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Abstract

The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-
dimensional target distributions. In contrast with standard Markov chain Monte Carlo (MCMC) algorithms,
it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour for
the simulated trajectories. However, similarly to algorithms based on random walk or Langevin proposals,
the number of steps required to explore the target distribution typically grows with the dimension of the
state space. We define a generalized HMC algorithm which overcomes this problem for target measures
arising as finite-dimensional approximations of measures π which have density with respect to a Gaussian
measure on an infinite-dimensional Hilbert space. The key idea is to construct an MCMC method which is
well defined on the Hilbert space itself.

We successively address the following issues in the infinite-dimensional setting of a Hilbert space:
(i) construction of a probability measure Π in an enlarged phase space having the target π as a marginal,
together with a Hamiltonian flow that preserves Π ; (ii) development of a suitable geometric numerical
integrator for the Hamiltonian flow; and (iii) derivation of an accept/reject rule to ensure preservation of Π
when using the above numerical integrator instead of the actual Hamiltonian flow. Experiments are reported
that compare the new algorithm with standard HMC and with a version of the Langevin MCMC method
defined on a Hilbert space.
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1. Introduction

Several applications of current interest give rise to the problem of sampling a probability
measure π on a separable Hilbert space (H, ⟨·, ·⟩, | · |) defined via its density with respect to a
Gaussian measure π0:

dπ

dπ0
(q) ∝ exp(−Φ(q)). (1)

Measures with this form arise, for example, in the study of conditioned diffusions [13] and the
Bayesian approach to inverse problems [27]. The aim of this paper is to develop a generalization
of the Hybrid Monte Carlo (HMC) method which is tailored to the sampling of measures π

defined as in (1).
Any algorithm designed to sample π will in practice be implemented on a finite-dimensional

space of dimension N ; the key to the efficiency of the algorithm will be its cost as a function of
N . Mathematical analysis in the simplified scenario of product targets [22,23,1], generalizations
to the non-product case in [2] and practical experience together show that the MCMC methods
studied in these references require O(N a) steps to explore the approximate target in RN , for
some a > 0. Indeed for specific targets and proposals it is proven that for the standard Random
Walk Metropolis (RWM), Metropolis-adjusted Langevin algorithm (MALA) and HMC methods
a = 1, 1/3 and 1/4 respectively. The growth of the required number of steps with N occurs for
one or both of the following two reasons: either because the algorithms are not defined in the limit
N = ∞

1 or because the proposals at N = ∞ are distributed according to measures which are not
absolutely continuous with respect to the target measure π . Finite-dimensional approximations
then require, as N increases, smaller and smaller moves to control these shortcomings. On the
other hand, when π0 is Gaussian it is now understood that both the MALA and RWM algorithms
can be generalized to obtain methods which requireO(1) steps to explore the approximate target
in RN [3–5]. This is achieved by designing algorithms where the method is well defined even
on an infinite-dimensional Hilbert space H. In this paper we show that similar ideas can be
developed for the HMC method.

The standard HMC algorithm was introduced in [9]. It is based on the observation that the
exponential of a separable Hamiltonian, with potential energy given by the negative logarithm
of the target density, is invariant under the Hamiltonian flow. In contrast with standard Markov
chain Monte Carlo (MCMC) methods such as RWM and MALA, the HMC algorithm generates
nonlocal moves in the state space, offering the potential to overcome undesirable mixing
properties associated with random walk behaviour; see [19] for an overview. It is thus highly
desirable to generalize HMC to the infinite-dimensional setting required by the need to sample
measures of the form (1).

The paper proceeds as follows. In Section 2 we review those aspects of the standard HMC
method that are helpful to motivate later developments. The new Hilbert space algorithm is
presented in Section 3. Therein, we successively address the following issues in the infinite-
dimensional setting of a Hilbert space: (i) construction of a probability measure Π in an enlarged
phase space having the target π as a marginal, together with a Hamiltonian flow that preserves
Π ; (ii) development of a suitable geometric numerical integrator for the Hamiltonian flow;

1 The restriction is then analogous to a Courant stability restriction in the numerical approximation of partial
differential equations.
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and (iii) derivation of an accept/reject rule to ensure preservation of Π when using the above
numerical integrator instead of the actual Hamiltonian flow. All required proofs have been
collected in Section 4. Section 5 contains numerical experiments illustrating the advantages of
our generalized HMC method over both the standard HMC method [9] and the modified MALA
algorithm which is defined in a Hilbert space [3]. We make some concluding remarks in Section 6
and, in the Appendix, we gather some results from the Hamiltonian formalism.

Our presentation in the paper is based on constructing an HMC algorithm on an infinite-
dimensional Hilbert space; an alternative presentation of the same material could be based on
constructing an HMC algorithm which behaves uniformly on a sequence of finite-dimensional
target distributions in RN in which the Gaussian part of the target density has ratio of smallest to
largest variances that approaches 0 as N → ∞. Indeed the proofs in Section 4 are all based on
finite-dimensional approximation, and passage to the limit. Theorem 4.1 is a central underpinning
result in this context showing that both the numerical integrator and the acceptance probability
can be approximated in finite dimensions and, importantly, that the acceptance probabilities do
not degenerate to zero as N → ∞ while keeping a fixed step-size in the integrator. It is this
key algorithmic fact that makes the methodology proposed in this paper practical and useful.
We choose the infinite-dimensional perspective to present the material as it allows for concise
statement of key ideas that are not based on any particular finite-dimensional approximation
scheme. The proofs use a spectral approximation. Such spectral methods have been widely
used in the PDE literature to prove results concerning measure preservation for semilinear
Hamiltonian PDEs [15,7], but other methods such as finite differences or finite elements can
be used in practical implementations. Indeed the numerical results of Section 5 employ a finite
difference method and, in the context of random walk algorithms on Hilbert space, both finite
difference and spectral approximations are analysed in [2]; of course, similar finite difference
based approximations could also be analysed for HMC methods.

2. Standard HMC on RN

In order to facilitate the presentation of the new Hilbert space-valued algorithm to be
introduced in Section 3, it is convenient to first review the standard HMC method defined in [9]
from a perspective that is related to our ultimate goal of using similar ideas to sample the infinite-
dimensional measure given by (1). For broader perspectives on the HMC method the reader is
referred to the articles of Neal [19,20].

The aim of MCMC methods is to sample from a probability density function π in RN . In
order to link to our infinite-dimensional setting in later sections we write this density function in
the form

π(q) ∝ exp


−
1
2
⟨q, Lq⟩ − Φ(q)


, (2)

where L is a symmetric, positive semi-definite matrix. At this stage the choice L = 0 is not
excluded. When L is non-zero, (2) clearly displays the Gaussian and non-Gaussian components
of the probability density, a decomposition that will be helpful in the last subsection. HMC is
based on the combination of three elements: (i) a Hamiltonian flow, (ii) a numerical integrator
and (iii) an accept/reject rule. Each of these is discussed in a separate subsection. The final
subsection examines the choice of the mass matrix required to apply the method, specially in
the case where L in (2) is ‘large’. Also discussed in that subsection are the reasons, based on
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scaling, that suggest to implement the algorithm using the velocity in lieu of the momentum as
an auxiliary variable.

The Hamiltonian formalism and the numerical integration of Hamiltonian differential equa-
tions are of course topics widely studied in applied mathematics and physics. We employ ideas
and terminology from these fields and refer the reader to the texts [11,25] for background and
further details.

2.1. Hamiltonian flow

Consider a Hamiltonian function (‘energy’) in R2N associated with the target density (2):

H(q, p) =
1
2
⟨p, M−1 p⟩ +

1
2
⟨q, Lq⟩ + Φ(q). (3)

Here p is an auxiliary variable (‘momentum’) and M a user-specified, symmetric positive definite
‘mass’ matrix. Denoting by

f = −∇Φ

the ‘force’stemming from the ‘potential’Φ, the corresponding canonical Hamiltonian differential
equations read as (see the Appendix)

dq
dt

=
∂ H
∂p

= M−1 p,
dp
dt

= −
∂ H
∂q

= −Lq + f (q). (4)

HMC is based on the fact that, for any fixed t , the t-flow Ξ t of (4), i.e. the map Ξ t
: R2N

→ R2N

such that

(q(t), p(t)) = Ξ t (q(0), p(0)),

preserves both the volume element dq dp and the value of H . As a result, Ξ t also preserves the
measure in the phase space R2N with density

Π (q, p) ∝ exp(−H(q, p)) = exp


−
1
2
⟨p, M−1 p⟩


exp


−

1
2
⟨q, Lq⟩ − Φ(q)


, (5)

whose q and p marginals are respectively the target (2) and a centred Gaussian with M as a
covariance matrix. It follows that if we assume that the initial value q(0) is distributed according
to (2) and we draw p(0) ∼ N (0, M), then q(t) will also follow the law (2). This shows that
the implied Markov transition kernel q(0) → q(T ), with a user-defined fixed T > 0, defines
a Markov chain in RN that has (2) as an invariant density and makes nonlocal moves in that
state space (see [19,26]). Furthermore, the chain is reversible, in view of the symmetry of
the distribution N (0, M) and of the time-reversibility [25] of the dynamics of (4): that is, if
Ξ T (q, p) = (q ′, p′), then Ξ T (q ′, −p′) = (q, −p).

2.2. Numerical integrator

In general the analytic expression of the flow Ξ t is not available and it is necessary to resort to
numerical approximations to compute the transitions. The integrator of choice, the Verlet/leap-
frog method, is best presented as a splitting algorithm, see e.g. [25]. The Hamiltonian (3) is
written in the form

H = H1 + H2, H1 =
1
2
⟨q, Lq⟩ + Φ(q), H2 =

1
2
⟨p, M−1 p⟩,
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where the key point is that the flows Ξ t
1 ,Ξ t

2 of the split Hamiltonian systems

dq
dt

=
∂ H1

∂p
= 0,

dp
dt

= −
∂ H1

∂q
= −Lq + f (q)

and
dq
dt

=
∂ H2

∂p
= M−1 p,

dp
dt

= −
∂ H2

∂q
= 0

may be explicitly computed:

Ξ t
1(q, p) = (q, p − t Lq + t f (q)), Ξ t

2(q, p) = (q + t M−1 p, p). (6)

Then a time-step of length h > 0 of the Verlet algorithm is, by definition, carried out by com-
posing three substeps:

Ψh = Ξ h/2
1 ◦ Ξ h

2 ◦ Ξ h/2
1 ; (7)

and the exact flow Ξ T of (4) is approximated by the transformation Ψ (T )
h obtained by concate-

nating ⌊
T
h ⌋ Verlet steps:

Ψ (T )
h = Ψ

⌊
T
h ⌋

h . (8)

Since the mappings Ξ t
1 and Ξ t

2 are exact flows of Hamiltonian systems, the transformation
Ψ (T )

h itself is symplectic and preserves the volume element dq dp (see the Appendix). Also the
symmetry in the right hand side of (7) (Strang’s splitting) results in Ψ (T )

h being time-reversible:

Ψ (T )
h (q, p) = (q ′, p′) ⇔ Ψ (T )

h (q ′, −p′) = (q, −p).

The map Ψ (T )
h is an example of a geometric integrator [11]: it preserves various geometric prop-

erties of the flow Ξ T and in particular the symplectic and time-reversible nature of the underlying
flow. However Ψ (T )

h does not preserve the value of H : it makes anO(h2) error and, accordingly,
it does not exactly preserve the measure with density (5).

2.3. Accept/reject rule

The invariance of (5) in the presence of integration errors is ensured through an accept/reject
Metropolis–Hastings mechanism; the right recipe is given in steps (iii) and (iv) of Table 1, that
summarizes the standard HMC algorithm [9,19].

2.4. Choice of mass matrix

As pointed out above, the mass matrix M is a ‘parameter’to be selected by the user; the
particular choice of M will have great impact on the efficiency of the algorithm [10]. A rule
of thumb [17] is that directions where the target (2) possesses larger variance should be given
smaller mass so that the Hamiltonian flow can make faster progress along them. This rule of
thumb is used to select the mass matrix to study a polymer chain in [14].

In order to gain understanding concerning the role of M and motivate the material in Section 3,
we consider in the remainder of this section the case where in (2) the matrix L is positive definite
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Table 1
Standard HMC algorithm on RN . It generates a Markov chain q(0)

→ q(1)
→ . . . reversible with respect to the target

probability density function (2). The numerical integrator Ψ
(T )
h is defined by (6)–(8).

HMC on RN :
(i) Pick q(0)

∈ RN and set n = 0.
(ii) Given q(n), compute

(q⋆, p⋆) = Ψ
(T )
h (q(n), p(n))

where p(n)
∼ N (0, M) and propose q⋆.

(iii) Calculate
a = min(1, exp(H(q(n), p(n)) − H(q∗, p∗))).

(iv) Set q(n+1)
= q⋆ with probability a; otherwise set q(n+1)

= q(n).
(v) Set n → n + 1 and go to (ii).

and Φ(q) is small with respect to ⟨q, Lq⟩, i.e. the case where the target is a perturbation of the
distribution N (0, L−1). In agreement with the rule of thumb above, we set M = L so that (4)
reads

dq
dt

= L−1 p,
dp
dt

= −Lq + f (q). (9)

Let us now examine the limit situation where the perturbation vanishes, i.e. Φ ≡ 0. From (5),
at stationarity, q ∼ N (0, L−1), p ∼ N (0, L). Furthermore in (9), f ≡ 0 so that, after eliminating
p,

d2q
dt2 = −q.

Thus, q(t) undergoes oscillations with angular frequency 1 regardless of the size of the
eigenvalues of L/(co)-variances of the target. From a probabilistic point of view, this implies
that, if we think of q as decomposed in independent Gaussian scalar components, the algorithm
(as intended with the choice of mass matrix M = L) automatically adjusts itself to the fact
that different components may possess widely different variances. From a numerical analysis
point of view, we see that the Verlet algorithm will operate in a setting where it will not be
necessary to reduce the value of h to avoid stability problems originating from the presence of
fast frequencies.2

Remark 1. Let us still keep the choice M = L but drop the assumption Φ ≡ 0 and suppose
that L has some very large eigenvalues (i.e. the target distribution presents components of very
small variance). As we have just discussed, we do not expect such large eigenvalues to negatively
affect the dynamics of q. However we see from the second equation in (9) that p (which, recall,
is only an auxiliary variable in HMC) will in general be large. In order to avoid variables of large
size, it is natural to rewrite the algorithm in Table 1 using throughout the scaled variable

v = L−1 p

2 Note that the Verlet algorithm becomes unstable whenever hω ≥ 2, where ω is any of the angular frequencies
present in the dynamics. While the choice of mass matrix M = L precludes the occurrence of stability problems in
the integration, the standard HMC algorithm in the present setting (M = L ,Φ ≡ 0) still suffers from the restriction
h = O(N 1/4) discussed in [1] (the restriction stems from accuracy – rather than stability – limitations in the Verlet
integrator). The new integrator to be introduced later in the paper is exact in the setting Φ ≡ 0, and hence eliminates this
problem.
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rather than p. Since v = M−1 p = dq/dt , the scaled variable possesses a clear meaning: it is the
‘velocity’ of q.

In terms of v the system (9) that provides the required flow reads

dq
dt

= v,
dv

dt
= −q + L−1 f (q); (10)

the value of the Hamiltonian (3) to be used in the accept/reject step is given by

H =
1
2
⟨v, Lv⟩ +

1
2
⟨q, Lq⟩ + Φ(q), (11)

and the invariant density (5) in R2N becomes

Π (q, v) ∝ exp


−
1
2
⟨v, Lv⟩


exp


−

1
2
⟨q, Lq⟩ − Φ(q)


. (12)

Note that the marginal for v is

v ∼ N (0, L−1); (13)

the initial value v(n) at step (ii) of Table 1 should be drawn accordingly. Note that this formulation
has the desirable attribute that, when Φ ≡ 0, the position and velocity are independent draws
from the same distribution.

We finish the section with two comments concerning introduction of the variable v in place
of p. The algorithm expressed in terms of v may be found either by first replacing p by v in the
differential equations (9) to get (10) and then applying the Verlet algorithm; or by first applying
the Verlet algorithm to the system (9) and then replacing p by v in the equations of the integrator:
the Verlet discretization commutes with the scaling p → v = M−1 p. In addition, it is important
to note that (10) is also a Hamiltonian system, albeit of a non-canonical form, see the Appendix.

3. The algorithm

In this section we define the new algorithm on a Hilbert space (H, ⟨·, ·⟩, | · |), and outline the
main mathematical properties of the algorithm. After introducing the required assumptions on
the distribution to be sampled, we discuss successively the flow, the numerical integrator and the
accept/reject strategy.

3.1. Assumptions on π0 and Φ

Throughout we assume that π0 in (1) is a non-degenerate (non-Dirac) centred Gaussian
measure with covariance operator C. Thus, C is a positive, self-adjoint, nuclear operator (i.e. its
eigenvalues are summable) whose eigenfunctions span H. For details on properties of Gaussian
measures on a Hilbert space see section 2.3 of [8], and for the Banach space setting see [6,16].

Let {φ j } j≥1 be the (normalized) eigenfunctions of C and λ2
j its eigenvalues, so that

Cφ j = λ2
j φ j , j ≥ 1.

The expansion

q =

∞−
j=1

q jφ j (14)
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establishes an isomorphism between H and the space

ℓ2 =


{q j }

∞

j=1 ∈ R∞
:

−
q2

j < ∞


(15)

that maps each element q into the corresponding sequence of coefficients {q j } j≥1. This isomor-
phism gives rise to subspaces (s > 0) and superspaces (s < 0) of H:

Hs
:= {{q j }

∞

j=1 ∈ R∞
: |q|s < ∞},

where | · |s denotes the following Sobolev-like norm:

|q|s :=


∞−
j=1

j2sq2
j

1/2

, s ∈ R.

Note that H0
= H. For an introduction to Sobolev spaces defined this way, see Appendix A

of [24].
If q ∼ N (0, C), then

q j ∼ N (0, λ2
j ) (16)

independently over j . Thus, λ j is the standard deviation, under the reference measure π0, of the
j th coordinate. We shall impose the following condition, with the bound κ > 1/2 being required
to ensure that C is nuclear, so that the Gaussian distribution is well defined.

Condition 3.1. The standard deviations {λ j } j≥1 decay at a polynomial rate κ > 1/2, that is

λ j = Θ( j−κ)

i.e. lim inf j→∞ jκλ j > 0 and lim sup j→∞ jκλ j < ∞.

From this condition and (16), a direct computation shows that E|q|
2
s < ∞ for s ∈ [0, κ −1/2)

and hence that

|q|s < ∞, π0-a.s., for any s ∈ [0, κ − 1/2).

Therefore, we have the following.

Proposition 3.1. Under Condition 3.1, the probability measure π0 is supported on Hs for any
s < κ − 1/2.

Let us now turn to the hypotheses on the real-valued map (‘potential’) Φ. In the applications
which motivate us (see [13,27]) Φ is typically defined on a dense subspace of H. To be concrete
we will assume throughout this paper that the domain of Φ isHℓ for some fixed ℓ ≥ 0. Then the
Fréchet derivative DΦ(q) of Φ is, for each q ∈ Hℓ, a linear map from Hℓ into R and therefore
we may identify it with an element of the dual spaceH−ℓ. We use the notation f (q) = −DΦ(q)

and, from the preceding discussion, view f (‘the force’) as a function f : Hℓ
→ H−ℓ. The first

condition concerns properties of f .

Condition 3.2. There exists ℓ ∈ [0, κ−
1
2 ), where κ is as in Condition 3.1, such that Φ : Hℓ

→ R
is continuous and f = −DΦ : Hℓ

→ H−ℓ is globally Lipschitz continuous, i.e. there exists a
constant K > 0 such that, for all q, q ′

∈ Hℓ,

| f (q) − f (q ′)|−ℓ ≤ K |q − q ′
|ℓ.
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The next condition is a bound from below on Φ, characterizing the idea that the change of
measure is dominated by the Gaussian reference measure.

Condition 3.3. Fix ℓ as given in Condition 3.2. Then, for any ϵ > 0 there exists M = M(ϵ) > 0
such that, for all q ∈ Hℓ

Φ(q) ≥ M − ϵ|q|
2
ℓ.

Under Conditions 3.1–3.3, (1) defines π as a probability measure absolutely continuous with
respect to π0; Proposition 3.1 ensures that π is supported in Hs for any s < κ − 1/2 and in
particular that π(Hℓ) = 1; Condition 3.3 guarantees, via the Fernique theorem (2.6 in [8]), the
integrability of exp(−Φ(q)) with respect to π0; the Lipschitz condition on f in Condition 3.2
ensures continuity properties of the measure with respect to perturbations of various types. The
reader is referred to [27] for further details. The conditions above summarize the frequently
occurring situation where a Gaussian measure π0 dominates the target measure π . This means
intuitively that the random variable ⟨u, φ j ⟩ behaves, for large j , almost the same under u ∼ π

and under u ∼ π0. It then possible to construct effective algorithms to sample from π by using
knowledge of π0.

We remark that our global Lipschitz condition could be replaced by a local Lipschitz as-
sumption at the expense of a more involved analysis; indeed we will give numerical results in
Section 5.2 for a measure arising from conditioned diffusions where f is only locally Lipschitz.

We shall always assume hereafter that Conditions 3.1–3.3 are satisfied and use the symbols κ

and ℓ to refer to the two fixed constants that arise from them.

3.2. Flow

There is a clear analogy between the problem of sampling from π given by (1) in H and the
problem, considered in Section 2.4, of sampling from the density (2) in RN with L positive
definite and Φ(q) small with respect to ⟨q, Lq⟩. In this analogy, π0(dq) corresponds to the
measure exp(−(1/2)⟨q, Lq⟩)dq and therefore the covariance operator C corresponds to the
matrix L−1: L is the precision operator. Many of the considerations that follow are built on
this parallelism.

The key idea in HMC methods is to double the size of the state space by adding an auxiliary
variable related to the ‘position’ q. We saw in Remark 1 in Section 2.4, that, in the setting
considered there, large eigenvalues of L lead to large values of the momentum p but do not affect
the size of v. In the Hilbert space setting, the role of L is played by C−1 which has eigenvalues
1/λ2

j of arbitrarily large size. This suggests working with the velocity v = dq/dt as an auxiliary
variable and not the momentum. Eq. (13) prompts us to use π0 as the marginal distribution of v

and introduce the following Gaussian measure Π0 on H×H
Π0(dq, dv) = π0(dq) ⊗ π0(dv).

We define accordingly (cf. (12)):

dΠ
dΠ0

(q, v) ∝ exp(−Φ(q)), (17)

so that the marginal on q of Π is simply the target distribution π . Furthermore (10) suggests to
chose



Author's personal copy

2210 A. Beskos et al. / Stochastic Processes and their Applications 121 (2011) 2201–2230

dq
dt

= v,
dv

dt
= −q + C f (q) (18)

as the equations to determine the underlying dynamics that will provide (when solved numeri-
cally) proposals for the HMC algorithm with target distribution π .

Our first result shows that (18) defines a well-behaved flow Ξ t in the subspace Hℓ
× Hℓ of

H × H which, according to Proposition 3.1, has full Π0 (or Π ) measure. The space Hℓ
× Hℓ

is assumed to have the product topology of the factor spaces (Hℓ, | · |ℓ). We state precisely the
dependence of the Lipschitz constant for comparison with the situation arising in the next section
where we approximate in N ≫ 1 dimensions and with time-step h, but Lipschitz constants are
independent of N and h and exhibit the same dependence as in this section.

Proposition 3.2. (i) For any initial condition (q(0), v(0)) ∈ Hℓ
× Hℓ and any T > 0 there

exists a unique solution of (18) in the space C1([−T, T ],Hℓ
×Hℓ).

(ii) Let Ξ t
: Hℓ

×Hℓ
→ Hℓ

×Hℓ, t ∈ R denote the group flow of (18), so that

(q(t), v(t)) = Ξ t (q(0), v(0)).

The map Ξ t is globally Lipschitz with a Lipschitz constant of the form exp(K |t |), where K
depends only on C and Φ.

(iii) Accordingly, for each T > 0, there exists constant C(T ) > 0 such that, for 0 ≤ t ≤ T ,

|q(t)|ℓ + |v(t)|ℓ ≤ C(T )(1 + |q(0)|ℓ + |v(0)|ℓ).

Our choices of measure (17) and dynamics (18) have been coordinated to ensure that Ξ t

preserves Π :

Theorem 3.1. For any t ∈ R, the flow Ξ t preserves the probability measure Π given by (17).

The theorem implies that π will be an invariant measure for the Markov chain for q defined
through the transitions q(n)

→ q(n+1) determined by

(q(n+1), v(n+1)) = Ξ T (q(n), v(n)), v(n)
∼ π0, (19)

where the v(n) form an independent sequence. This chain is actually reversible:

Theorem 3.2. For any t ∈ R, the Markov chain defined by (19) is reversible under the distribu-
tion π(q) in (1).

We conclude by examining whether the dynamics of (18) preserve a suitable Hamiltonian
function. The Hilbert space counterpart of (11) is given by

H(q, v) =
1
2
⟨v, C−1v⟩ +

1
2
⟨q, C−1q⟩ + Φ(q) (20)

and it is in fact trivial to check that H and therefore exp(−H) are formal invariants of (18).
However the terms ⟨q, C−1q⟩ and ⟨v, C−1v⟩ are almost surely infinite in an infinite-dimensional
context. This may be seen from the fact that |C−

1
2 · | is the Cameron–Martin norm for π0, see

e.g. [6,8], or directly from a zero-one law applied to a series representation of the inner-product.
For further discussion on the Hamiltonian nature of (18), see the Appendix.
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3.3. Numerical Integrator

Our next task is to study how to numerically approximate the flow Ξ T . As in the derivation
of the Verlet algorithm in Section 3.3 we resort to the idea of splitting; however the splitting that
we choose is different, dictated by a desire to ensure that the resulting MCMC method is well
defined on Hilbert space. The system (18) is decomposed as (see the Appendix)

dq
dt

= 0,
dv

dt
= C f (q) (21)

and

dq
dt

= v,
dv

dt
= −q (22)

with the explicitly computable flows

Ξ t
1(q, v) = (q, v + t C f (q)), (23)

and

Ξ t
2(q, v) = (cos(t) q + sin(t) v,− sin(t) q + cos(t) v). (24)

This splitting has also been recently suggested in the review [20], although without the high-
dimensional motivation of relevance here.

A time-step of length h > 0 of the integrator is carried out by the symmetric composition
(Strang’s splitting)

Ψh = Ξ h/2
1 ◦ Ξ h

2 ◦ Ξ h/2
1 (25)

and the exact flow Ξ T , T > 0, of (18) is approximated by the map Ψ (T )
h obtained by concate-

nating ⌊
T
h ⌋ steps:

Ψ (T )
h = Ψ

⌊
T
h ⌋

h . (26)

This integrator is time-reversible – due to the symmetric pattern in Strang’s splitting and the time-
reversibility of Ξ t

1 and Ξ t
2 – and if applied in a finite-dimensional setting would also preserve the

volume element dq dv. In the case where Φ ≡ 0, the integrator coincides with the rotation Ξ t
2 ;

it is therefore exact and preserves exactly the measure Π0. However, in general, Ψ (T )
h does not

preserve formally the Hamiltonian (20), a fact that renders necessary the introduction of an ac-
cept/reject criterion, as we will describe in the following subsection.

The next result is analogous to Proposition 3.2:

Proposition 3.3. (i) For any (q, v) ∈ Hℓ
× Hℓ we have Ψh(q, v) ∈ Hℓ

× Hℓ and therefore
Ψ (T )

h (q, v) ∈ Hℓ
×Hℓ.

(ii) Ψh , and therefore Ψ (T )
h , preserves absolute continuity with respect to Π0 and Π .

(iii) Ψ (T )
h is globally Lipschitz as a map from Hℓ

× Hℓ onto itself with a Lipschitz constant of
the form exp(K T ) with K depending only on C and Φ.

(iv) Accordingly, for each T > 0 there exists C(T ) > 0 such that, for all 0 ≤ ih ≤ T ,

|qi |ℓ + |vi |ℓ ≤ C(T )(1 + |q0|ℓ + |v0|ℓ),
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where

(qi , vi ) = Ψ i
h(q0, v0). (27)

3.4. Accept/reject rule

The analogy with the standard HMC would suggest the use of

1 ∧ exp(H(q(n), v(n)) − H(Ψ (T )
h (q(n), v(n))))

to define the acceptance probability. Unfortunately and as pointed out above, H is almost surely
infinite in our setting. We will bypass this difficulty by deriving a well-behaved expression for
the energy difference

1H(q, v) = H(Ψ (T )
h (q, v)) − H(q, v)

in which the two infinities cancel.
A straightforward calculation using the definition of Ψh(q, v) gives, for one time-step (q ′, v′)

= Ψh(q, v):

H(q ′, v′) − Φ(q ′) = H(q, v) − Φ(q) +
h2

8
(|C 1

2 f (q)|2 − |C 1
2 f (q ′)|2)

+
h
2
(⟨ f (q), v⟩ + ⟨ f (q ′), v′

⟩).

Using this result iteratively, we obtain for I = ⌊T/h⌋ steps (subindices refer to time-levels along
the numerical integration):

1H(q0, v0) = Φ(qI ) − Φ(q0) +
h2

8
(|C 1

2 f (q0)|
2
− |C 1

2 f (qI )|
2)

+ h
I−1−
i=1

⟨ f (qi ), vi ⟩ +
h
2

(⟨ f (q0), v0⟩ + ⟨ f (qI ), vI ⟩). (28)

(We note in passing that in the continuum h → 0 limit, (28) gives formally:

H(q(T ), v(T )) − H(q(0), v(0)) = Φ(q(T )) − Φ(q(0)) +

∫ T

0
⟨ f (q(t)), v(t)⟩ dt,

with the right hand side here being identically 0: the gain in potential energy equals the power of
the applied force. This is a reflection of the formal energy conservation by the flow (18) pointed
out before.) Condition 3.2 and parts (ii) and (iv) of Lemma 4.1 in Section 4 now guarantee that
1H(q, v), as defined in (28), is a Π -a.s. finite random variable; in fact 1H : Hℓ

×Hℓ
→ R is

continuous according to parts (iii) and (v) of that lemma. We may therefore define the acceptance
probability by

a(q, v) = min(1, exp(−1H(q, v))). (29)

We are finally ready to present an HMC algorithm on Hℓ aiming at simulating from π(q) in
equilibrium. The pseudo-code is given in Table 2. Our main result asserts that the algorithm we
have defined achieves its goal:

Theorem 3.3. For any choice of T > 0, the algorithm in Table 2 defines a Markov chain which
is reversible under the distribution π(q) in (1).
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Table 2

The HMC algorithm on a Hilbert space, for sampling from π in (1). The numerical integrator Ψ
(T )
h is defined by Eqs.

(23)–(26).

HMC onHℓ:
(i) Pick q(0)

∼ Π0 and set n = 0.
(ii) Given q(n), compute

(q⋆, v∗) = Ψ
(T )
h (q(n), v(n))

where v(n)
∼ N (0,C) and propose q∗.

(iii) Using (28) and (29), define
a = a(q(n), v(n)).

(iv) Set q(n+1)
= q⋆ with probability a; otherwise set q(n+1)

= q(n).
(v) Set n → n + 1 and go to (ii).

The practical application of the algorithm requires of course to replaceH, π0 and Φ by finite-
dimensional approximations. Once these have been chosen, it is a trivial matter to write the
corresponding versions of the differential system (18), of the integrator and of the accept/reject
rule. The case where the discretization is performed by a spectral method is presented and used
for the purposes of analysis in Section 4.2. However many alternative possibilities exist: for
example in Section 5.2 we present numerical results based on finite-dimensionalization using
finite differences. For any finite-dimensional approximation of the state space, the fact that the
algorithm is defined in the infinite-dimensional limit imparts robustness under refinement of
finite-dimensional approximation.

Of course in any finite-dimensional implementation used in practice the value of H will be
finite, but large, and so it would be possible to evaluate the energy difference by subtracting
two evaluations of H. However this would necessitate the subtraction of two large numbers,
something well known to be undesirable in floating-point arithmetic. In contrast the formula we
derive has removed this subtraction of two infinities, and is hence suitable for floating-point use.

4. Proofs and finite-dimensional approximation

This section contains some auxiliary results and the proofs of the theorems and propositions
presented in Section 3. The method of proof is to consider finite-dimensional approximation
in RN , and then pass to the limit as N → ∞. In doing so we also prove some useful
results concerning the behaviour of finite-dimensional implementations of our new algorithm.
In particular Theorem 4.1 shows that the acceptance probability does not degenerate to 0 as N
increases, for fixed time-step h in the integrator. This is in contrast to the standard HMC method
where the choice h = O(N−

1
4 ) is required to ensure O(1) acceptance probabilities. We discuss

such issues further in Section 5.

4.1. Preliminaries

Recall the fixed values of κ and ℓ defined by Conditions 3.1 and 3.2 respectively. The bounds
for f = −DΦ provided in the following lemma will be used repeatedly. The proof relies on the
important observation that Condition 3.1 implies that

|C−s/2κ
· | ≍ | · |s, (30)

where we use the symbol ≍ to denote an equivalence relation between two norms.



Author's personal copy

2214 A. Beskos et al. / Stochastic Processes and their Applications 121 (2011) 2201–2230

Lemma 4.1. There exists a constant K > 0 such that
(i) for all q, q ′

∈ Hℓ,

|C f (q) − C f (q ′)|ℓ ≤ K |q − q ′
|ℓ;

(ii) for all q, v ∈ Hℓ,

|⟨ f (q), v⟩| ≤ K (1 + |q|ℓ)|v|ℓ;

(iii) for all q, q ′, v, v′
∈ Hℓ,

|⟨ f (q), v⟩ − ⟨ f (q ′), v′
⟩| ≤ K |v|ℓ|q − q ′

|ℓ + K (1 + |q ′
|ℓ)|v − v′

|ℓ;

(iv) for all q ∈ Hℓ,

|C 1
2 f (q)| ≤ K (1 + |q|ℓ);

(v) for all q, q ′
∈ Hℓ,

|C 1
2 f (q) − C 1

2 f (q ′)| ≤ K |q − q ′
|ℓ.

Proof. From (30)

|C · |ℓ ≍ |C1−
ℓ

2κ · |, | · |−ℓ ≍ |C ℓ
2κ · |,

and, since ℓ < κ − 1/2, we have that 1 − ℓ/(2κ) > ℓ/(2κ). Thus, there is a constant K such that

|C · |ℓ ≤ K | · |−ℓ.

Item (i) now follows from Condition 3.2. For item (ii) note that, by (30) and Condition 3.2, we
have

|⟨ f (q), v⟩| = |⟨Cℓ/2κ f (q), C−ℓ/2κv⟩|

≤ |Cℓ/2κ f (q)||C−ℓ/2κv| ≤ K | f (q)|−ℓ|v|ℓ ≤ K (1 + |q|ℓ)|v|ℓ.

The proof of item (iii) is similar. For (iv) we write, by (30) and since 0 < ℓ < κ ,

|C 1
2 f (q)| ≤ K | f (q)|−κ ≤ K | f (q)|−ℓ.

Item (v) is proved in an analogous way. �
Proof of Proposition 3.2. Lemma 4.1 shows that C f is a globally Lipschitz mapping from Hℓ

into itself. Therefore (18) is an ordinary differential equation inHℓ
×Hℓ with globally Lipschitz

right hand side which proves directly the statement. �
Proof of Proposition 3.3. Part (i) is a consequence of (i) in Lemma 4.1. For part (ii) it is clearly
sufficient to address the case of the Gaussian law Π0. From the definition of Ψh as a composition,
it is enough to show that Ξ t

1 and Ξ t
2 defined in (23) and (24) preserve absolute continuity with

respect to Π0. The rotation Ξ t
2 preserves Π0 exactly. The transformation Ξ t

1 leaves q invariant
and thus it suffices to establish that for, any fixed q ∈ Hℓ, the mapping v → v + t C f (q)

preserves absolute continuity with respect to N (0, C). Writing C f (q) = C1/2
{C1/2 f (q)}, we

see from Lemma 4.1(iv) that C1/2 f (q) is an element of H; then, the second application of
C1/2 projects H onto the Cameron–Martin space of the Gaussian measure N (0, C). It is well
known (see e.g. Theorem 2.23 in [8]) that translations by elements of the Cameron–Martin space
preserve absolute continuity of the Gaussian measure.

Parts (iii) and (iv) are simple consequences of the fact that both Ξ t
1 and Ξ t

2 are globally
Lipschitz continuous with constants of the form 1 +O(|t |) as t → 0. �
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4.2. Finite-dimensional approximations

The proofs of the main Theorems 3.1–3.3, to be presented in the next subsection, and involve
demonstration of invariance or reversibility properties of the algorithmic dynamics, rely on the
use of finite-dimensional approximations.

Taking into account the spectral decomposition (14), we introduce the subspaces (N ∈ N):

HN =


q ∈ H : q =

N−
j=1

q j φ j , q j ∈ R


,

and denote by projHN
the projection ofH ontoHN . For q, v ∈ H, we also employ the notations:

q N
= projHN

(q), vN
= projHN

(v).

We will make use of the standard isomorphism HN ↔ RN and will sometimes treat a map
HN → HN as one RN

→ RN ; this should not create any confusion. If we think of elements
of H as functions of ‘spatial’ variables, then the process of replacing H by HN corresponds to
space discretization by means of a spectral method.

We introduce the distributions in HN (equivalently, RN ) given by

π0,N = N (0, CN ), πN (q) ∝ exp

−

1
2
⟨q, C−1

N q⟩ − ΦN (q)


, (31)

where CN is the N × N diagonal matrix

CN = diag{λ2
1, λ

2
2, . . . , λ

2
N }

and ΦN is the restriction of Φ to HN , i.e.

ΦN (q) = Φ(q), for q ∈ HN .

To sample from πN we reformulate the algorithm in Table 2 in the present finite-dimensional
setting. Once more we discuss the flow, the integrator and the accept/reject rule, now for the
finite-dimensional approximation.

Since, for q ∈ HN , DΦN (q) ≡ projHN
DΦ(q), instead of the system (18) we now consider:

dq
dt

= v,
dv

dt
= −q + C projHN

f (q) (32)

(for convenience we have written C here instead of CN ; both coincide in HN ). The following
result, similar to Proposition 3.2 holds:

Proposition 4.1.
(i) For any initial condition (q(0), v(0)) ∈ HN × HN and any T > 0 there exists a unique

solution of (32) in the space C1([−T, T ],HN ×HN ).
(ii) Let Ξ t

N : HN × HN → HN × HN , t ∈ R denote the group flow of (32). The map Ξ t
N is

globally Lipschitz with respect to the norm induced by Hℓ
×Hℓ, with Lipschitz constant of

the form exp(K |t |) where K is independent of N and depends only on C and Φ.
(iii) For each T > 0, there exists C(T ) > 0 independent of N such that for 0 ≤ t ≤ T and

q(0), v(0) ∈ Hℓ, if we set

(q N (t), vN (t)) = Ξ t
N (projHN

q(0), projHN
v(0)),
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then

|q N (t)|ℓ + |vN (t)|ℓ ≤ C(T )(1 + |q N (0)|ℓ + |vN (0)|ℓ)

≤ C(T )(1 + |q(0)|ℓ + |v(0)|ℓ), (33)

and, for any s ∈ (ℓ, κ − 1/2),

|q N (t) − q(t)|ℓ + |vN (t) − v(t)|ℓ

≤ C(T )


1

N s−ℓ
(|q(0)|s + |v(0)|s) +

1
N

(1 + |q(0)|ℓ + |v(0)|ℓ)


, (34)

where (q(t), v(t)) = Ξ t (q(0), v(0)) is as specified in Proposition 3.2.

Proof. We only derive the approximation result (34); the other statements are standard. We begin
with the chain of inequalities (K will denote a constant independent of N whose value may vary
from one occurrence to the next):

|C f (q N (t)) − C projHN
f (q N (t))|2ℓ ≤ K |(I − projHN

) f (q N (t))|2ℓ−2κ

≤
K

N 4(κ−ℓ)
| f (q N (t))|2

−ℓ

≤
K

N 4(κ−ℓ)
(1 + |q N (t)|ℓ)2

≤
K
N 2 (1 + |q N (t)|ℓ)2

≤
K
N 2 (1 + |q(0)|ℓ + |v(0)|ℓ)

2,

where we have used successively (30) with s = −2κ , the basic approximation inequality (35),
the facts that (recalling Condition 3.2) |DΦ(q N (t))|−ℓ ≤ K (1 + |q N (t)|ℓ) and 2(κ − ℓ) > 1,
and finally (33). The basic approximation inequality is the fact that, for all u ∈ Hb and all a < b,

|(I − projHN
)u|

2
a ≤

1
N 2(b−a)

|u|
2
b. (35)

This may be proved by representing u in the basis {φ j } j≥1 and employing the definitions of the
projection and norms.

Using triangle inequality and Lemma 4.1(i) we may now write

|C f (q(t)) − C projHN
f (q N (t))|ℓ ≤ K (|q(t) − q N (t)|ℓ +

1
N

(1 + |q(0)|ℓ + |v(0)|ℓ)).

Subtracting the differential equations satisfied by (q(t), v(t)) and (q N (t), vN (t)), a standard
Gronwall argument (see [24] for example) leads to

|q(t) − q N (t)|ℓ + |v(t) − vN (t)|ℓ

≤ C(T )(|q(0) − q N (0)|ℓ + |v(0) − vN (0)|ℓ +
1
N

(1 + |q(0)|ℓ + |v(0)|ℓ))

and (34) follows from (35) with a = ℓ and b = s. �
Clearly (32) is the Hamiltonian system associated with the following Hamiltonian function in

R2N

HN (q, v) = ΦN (q) +
1
2
⟨q, C−1

N q⟩ +
1
2
⟨v, C−1

N v⟩
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thus, we immediately have the following result.

Proposition 4.2. For any t ∈ R, the flow Ξ t
N preserves the probability measure πN (dq)

π0,N (dv) = exp(−HN (q, v))dqdv.

Note also that HN is the restriction to HN ×HN of the Hamiltonian H in (20).
We will also need to deal with the integrator of (32) and the relevant acceptance probability.

By splitting (32) as we did in the case of (18), we construct mappings similar to Ψh and Ψ (T )
h in

(25) and (26) respectively. The following definitions will be useful in this context.

Definition 4.1.

(i) Let Ψh,N : HN ×HN → HN ×HN be as Ψh in (25) with the only difference that the former
has C projHN

f (q) wherever the latter has C f (q) (in (23)). Also, let

Ψ (T )
h,N = Ψ

⌊
T
h ⌋

h,N .

(ii) Let aN : HN × HN → [0, 1] be defined as a in (28) and (29) but with f (·) replaced by
projHN

f (·) in the latter formula and with the qi ’s, vi ’s appearing in (28) now derived by
applying iteratively the integrator Ψh,N .

The bounds in the following proposition are the discrete time counterparts of those in
Proposition 4.1:

Proposition 4.3.

(i) Ψ (T )
h,N is a globally Lipschitz map inHN ×HN with respect to the norm induced byHℓ

×Hℓ

with Lipschitz constant of the form exp(K T ), where K is independent of N and depends
only on C and Φ.

(ii) For each T > 0, there exists C(T ) > 0 independent of N such that for 0 ≤ i ≤ ⌊T/h⌋, and
q0, v0 in Hℓ, if we set

(q N
i , vN

i ) = Ψ i
h,N (projHN

q0, projHN
v0) (36)

then

|q N
i |ℓ + |vN

i |ℓ ≤ C(T )(1 + |q N
0 |ℓ + |vN

0 |ℓ) ≤ C(T )(1 + |q0|ℓ + |v0|ℓ), (37)

and, for s ∈ (ℓ, κ −
1
2 ),

|q N
i − qi |ℓ + |vN

i − vi |ℓ ≤ C(T )


1

N s−ℓ
(|q0|s + |v0|s) +

1
N

(1 + |q0|ℓ + |v0|ℓ)


.

(38)

Proof. The convergence bound (38) is established by an argument similar to that used for (34).
The role played there by the Gronwall lemma is now played by the stability of the numerical
scheme, i.e. by the property in item (i). �

The integrator Ψ (T )
h,N is time-reversible and, as a composition of Hamiltonian flows, symplectic.

As a consequence, it also preserves volume in R2N . In total, Ψ (T )
h,N and the acceptance probability

aN can be brought together to formulate an HMC sampling algorithm in RN similar to that in
Table 2.
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Proposition 4.4. The algorithm in RN with proposal (q∗, p∗) = Ψ (T )
h,N (q(n), v(n)), where v(n)

∼

N (0, CN ), and acceptance probability aN (q(n), v(n)) gives rise to a Markov chain reversible
under the distribution πN in (31).

Proof. In view of the reversibility and volume preservation of the integrator, this algorithm
corresponds to a standard HMC algorithm on Euclidean space, so the required result follows
directly from known general properties of the HMC algorithm, see e.g. [9]. �

4.3. Invariance of measures

This subsection contains the proofs of Theorems 3.1 and 3.3. The proof of Theorem 3.2 is
similar and will be omitted.

Proof of Theorem 3.1. We wish to show that, for any bounded continuous function g : Hℓ
×

Hℓ
→ R and for any t ∈ R,∫

Hℓ×Hℓ

g(Ξ t (q, v))Π (dq, dv) =

∫
Hℓ×Hℓ

g(q, v)Π (dq, dv)

or, equivalently, that∫
Hℓ×Hℓ

g(Ξ t (q, v))e−Φ(q)Π0(dq, dv) =

∫
Hℓ×Hℓ

g(q, v)e−Φ(q)Π0(dq, dv). (39)

First observe that it suffices to prove that∫
Hℓ×Hℓ

g(Ξ t
N (q N , vN ))e−Φ(q N )Π0(dq, dv)

=

∫
Hℓ×Hℓ

g(q N , vN )e−Φ(q N )Π0(dq, dv). (40)

This follows by dominated convergence: analytically, from Condition 3.3 the integrands
g(Ξ t

N (q N , vN )) exp(−Φ(q N )) and g(q N , vN ) exp(−Φ(q N )) are both dominated by K exp
(ϵ |q|

2
ℓ) for some K = K (ϵ), which is integrable with respect to Π0 by the Fernique theorem

(2.6 [8]); they also converge pointwise Π0-a.s. to their counterparts in (39) by virtue of (34),
continuity of g and continuity of Φ from Condition 3.2 (to see this, recall that Π0 is supported in
Hs

×Hs for any s ∈ (ℓ, κ −
1
2 ), cf. Proposition 3.1).

Thus it remains to establish (40). This identity may be rewritten as∫
RN ×RN

g(Ξ t
N (q, v))πN (dq)π0,N (dv) =

∫
RN ×RN

g(q, v)πN (dq)π0,N (dv).

But πN (dq)π0,N (dv) = exp(−HN (q, v))dq dv and, from Proposition 4.2, this measure is
preserved by Ξ t

N . �

We now turn to Theorem 3.3. The dynamics of the HMC Markov chain on Hℓ described in
Table 2 correspond to the following one-step transitions:

q1 = I[U ≤ a]PqΨ
(T )
h (q0, v0) + I[U > a]q0, (41)

where U ∼ U [0, 1], v0 ∼ N (0, C) and a = 1 ∧ exp(−1H(q0, v0)); also Pq denotes the
projection Pq(q, v) = q. Here 1H is given by (28) and U and v0 are independent. Our last
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goal is to prove that this Markov chain is reversible under π(q), that is

π(dq) P(q, dq ′) = π(dq ′) P(dq ′, q) (42)

with P(·, ·) being the transition kernel corresponding to the Markov dynamics (41). We begin
with the following standard result.

Lemma 4.2. The detailed balance Eq. (42) is satisfied if and only if

I (g) = I (g⊤)

for any continuous bounded function g : Hℓ
×Hℓ

→ R, where

I (g) =

∫
Hℓ×Hℓ

g(q, Pq Ψ (T )
h (q, v)) a(q, v) e−Φ(q) π0(dq)π0(dv) (43)

and g⊤(q, q ′) := g(q ′, q).

Proof. The two probability measures in (42) are equal if and only if (see e.g. [21])∫
Hℓ×Hℓ

g(q, q ′)π(dq) P(q, dq ′) =

∫
Hℓ×Hℓ

g(q, q ′)π(dq ′) P(dq ′, q)

for any continuous bounded g. In terms of expectations, this can be equivalently rewritten as

E[g(q0, q1)] = E[g⊤(q0, q1)],

with q0 ∼ π and q1 | q0 determined via (41). Integrating out U , we get that

E[g(q0, q1)] = E[g(q0, Pq Ψ (T )
h (q0, v0)) a(q0, v0)] + E[g(q0, q0) (1 − a(q0, v0))].

The desired result follows from the fact that the second expectation on the right hand side will
not change if we replace g ↔ g⊤. �

We first apply this lemma in the discretized finite-dimensional setting. Recall the definition of
aN in Definition 4.1. Taking into account the reversibility of the discretized chain with respect to
πN (Proposition 4.4) we have that, for any continuous and bounded function ĝ : RN

×RN
→ R:∫

R2N
ĝ(q, Pq(Ψ (T )

h,N (q, v)))aN (q, v)πN (dq)πN ,0(dv)

=

∫
R2N

ĝ⊤(q, Pq(Ψ (T )
h,N (q, v)))aN (q, v)πN (dq)πN ,0(dv)

and after selecting

ĝ(q, v) = g


N−

j=1

q jφ j ,

N−
i=1

v jφ j


we reach the conclusion

IN (g) = IN (g⊤) (44)

where

IN (g) =

∫
Hℓ×Hℓ

g(q N , Pq Ψ (T )
h,N (q N , vN ))aN (q N , vN ) e−Φ(q N ) π0(dq)π0(dv). (45)
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The idea now is to conclude the proof by taking the limit N → ∞ in (44) to show that
I (g) = I (g⊤).

Theorem 4.1. As N → ∞ then

Pq Ψ (T )
h,N (q N , vN ) → Pq Ψ (T )

h (q, v), aN (q N , vN ) → a(q, v),

Π0-almost surely.

Proof. The first result follows directly from the bound (38), since Π0 is concentrated in Hs for
any s < κ − 1/2. We proceed to the second result. We define q N

i , vN
i as in (36) and qi , vi as in

(27), where (for both cases) now the starting positions are q and v (instead of q0, v0 appearing in
the definitions). As a direct consequence of the definition of a(q, v) and aN (q N , vN ), to prove
the required result it suffices to show the following statements are true Π0-a.s.:

Φ(q N
i ) − Φ(qi ) → 0;

|C 1
2 projHN

f (q N
i )|2 → |C 1

2 f (qi )|
2
;

⟨projHN
f (q N

i ), vN
i ⟩ → ⟨ f (qi ), vi ⟩.

The first of these results follows directly from the continuity of Φ in Condition 3.2 and (38). For
the other two limits, we observe that from the continuity properties of the involved functions in
Lemma 4.1(iii) and (iv), it suffices to prove the following:

|C 1
2 projHN

f (q N
i )|2 − |C 1

2 f (q N
i )|2 → 0;

⟨projHN
f (q N

i ), vN
i ⟩ − ⟨ f (q N

i ), vN
i ⟩ → 0.

For the first of these, note that

|C 1
2 projHN

f (q N
i )| + |C 1

2 f (q N
i )| ≤ 2|C 1

2 f (q N
i )| ≤ K (1 + |q0|ℓ + |v0|ℓ)

by Lemma 4.1(iv) and (37). Now, using in succession Condition 3.1, standard approximation
theory, and Condition 3.2 with (37), we obtain

|C 1
2 (I − projHN

) f (q N
i )| ≤ K |(I − projHN

) f (q N
i )|−κ

≤
K

N κ−ℓ
| f (q N

i )|−ℓ ≤
K

N κ−ℓ
(1 + |q0|ℓ + |v0|ℓ).

Since κ−ℓ > 1
2 the desired convergence follows. For the remaining limit, note that the difference

can be bounded by |(I − projHN
) f (q N

i )|−ℓ|v
N
i |ℓ. Since |vN

i |ℓ is bounded independently of N
we see that it is sufficient to show that |(I − projHN

) f (q N
i )|−ℓ → 0. We note that

|(I − projHN
) f (q N

i )|−ℓ ≤ |(I − projHN
) f (qi )|−ℓ + | f (q N

i ) − f (qi )|−ℓ

≤ |(I − projHN
) f (qi )|−ℓ + K |q N

i − qi |ℓ.

The first term goes to zero because, since |qi |ℓ is finite, Condition 3.2 shows that hence | f (qi )|−ℓ

is finite. The second term goes to zero by (38). �

Proof of Theorem 3.3. Using Theorem 4.1 and the continuity of Φ from Condition 3.2, the
integrand in IN (g) (see (45)) converges Π0-a.s. to the integrand of I (g) (see (43)). Also, for
every ϵ > 0, there is K = K (ϵ) such that the former integrand is dominated by K exp(ϵ|q|

2
ℓ),
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by Condition 3.3. Since π0(Hℓ) = 1, the Fernique theorem enables us to employ dominated
convergence to deduce that

IN (g) → I (g).

Eq. (44) and Lemma 4.2 now prove the theorem. �

5. Numerical illustrations

We present two sets of numerical experiments which illustrate the performance of the function
space HMC algorithm suggested in this paper. In Section 5.1 we compare the new algorithm
with the standard HMC method. This experiment illustrates that use of the new algorithm
on high N -dimensional problems removes the undesirable N dependence in the acceptance
probability that arises for the standard method. This reflects the fact that the new algorithm
is well defined on infinite-dimensional Hilbert space, in contrast to the standard method. The
experiment in Section 5.2 compares the new HMC method on Hilbert space with a Hilbert space
Langevin MCMC algorithm introduced in [3]. Neither of these Hilbert space algorithms exhibit
N dependence in the required number of steps, precisely because they are both defined in the limit
N → ∞; however the experiments show the clear advantage of the HMC method in alleviating
the random walk behaviour of algorithms, such as those using Langevin proposals, which are
based on local moves.

5.1. Comparison with standard HMC

Consider the target distribution π in the space ℓ2 of square integrable sequences (see (15)):

dπ

dπ0
(q) ∝ exp


−

1
2
⟨q, C−α/2q⟩


(46)

with the reference Gaussian measure given by

π0 = N (0, C); C = diag{ j−2κ
; j ≥ 1}.

Since π is itself Gaussian, with independent coordinates, it may be easily sampled using standard
approaches. However, it provides a useful test case on which to illustrate the differences between
standard HMC and our new HMC method.

We start by discussing Conditions 3.1–3.3 for this problem. Intuitively they encode the idea
that the reference measure π0 dominates the change of measure and hence will involve a restric-
tion on the size of α. Clearly, { j−2κ

} are precisely the eigenvalues of C and Condition 3.1, which
is necessary and sufficient for C to be a trace-class operator on ℓ2, becomes

κ > 1/2; (47)

recall also that π0 will be concentrated in Hs for any s < κ − 1/2. Notice that, by (30),
Φ(q) ≍ |q|

2
ακ/2. Thus we choose ℓ = ακ/2 and restrict α to satisfy κ α/2 < κ − 1/2, i.e.

α < 2 −
1
κ

, (48)

to ensure that Φ(q) < ∞, π0-a.s. With regard to Condition 3.2, we note that clearly Φ is contin-
uous on Hℓ as a norm on this space; similarly, since

f (q) = −DΦ(q) = C−α/2q
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Fig. 1. Empirical average acceptance probabilities corresponding to implementations of the standard and Hilbert space
HMC (with h = 0.2 and T = 1, and n = 5000 iterations) with target distribution πN in (49) (with κ = 1, α = 1/2), for
N = 210, 211, . . . , 220.

it follows that f : Hℓ
→ H−ℓ is Lipschitz, using (30) twice. Condition 3.3 is trivially satisfied

since Φ here is lower bounded. In total, specification of κ and α under the restrictions (47) and
(48) places the target (46) in the general setting presented in previous sections, with all relevant
conditions satisfied.

The problem is discretized by the spectral technique which we introduced in Section 4.2
for theoretical purposes. Because of the product structure of the target, the resulting sampling
methods then correspond to applying either the standard or the new HMC as described in Table 1
or 2 to sample from the marginal distribution of the first N coordinates of π :

πN (q) ∝ exp

−

1
2
⟨q, C−1

N q⟩ −
1
2
⟨q, C−α/2

N q⟩


(49)

where CN = diag{ j−2κ
; j = 1, 2, . . . , N }.

We applied the algorithms in Table 1 (with mass matrix M = C−1
N ) and 2 to sample, for

various choices of N , from the target distribution πN in (49) with κ = 1, α = 1/2. We have
chosen the following algorithmic parameters: length of integration of Hamiltonian dynamics
T = 1; discretization increment h = 0.2; number of MCMC iterations n = 5000. Fig. 1
shows empirical average acceptance probabilities from applications of the MCMC algorithms
for increasing N = 210, 211, . . . , 220. Execution times for the Hilbert space algorithm were
about 2.5–3 times greater than for the standard HMC.

For N = 210 the standard HMC algorithm gives an average acceptance probability of 0.89,
whereas the Hilbert space HMC gives 0.965. Thus the new integrator, with h = 0.2, appears
to be marginally more accurate than the standard Verlet integrator. Critically, as the dimension
increases, the average acceptance probability deteriorates for the standard HMC method until it
eventually becomes 0. In contrast, the Hilbert space algorithm is well defined even in the limit
N = ∞ and the average acceptance probability approaches a non-zero limit as N grows. Indeed
we have proved in Theorem 4.1 that the limit of the acceptance probability as N → ∞ exists
for the new HMC method, and this limiting behaviour is apparent in Fig. 1. In practice, when
applying the standard HMC method a user would have to use smaller h for increasing N (with
h → 0 as N → ∞) to attain similar decorrelation to that given by the new HMC method with
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a fixed step-size h. The result is that the new method has smaller asymptotic variance, for given
computational work; and this disparity increases with dimension.

The degeneration of the acceptance probability in standard HMC can be alleviated by applying
the scaling h = O(N−

1
4 ) (see [1,20]). Heuristically this results in the need forO(h−1) = O(N

1
4 )

steps to explore the target measure; in contrast the new HMC method requires no restriction on
h in terms of N and, heuristically, explores the state space in O(1) steps.

We conclude this discussion with some remarks concerning choice of the mass matrix for the
standard HMC method. We have given the algorithm the benefit of the choice M = C−1

N , based
on our discussion in Remark 1. This equalizes the frequencies of the Hamiltonian oscillator
underlying the HMC method to one, when applied to sample the Gaussian reference measure
π0. If we had made the choice M = I then the frequencies of this oscillator would have been
{1, 2, . . . , N } (for κ = 1) resulting in the need to scale h ∝ N−5/4

= N−1
× N−1/4 to obtain an

order one acceptance probability. Intuitively the factor N−1 comes from a stability requirement3

required to control integration of fast frequencies, whilst the factor of N−1/4 comes (as for the
choice M = C−1

N ) from an accuracy requirement related to controlling deviations in the energy in
the large N limit. The choice M = C−1

N may be viewed as a preconditioner and the choice M = I
the unpreconditioned case. This viewpoint is discussed for MALA algorithms in [3] where, for
the same π0 used here, the preconditioned method requires the relevant proposal time-step 1t to
be chosen as 1t ∝ N−1/3 whilst the unpreconditioned method requires 1t ∝ N−7/3.

5.2. Comparison with a MALA algorithm

This subsection is devoted to a comparison of the new method with a MALA (Langevin
based) MCMC method, also defined on the infinite-dimensional space, as introduced in [3]. As
the methods are both defined on Hilbert space no N -dependence is expected for either of them.
We illustrate the fact that the HMC method breaks the random walk type behaviour resulting
from the local moves used in the Langevin algorithm and can consequently be far more efficient,
in terms of asymptotic variance per unit of computational cost. It is pertinent in this regard to note
that the cost of implementing one step of the new HMC Markov chain from Table 2 is roughly
equivalent (in fact slightly less than) the cost of T/h Langevin steps with time-step 1t ∝ h2.
This is because the HMC algorithm can be implemented by a straightforward adaptation of the
Langevin code, as noted for the standard HMC and Langevin methods in [18]. This follows
from the fact that using the HMC method (standard or Hilbert space versions) with one step of
integration (T = h) is equivalent to use of the MALA method with a time-step 1t ∝ h2.

The target measure that we study is defined via a bridge diffusion. Consider the stochastic
differential equation

dq(τ ) = −V ′(q(τ ))dt +
√

10 dW (τ ) (50)

subject to the end-point conditions q(0) = q(20) = 0 and with V (u) = (u2
− 1)2. Use of the

Girsanov formula, together with an integration by parts using the Itô formula, shows [3] that the
resulting probability measure for u ∈ L2((0, 20); R) may be written in the form (1) with π0
Brownian bridge measure on (0, 20) and

Φ(q) =

∫ 20

0

1
2
(|V ′(q(τ ))|2 − 10 V ′′(q(τ ))) dτ.

3 Analogous to a Courant–Friedrichs–Lewy condition in the numerical approximation of PDEs.
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Fig. 2. Empirical mean function, and empirical standard deviation functions, for Hilbert space-valued HMC algorithm,
with T ≈ π .

The precision operator for Brownian bridge is the second order differential operator L =

−d2/dτ 2 with domain H1
0 (I ) ∩ H2(I ) and I = (0, 20). The reference measure π0 = N (0, L−1)

hence satisfies Condition 3.1 with κ = 1. Using the polynomial properties of Φ and Sobolev
embedding it is then possible to show that Conditions 3.2 and 3.3 are satisfied for suitably chosen
ℓ, and with the proviso that the Lipschitz property of the force f is only local. Because of the
symmetry of V and π0 about the origin it is clear that π is also symmetric about the origin. Thus
we may use the HMC and Langevin Markov chains to compute, via the ergodic theorem, an
approximation to the mean function under π , knowing that the true mean is zero. The empirical
mean we denote by q̂(τ ) We also compute the (signed) empirical standard deviation functions by
first computing the empirical mean of the function (q(τ ) − q̂(τ ))2 and then taking both positive
and negative square roots.

To implement the comparison between MALA and HMC the target measure is approximated
by a finite difference method employing 105 points in [0, 20] and a value of 1τ given by
1τ = 2.0×10−4. The HMC algorithm from Table 2 is run with a value of h = 8.944272×10−3

(leading to an acceptance rate of more than 90% for both values of T used below), and the
Langevin algorithm from [3] with a value of 1t = 8 × 10−5 (leading to an acceptance rate of
78%.) For the results displayed we have used both the values T = 3.13 ≈ π and T = 1.001 for
the HMC algorithm. Note that for Φ = 0 the choice T = π gives anti-correlated samples from
the Gaussian reference measure and is natural for this reason; however the results now discussed
show that choosing T = 1 is equally effective. We run both the MALA and Langevin algorithms
for a number of steps determined so that the computational work for each is almost identical.
Figs. 2–4 show the empirical mean function, together with error bar functions, computed by
adding/subtracting the empirical standard deviation to these means. Comparison clearly shows
the advantage of the HMC method over the Langevin method, in terms of asymptotic variance for
fixed computational cost. This is primarily manifest in the empirical mean which is much closer
to the true mean function 0 for both runs of the HMC algorithm than for Langevin. Furthermore,
the empirical standard deviations are much closer to their true values for the HMC algorithm,
than for the Langevin algorithm. The true values are shown in Fig. 5 (in fact these are computed
by running the HMC algorithm until the ergodic averages have converged, around 10 times as
many steps as for Fig. 2).
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Fig. 3. Empirical mean function, and empirical standard deviation functions, for Hilbert space-valued HMC algorithm,
with T ≈ 1.

Fig. 4. Empirical mean function, and empirical standard deviation functions, for Hilbert space-valued Langevin
algorithm.

We now examine computational efficiency in more detail. To this end we define Nt as the
number of time integration steps employed before accept/reject (this is always 1 for MALA),
and NMC as the number of accept/reject tests. Thus the product Nt × NMC is representative of
the computational effort. In Fig. 6 we plot E , defined as

E =

∫ 20

0
|q̂(τ )| dτ,

as a function of the product Nt × NMC . We see that the Langevin method requires considerably
more computations than the HMC method to achieve convergence. Furthermore, using either
T ≈ π or T ≈ 1 in the HMC method results in comparable computational efficiency.

As with most computations by means of MCMC, caution should be applied. In particular:
(i) our “true” standard deviations are themselves only computed by an MCMC method; (ii) we
have chosen to study a particular test statistic (the mean function) which possesses a high degree
of symmetry so that conclusions could differ if a different experiment were chosen. However
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Fig. 5. Mean function and standard deviation functions under the target measure.

Fig. 6. Comparison of the computational efficiencies of the two methods.

our experience with problems of this sort leads us to believe that the preliminary numerical
indications do indeed show the favourable properties of the function space HMC method over
the function space MALA method.

6. Conclusions

We have suggested (see Table 2) and analysed a generalized HMC algorithm that may be
applied to sample from Hilbert space probability distributions π defined by a density with respect
to a Gaussian measure π0 as in (1). In practice the algorithm has to be applied to a discretized
N -dimensional version πN of π , but the fact that the algorithm is well defined in the limit case
N = ∞ ensures that its performance when applied to the sample from πN does not deteriorate as
N increases. In this way, and as shown experimentally in Section 5, the new algorithm eliminates
a shortcoming of the standard HMC when used for large values of N . On the other hand, we have
also illustrated numerically how the algorithm suggested here benefits from the rationale behind
all HMC methods: the capability of taking nonlocal steps when generating proposals alleviates
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the random walk behaviour of other MCMC algorithms; more precisely we have shown that
the Hilbert space HMC method clearly improves on a Hilbert space MALA counterpart in an
example involving conditioned diffusions.

In order to define the algorithm we have successively addressed three issues:

• The definition of a suitable enlarged phase space for the variables q and v = dq/dt and of
corresponding measures Π0 and Π having π0 and π , respectively, as marginals on q . The
probability measure Π is invariant with respect to the flow of an appropriate Hamiltonian
system. Since the Hamiltonian itself is almost surely infinite under Π this result is proved by
finite-dimensional approximation and passage to the limit.

• A geometric numerical integrator to simulate the flow. This integrator is reversible and
symplectic and, when applied in finite dimensions, also volume-preserving. It preserves the
measure Π exactly in the particular case Π = Π0 and approximately in general. The integrator
is built on the idea of Strang’s splitting, see e.g. [25,11]; more sophisticated splittings are now
commonplace and it would be interesting to consider them as possible alternatives to the
method used here.

• We have provided an accept/reject strategy that results in an algorithm that generates a chain
reversible with respect to π . Here we note that straightforward generalizations of the formulae
employed to accept/reject in finite dimensions are not appropriate in the Hilbert space context,
as the Hamiltonian (energy) is almost surely infinite. However for our particular splitting
method the energy difference along the trajectory is finite almost surely, enabling the algorithm
to be defined in the Hilbert space setting.

There are many interesting avenues for future research opened up by the work contained
herein. On the theoretical side a major open research program concerns proving ergodicity for
MCMC algorithms applied to measures given by (1), and the related question of establishing
convergence to equilibrium, at N -independent rates, for finite-dimensional approximations.
Addressing these questions is open for the HMC algorithm introduced in this paper, and for
the Hilbert space MALA algorithms introduced in [3]. The primary theoretical obstacle to such
results is that straightforward minorization conditions can be difficult to establish in the absence
of a smoothing component in the proposal, due to a lack of absolute continuity of Gaussian
measures with mean shifts outside the Cameron–Martin space. This issue was addressed in
continuous time for the preconditioned Langevin SPDE in the paper [12], by use of the concept
of “asymptotic strong Feller”; it is likely that similar ideas could be used in the discrete time
setting of MCMC. We also remark that our theoretical analyses have been confined to covariance
operators with algebraically decaying spectrum. It is very likely that this assumption may be
relaxed to cover super-algebraic decay of the spectrum and this provides an interesting direction
for further study.

There are also two natural directions for research on the applied side of this work. First
we intend to use the new HMC method to study a variety of applications with the structure
given in (1), such as molecular dynamics and inverse problems in partial differential equations,
with applications to fluid mechanics and subsurface geophysics. Second, we intend to explore
further enhancements of the new HMC method, for example by means of more sophisticated
time integration methods.
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Appendix. Hamiltonian formalism

In this appendix we have collected a number of well-known facts from the Hamiltonian
formalism (see e.g. [25]) that, while being relevant to the paper, are not essential for the definition
of the Hilbert space algorithm.

To each real-valued function H(z) on the Euclidean space R2N there corresponds a canonical
Hamiltonian system of differential equations:

dz
dt

= J−1
∇z H(z),

where J is the skew-symmetric matrix

J =


0N −IN
IN 0N


.

This system conserves the value of H , i.e. H(z(t)) remains constant along solutions of the
system. Of more importance is the fact that the flow of the canonical equations preserves the
standard or canonical symplectic structure in R2N , defined by the matrix J , or, in the language
of differential forms, preserves the associated canonical differential form Ω . As a consequence
the exterior powers Ωn, n = 2, . . . , N are also preserved (Poincaré integral invariants). The
conservation of the N th power corresponds to conservation of the volume element dz. For the
Hamiltonian function (3), with z = (q, p), the canonical system is given by (4).

There are many non-canonical symplectic structures in R2N . For instance, the matrix J may
be replaced by

J =


0N −L
L 0N


,

with L an invertible symmetric N × N real matrix. Then the Hamiltonian system corresponding
to the Hamiltonian function H is given by

dz
dt

= J−1
∇z H(z).

Again H is an invariant of the system and there is a differential form Ω that is preserved along
with its exterior powers Ωn, n = 2, . . . , N . The N th power is a constant multiple of the volume
element4 dz and therefore the standard volume is also preserved. With this terminology, the
system (10) for the unknown z = (q, v), that was introduced through a change of variables in
the canonical Hamiltonian system (9), is a (non-canonical) Hamiltonian system on its own right
for the Hamiltonian function (11).

These considerations may be extended to a Hilbert space setting in an obvious way. Thus (18)
is the Hamiltonian system in H × H arising from the Hamiltonian function H in (20) and the
structure operator matrix

J =


0 −C−1

C−1 0


.

4 In fact, any two non-zero 2N -forms in R2N differ only by a constant factor.
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However both H and the bilinear symplectic form defined by J , though densely defined inH×H,
are almost surely infinite in our context, as they only make sense in the Cameron–Martin space.

The splitting of (18) into (21) and (22) used to construct the Hilbert space integrator
corresponds to the splitting

H = H1 + H2, H1(q, v) = Φ(q), H2(q, v) =
1
2
⟨v, C−1v⟩ +

1
2
⟨q, C−1q⟩

of the Hamiltonian function and therefore the flows Ξ t
1 and Ξ t

2 in (23) and (24) are symplectic.
The integrator Ψh is then symplectic as composition of symplectic mappings.
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