 103s−1.

2.5. Symplecticness. For convenience in the presentation, the Verlet macro-integrator
in Algorithms 1 and 2 has been expressed in its leap-frog version, where Q(t) is approximated
at step-points tn and P (t) is approximated at half-step points tn + H/2. Of course the Verlet
equations may be rewritten in the one-step format

Pn+1/2 = Pn + (H/2)Fn,

Qn+1 = Qn + HPn+1/2,

Pn+1 = Pn+1/2 + (H/2)Fn+1,

that defines a mapping (Pn, Qn) 7→ (Pn+1, Qn+1) in phase space. With the micro-integration
initial conditions (2.14), Fn is a function of Qn and it follows easily that, for Algorithm 2, the
one-step mapping is reversible and symplectic [27], [15], [19]. (Mollified impulse methods
[14], [24] provide another instance where reversibility and symplecticness are achieved by
initializing all auxiliary integrations with velocity 0.)
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Algorithm 1 is neither symplectic nor reversible; however, as we have seen in the nu-
merical experiments, it may be seen as a perturbation of the symplectic, reversible Algorithm
2.

3. Second order differential equations. The ideas presented in the preceding section
are of course not limited to the simple pendulum. In the present section we consider exten-
sions to more general systems of second-order ODEs.

3.1. Systems with fast, large forcing. We first consider nonlinear systems of the form

M ẍ = f(x, θ;ω),(3.1)

where x is a d-dimensional real vector of positions, M a constant, positive-definite mass
matrix, ω À 1, θ = ωt+ θ0, and, for each fixed θ and ω, the force f is a 2π-periodic function
of the phase θ.2 It is further assumed that f may be written in the form

f(x, θ;ω) = ωf1(x, θ) + f0(x, θ) + fr(x, θ; ω),(3.2)

where f1, f0 and fr are 2π-periodic in θ and fr represents a small remainder |fr| = O(1/ω). In
order that the O(ω) force f does not induce large, O(ω) velocities in the system, we assume
that the leading term f1 averages to 0, i.e.

〈f1〉 =
1
2π

∫ 2π

0

f1(x, θ) dθ = 0.(3.3)

Thus f represents a large, highly oscillatory force as those found when stabilizing by vibra-
tion.

Under these hypotheses, the solutions of (3.1) possess an structure (cf. (2.4))

x = X + ∆ + O(1/ω2),(3.4)

where X obeys, up to an O(1/ω) residual, an autonomous, ω-independent averaged equation

MẌ = F(X)(3.5)

and ∆ = O(1/ω). More precisely, (3.3) implies that there is a unique function s(x, θ),
2π-periodic in θ, that satisfies

〈s〉 = 0,
∂2

∂θ2
s(x, θ) = f1(x, θ)

and, then,

∆ =
1
ω

M−1s(X, θ)(3.6)

while (3.5) takes the form

MẌ =
〈
f ′1(X, θ)M−1s(X, θ)

〉
+

〈
f0(X, θ)

〉
,(3.7)

where f ′1(X, θ) = ∂f1/∂X is the d × d-Jacobian matrix of f1 with respect to X. These
formulae generalize (2.4) and (2.5)–(2.6) and may be obtained by following the arguments

2A more general case f(x, θ1, . . . , θk; ω), with θj = αjωt + θj0 may also be catered for with small adjust-
ments.
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used in Section 2.1. (In fact a derivation of a result even more general than (3.4)–(3.7) is
contained in Appendix B.) If f1 ≡ 0, then we have that F = 〈f0〉, a well-known fact from
the theory of averaging. On the other hand, when f = O(ω) (the situation that arises when
stabilizing by vibration) the structure of the right hand-side of (3.7) is substantially more
complicated.

HMMs bypass the need for determining analytically the expression for F. Algorithm 1
from Section 2.2 is easily adapted to the present more general situation. It requires explicit
use of the relation (cf. (2.7))

v = V + M−1 ∂

∂θ
s(X, θ) + O(

1
ω

)(3.8)

that, according to (3.4) and (3.6), exists between the velocities v = ẋ and V = Ẋ. The
asynchronous Algorithm 2 is also easily adapted to the case at hand and does not require
the knowledge of (3.8). Under supplementary hypotheses on (3.1), Algorithm 2 possesses
additional advantages:

• If f(x, θ; ω) is the gradient of a scalar potential, so that (3.1) is a Hamiltonian prob-
lem, then Algorithm 2 is symplectic, because F is numerically evaluated by averag-
ing forces that are gradients of scalar potentials.

• If f(x, θ;ω) is an even function of θ, then the micro-solutions will also be even and
it is enough to perform the micro-integrations in the window 0 ≤ t ≤ η/2. In this
case, the cost of Algorithm 2 is a half of that of Algorithm 1.

• If f(x, θ; ω) is an even function of θ then it is possible to use the simple filtering
technique in (2.16) which significantly reduces the length of the micro-integration
windows.

3.2. Further extensions. More generally the ideas in Section 2 may be applied in situ-
ations where the solutions of a system

M ẍ = f(x, t; ω), ω À 1,

or

M ẍ = f(x;ω), ω À 1,

may be written as in (3.4) where ∆ is O(1/ω) and oscillates with a frequency or frequencies
that are O(ω) and X satisfies, except for an O(1/ω) residual, an averaged equation of the
form (3.5). In such situations Ẋ is O(1) away from ẋ and the use of synchronous HMM
that pass to the micro-integrator the value of Ẋ requires the knowledge of a formula that
computes ẋ as a function of Ẋ with small, O(1/ω) errors. Asynchronous algorithms, that
start the micro-integrations from ẋ = 0 do not require such a knowledge. Note however that
the use of the simple filtering technique within asynchronous algorithms requires that the fast
oscillations in ∆ are periodic with a known value of the period. If the solution is not periodic
or the period is unknown one has to revert to employing filters like (2.13).

4. Constrained systems.

4.1. Problem specification. We now study extensions of the family of problems (3.1)
that include algebraic constraints. More specifically we move to the consideration of DAEs
that describe (constrained) mechanical systems subjected to vibrations and study a general
problem of the form

M ẍ = f(x, θ; ω) + g′(x)T λ,(4.1)
g(x) = 0.(4.2)
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Here f(x, θ; ω) represents the active forces and is subjected to the hypotheses considered in
Section 3.1. The equations (4.2) provide d′ < d scalar constraints, so that the term g′(x)T λ,
with g′ = ∂g/∂x, corresponds to the forces exerted by the constraints. Thus (4.1)–(4.2)
provide d + d′ DAEs for the d components of x(t) and the d′ components of the vector λ(t)
of Lagrange multipliers. The constraints are assumed to be independent in the sense that, at
each x, the d′ × d′ matrix g′(x)M−1g′(x)T is invertible; then the index of (4.1)–(4.2) is
three [16], [4].

A first example of problems of the format (4.1)–(4.2) is provided by the simple vibrated
pendulum when the equations of motion are expressed in cartesian coordinates (x, y), as
distinct to being written in the form (2.2) based on the Lagrangian coordinate (angle) q. In
more general terms, (4.1)–(4.2) casts the mechanical system in descriptor form, as distinct
from a state space formulation based on a set of d− d′ independent coordinates. In realistic
problems, state space descriptions may not be easily available; they are also likely to lead to
systems of ODEs that, being of non-separated format, cannot be integrated by the Verlet and
other simple integrators.

The equations for the vibrated double pendulum in cartesian coordinates

m1ẍ1 = + 2x1λ1 + 2(x1 − x2)λ2,
m1ÿ1 = −m1a(t)−m1g + 2y1λ1 + 2(y1 − y2)λ2,
m2ẍ2 = + 2(x2 − x1)λ2,
m2ÿ2 = −m2a(t)−m2g + 2(y2 − y1)λ2,

(4.3)

with the constraints

x2
1 + y2

1 − `21 = 0, (x2 − x1)2 + (y2 − y1)2 − `22 = 0

also fit into the general format (4.1)–(4.2). The Lagrange multipliers λ1 and λ2 measure the
tensions in the rods that maintain constant the distances between the first mass and the origin
and between both masses and a(t) is the acceleration of the vibrated origin with respect to
the laboratory.

4.2. A SHAKE-SHAKE asynchronous algorithm. In Appendix B it is shown that
there exists an averaged system of the form

MẌ = F(X) + g′(X)T Λ,(4.4)
g(X) = 0(4.5)

(note that the active forces F are independent of the value of the velocity V = Ẋ of the
averaged motion). Unfortunately the analytic expression of F is extremely complicated and
we suggest to integrate (4.4)–(4.5) by an asynchronous algorithm that does not require the
knowledge of such expression. The suggested algorithm is very similar to Algorithm 2 in
Subsection 2.3. Since we now have to deal with a constrained macro-equation, we replace the
Verlet method used in there at step 3. by the SHAKE integrator (written in position-velocity
form [19]):

MVn+1/2 = MVn−1/2 + HFn + Hg′(Xn)T Λn,

Xn+1 = Xn + HVn+1/2,

g(Xn+1) = 0;

the macro-integration starts from given initial data X0 (with g(X0) = 0) and V0 at t0 = 0
and the missing value V1/2 is defined by the relation

MV1/2 = MV0 +
H

2
F0 +

H

2
g′(X0)T Λ0.
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FIG. 4.1. Double pendulum in descriptor form: left H = 1/80s, right H = 1/160s. The subplots show the
time-evolution of the angle q1 between the first pendulum rod and the vertical, the angle q2 between both rods, and
the Lagrange multipliers Λ1, Λ2

The evaluation of Fn at each macro-step is performed with the help of a micro-integration
of (4.1)–(4.2) in the window −η/2 ≤ t ≤ η/2 (or in 0 ≤ t ≤ η/2 if f is an even function of
θ). The initial data for the micro-integration are (cf. (2.14))

v(n)
0 = 0, x(n)

0 = Xn, θ
(n)
0 = 0

and again SHAKE in position-velocity form is used as a time-stepper:

Mv(n)
k+1/2 = Mv(n)

k−1/2 + hf(x(n)
k , θ

(n)
k ; ω) + hg′(x(n)

k )T λ
(n)
k ,

x(n)
k+1 = x(n)

k + hv(n)
k+1/2,

g(x(n)
k+1) = 0,

θ
(n)
k+1 = θ

(n)
k + ωh.

For the missing starting velocities the formula

Mv(n)
±1/2 = Mv(n)

0 ± h

2
f(x(n)

0 , 0; ω)± h

2
g′(x(n)

0 )T λ
(n)
0

is used.
Along each micro-integration the values of the total (active plus constraint) force

f(x(n)
k , θ

(n)
k ; ω) + g′(x(n)

k )T λ
(n)
k ,

are stored and Fn is obtained by filtering these micro-forces as in (2.15) or (2.16).
We have used this SHAKE-SHAKE algorithm (with the simple filtering (2.16)) to inte-

grate the double pendulum equations (4.3). The masses are m1 = 0.01kg and m2 = 0.005kg,
respectively, and the length of the rods `1 = 0.2m and `2 = 0.1m. As in the inverted pen-
dulum experiments in Section 2, g = 9.8ms−2, T = 1s and the acceleration a is given by
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(2.3) with vmax = 4ms−1. The initial velocities are taken to be zero and the initial posi-
tions are x1(0) = `1 sin(0.5), y1(0) = `1 cos(0.5), x2(0) = x1(0), y2(0) = y1(0) + `2,
so that initially the rods are at angles q1 = 0.5 and q2 = 0 with respect to the upward
vertical axis. The simulations, as those in Section 2, have h = (2π/ω)(H/Tmacro), but
we now take Tmacro = 0.4s because the averaged motion is faster than those we studied
for the simple pendulum. Figure 4.1 shows for H = 1/80s (left, 1,280 micro-steps) and
H = 1/160s (right, 5,120 micro-steps), the evolution of the angles q1 = arctan(x1/y1) and
q2 = arctan((x2−x1)/(y2− y1)) and the Lagrange multipliers Λ1 and Λ2; clearly the algo-
rithm exhibits a convergent behavior. The figure corresponds to ω = 104s−1; larger values of
the frequency ω = 106s−1 or ω = 108s−1 were tried, lead to the same results and require the
same computational effort. Note that the figure confirms that the values q1 = q2 = 0 (both
rods up) correspond to a stable equilibrium of the vibrated system [1], [28], [20].

4.3. A RATTLE-SHAKE algorithm. Differentiation of the constraints (4.2) or (4.5)
with respect to t shows that the velocities v and V have to be tangential:

g′(x)v = 0, g′(X)V = 0;(4.6)

it is well known [19] that the mid-step velocities computed by the SHAKE algorithm violate
these velocity constraints. Of course such a violation is of no consequence within the micro-
integrations where the values v(n)

k+1/2 play only an auxiliary role in the computation of the

positions x(n)
k+1 required to evaluate the micro-forces to be averaged (note also that SHAKE

may be rewritten in position form without any reference to the velocities v(n)
k+1/2). However

it may be of interest in some instances to have approximations Vn to the velocity of the
averaged motion at the step-points and to ensure that such approximations satisfy the velocity
constraint in (4.6). In those situations the SHAKE time-stepping used at the macro-integration
may be replaced by its RATTLE counterpart:

MVn+1/2 = MVn +
H

2
Fn +

H

2
g′(Xn)T Λx,n,

Xn+1 = Xn + HVn+1/2,

g(Xn+1) = 0,

MVn+1 = MVn+1/2 +
H

2
Fn+1 +

H

2
g′(Xn+1)T Λv,n,

g′(Xn+1)Vn+1 = 0,

where Λx and Λv respectively denote the Lagrange multipliers associated with the posi-
tion and velocity constraints and it is required that the initial conditions satisfy g(X0) = 0,
g′(X0)V0 = 0. The map (Vn,Xn) 7→ (Vn+1,Xn+1) is clearly reversible.

The RATTLE-SHAKE algorithm with H = 1/80s , H = 1/160s has been tested on the
example integrated in Section 4.2. For the angles q1 and q2 the results coincide with those in
Fig. 4.1, as it was to be expected in view of the equivalence between RATTLE and SHAKE
[19].

Finally, it is not necessary to point out that the simple RATTLE and SHAKE time-
steppers used here may be replaced by higher-order, more sophisticated schemes. The Lo-
batto IIIA/IIIB pair by Jay [17] would provide an obvious choice.

Appendix A. Slow variables in mechanical systems. In this Appendix we show how
physical considerations may help in identifying slow variables.
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The vibrated pendulum equation (2.2) is the Lagrange equation for the Lagrangian func-
tion [23]

L = T − V =
m

2
(`2q̇2 − 2`vq̇ sin q + v2) + m`g(1− cos q)−mgs

that is O(1) as ω ↑ ∞ . (An O(ω) behavior of L could have been ruled out on physical
arguments: the system would have then stored ‘infinite’ energy in the limit ω ↑ ∞.) The
generalized momentum

p∗ =
∂L
∂q̇

= m`2(q̇ − `−1v sin q)

takes then O(1) values and, furthermore, evolves slowly because, in the Lagrangian formal-
ism,

d

dt

∂L
∂q̇

=
∂L
∂q

.

In this way we have found, on purely physical grounds, the slow combination q̇ − `−1v sin q
used in (2.10).

Furthermore if (2.2) is rewritten within the Hamiltonian formalism [22] in terms of the
variables q and p∗ (rather than as a first order system for q and p as in (2.9)), then both micro-
variables vary slowly and HMMs similar to that in Algorithm 1 could be applied without
having to worry about non-trivial relations between macro and micro-variables.

The preceding idea is not restricted to the pendulum and applies to general Lagrangian
equations. It however has drawbacks: it requires the introduction of Lagrangian coordinates
and the analytic transformation to Hamiltonian form. In addition, the resulting Hamiltonian
problem is not separable and therefore cannot be integrated by means of the simple Verlet
scheme or similar methods.

Appendix B. Averaging in constrained problems. We now prove that the averaged X
does satisfy an equation of the form (4.4) in the case where the mass matrix M is the identity
(the case of an arbitrary M may be reduced to this by a change of dependent variables). We
introduce some notation. At each fixed x, we consider the d′–dimensional normal subspace
Nx spanned by the columns of g′(x)T and the (d − d′)–dimensional tangent subspace Tx
orthogonal to Nx, i.e. the null space of the matrix g′(x).

Differentiation of the velocity constraint (4.6) with respect to time yields

g′′(x)[v,v] + g′(x)ẍ = 0,(B.1)

an equation that imposes a balance between the normal component of the acceleration ẍ and
the centrifugal acceleration resulting from the curvature of the constraints. Note that, from
(B.1), g′(x)ẍ = O(1) for solutions with bounded kinetic energy. We now premultiply (4.1)
by g′ = g′(x) to get,

g′ẍ = g′f + g′g′T λ,

and conclude that, in view of (3.2),

λ = −ω(g′g′T )−1g′f1 + O(1) = O(ω),(B.2)

so that, after setting

Mx = g′T (g′g′T )−1g′,
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we may write

g′T λ = −ωMxf1 + O(1).

The d×d matrixMx is well known from linear algebra as the matrix that effects the orthogo-
nal projection ontoNx. Therefore the last equation possesses a clear geometric interpretation:
at leading, O(ω), order, the constraint force g′T λ counterbalances the normal component of
the vibrational acceleration ωf1.

Now substitute the ansatz (3.4) in (4.1). The acceleration ∆̈ must match the tangential
component of ωf1 that is obviously given by ω(f1 −Mxf1). Therefore, the enslavement of
∆ to X may be taken to be:

∆ =
1
ω

(I −MX)s(X, θ).

The active force F of the averaged equations (4.4) is now determined by substituting the
ansatz (3.4) and the expression (B.2) for the multipliers into the differential equations (4.1)
and equating slowly varying terms of size O(1). A computation very similar to that in (2.8)
leads to the involved formula

F(X) =
〈
f ′1(X, θ)(I −MX)s(X, θ)

〉
+

〈
f0(X, θ)

〉

−
〈
g′′(X)T

[
(I −MX)s(X, θ), (g′(X)g′(X)T )−1g′(X)f1(X, θ)

]〉
.
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