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A TECHNIQUE FOR STUDYING STRONG AND WEAK LOCAL
ERRORS OF SPLITTING STOCHASTIC INTEGRATORS∗
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Abstract. We present a technique, based on so-called word series, to write down in a system-
atic way expansions of the strong and weak local errors of splitting algorithms for the integration
of Stratonovich stochastic differential equations. Those expansions immediately lead to the corre-
sponding order conditions. Word series are similar to, but simpler than, the B-series used to analyze
Runge–Kutta and other one-step integrators. The suggested approach makes it unnecessary to use
the Baker–Campbell–Hausdorff formula. As an application, we compare two splitting algorithms
recently considered by Leimkuhler and Matthews to integrate the Langevin equations. The word
series method clearly bears out reasons for the advantages of one algorithm over the other.
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1. Introduction. We present a technique, based on so-called word series, to
write down in a systematic way expansions of the strong and weak local errors of
splitting algorithms for the integration of Stratonovich stochastic differential equa-
tions (SDEs). Those expansions immediately lead to the corresponding order condi-
tions without any need to use the Baker–Campbell–Haussdorf (BCH) formula. As an
application we compare two splitting algorithms recently considered by Leimkuhler
and Matthews [21], [22] and Leimkuhler, Matthews, and Stolz [23] to integrate the
Langevin equations.

The approach taken in this paper may be seen as patterned after the seminal
work of Butcher [7] on the combinatorics of the order conditions for Runge–Kutta
deterministic integrators. As is well known, in the theory developed by Butcher, the
numerical and true solution are expanded with the help of vector-valued mappings
called elementary differentials. In the expansions, the elementary differentials are
weighted by so-called elementary weights. These are real numbers that change with
the integrator but are independent of the system being integrated. There are an
elementary differential and an elementary weight for each rooted tree, and both are
easily written down because their structure is a transcription of that of the rooted
tree. The elementary differentials change with the differential system being integrated
but are common for all Runge–Kutta integrators and also for the true solution; this
has important implications because when designing new integrators or comparing
different integrators one may focus on the elementary weights. B-series [19], series of
elementary differential with arbitrary coefficients, are a way of systematizing Butcher’s
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approach and extending it to more general integrators. A key result in [19] is the rule
for composing B-series. B-series have found many applications in numerical analysis,
in particular in relation with modified equations [8] and geometric integration [9],
[33], [18]. For applications of B-series outside numerical mathematics, see [10], [11].
Burrage and Burrage [6] have analyzed à la Butcher weak and strong errors of Runge–
Kutta integrators for SDEs. The paper [34] surveys the history of these developments.

The importance of splitting algorithms [4] has been increasing in recent years,
essentially as a consequence of their capability of exploiting the structure of the prob-
lem being integrated. In the deterministic case, there are several ways of investigating
the consistency properties of a splitting integrator:

• The best known technique, described in, e.g., [32], applies the BCH formula.
This method has several shortcomings, including the huge combinatorial com-
plexity of the BCH formula itself (see [3], [26] for a discussion).

• An approach that parallels Butcher’s treatment of Runge–Kutta formulas has
been introduced in [26] (a summary is available in [18, section III.3]). As in
Butcher’s work, the approach is based on the use of rooted trees. The B-
series expansions found in this way are also made of elementary differentials
and scalar coefficients.

• More recently, word series expansions [25], [12], [13], [27], [28], [29] have been
suggested as an alternative to B-series. The scope of applicability of word
series is narrower than that of B-series: splitting methods may be treated
with word series, but Runge–Kutta formulas may not. When applicable,
word series are more convenient than B-series. They are more compact than
B-series and have a composition rule (see Theorem 3) much simpler than the
recipe used to compose B-series.

In the present work we extend the third technique above to cater for splitting inte-
grators for Stratonovich SDEs, thus avoiding the complicated combinatorics involved
in the BCH formula. In section 2 we present the tools required in the rest of the
paper. In section 3 we show how to expand a composition of exact solutions by using
the formula for composing word series. For clarity, the idea is presented in the deter-
ministic case where several complications of the Stratonovich scenario are absent. In
section 4 we provide formulas for the expansion of both strong and weak local errors
and write down the associated order conditions. In section 5 the material is applied to
the case of Langevin dynamics. Leimkuhler and Matthews [21], [22] have considered
two closely related splitting algorithms and found, numerically and theoretically, that
one is clearly superior to the other. We show that a word series analysis identifies
additional reasons for that superiority. Section 6 describes additional possible uses of
word series in the analysis of SDE integrators.

It is well known that error expansions like those considered in section 4 in general
do not converge. This does not diminish their usefulness: by truncating the series one
obtains the Taylor polynomials that are needed to write down the order conditions.
Of course when bounds of the weak or strong local error are required it is necessary
to estimate the remainder term in the error expansion. Although the emphasis of
this paper is in the combinatorics of the expansion rather than on error estimates, we
have included an appendix that illustrates how to derive error bounds for word series
expansions (cf. [12], [13], [27]).

For simplicity, except in the appendix, all mappings are assumed to be indefinitely
differentiable. Of course, when that is not the case, the formulas presented below only
make sense up to the order where the derivatives that appear exist.
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2. Preliminaries. In this section we describe word series. The presentation is
very concise. References are grouped in section 2.5.

2.1. Words. Let A be a finite set, which we shall call the alphabet. The elements
a ∈ A are called letters. A word w is an arbitrary finite sequence of letters a1a2 . . . an,
ai ∈ A. We denote by W the set of all words, including the empty word ∅, i.e., the
word with zero letters. No distinction is made between the letter a and the word
having a as its only letter, so that A is seen as a subset of W .

We work with mappings δ : W → R and use the notation δw to refer to the real
value that δ takes at w ∈ W . The set R

W consists of all such mappings. Given
δ, δ′ ∈ R

W , we associate with them their convolution product δ � δ′ ∈ R
W , defined by

(δ � δ′)∅ = δ∅δ′∅ and, for nonempty words,

(δ � δ′)a1a2...an = δ∅δ′a1a2...an
+

n−1∑
j=1

δa1a2...ajδ
′
aj+1...an

+ δa1a2...anδ
′
∅.

Note that in the right-hand side there is a term for each of the ways in which a1a2 . . . an
may be split into two subwords (in more technical language deconcatenated into two
subwords). The operation � is not commutative, but it is associative; to find the
value of δ � δ′ � δ′′ = (δ � δ′) � δ′′ = δ � (δ′ � δ′′) at a word w we sum all the values
δvδ

′
v′δ′′v′′ corresponding to triples v, v′, v′′ that concatenated yield w. The element

11 ∈ R
W specified by 11 ∅ = 1 and 11w = 0 for each nonempty word w is the unit of

the operation �.
Given two words w and w′ with m and n letters, respectively, their shuffle product

w ��w′ is the formal sum of the (m+n)!/(m!n!) words with m+n letters that may be
obtained by interleaving the letters of w and w′ while preserving the order in which
the letters appear in w and w′. For instance, a ��b = ab+ ba, a ��a = aa+ aa = 2aa,
ab ��c = abc+ acb+ cab, ab ��cd = abcd+ acbd+ cabd+ acdb+ cadb+ cdab.

We shall denote by Gsh (sh for shuffle) the subset of RW that comprises all the
elements γ ∈ R

W satisfying the so-called shuffle relations: γ∅ = 1 and, for each pair
of words w,w′, if

(1) w �� w′ =
∑
j

wj ,

then

(2) γwγw′ =
∑
j

γwj .

For instance, γaγb = γab + γba, γ
2
a = 2γaa, γabγc = γcab + γacb + γabc, etc. For the

convolution product, Gsh is a noncommutative group with unit 11 .

2.2. Word series. Assume now that for each letter a ∈ A, fa : Rd → R
d is a

map. With every word w ∈ W we associate a word basis function fw : Rd → R
d. If

w = a1a2 . . . an, n > 1, then fw is defined recursively by

(3) fa1a2...an(x) =
(
∂xfa2...an(x)

)
fa1(x),

where ∂xfa2...an(x) denotes the value at the point x of the Jacobian matrix of fa2...an .
For the empty word, f∅ is simply the identity map x �→ x. With every δ ∈ R

W we
associate a word series. This is the formal series

Wδ(x) =
∑
w∈W

δwfw(x).
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The δw are the coefficients of the series. The notation Wδ(x) does not incorporate
the dependence on the fa, which are given once and for all.

As a very important example, consider the d-dimensional initial value problem

(4)
d

dt
x =

∑
a∈A

λa(t)fa(x), x(t0) = x0,

where, for each a ∈ A, λa is a real-valued function of t. For each t, the solution value
x(t) ∈ R

d has a word series expansion

(5) x(t) = Wα(t;t0)(x0) =
∑
w∈W

αw(t; t0)fw
(
x0

)
,

with coefficients given by

(6) α∅(t; t0) = 1, αa(t; t0) =

∫ t

t0

λa(s) ds, a ∈ A,

and, for words with n > 1 letters, recursively,

(7) αa1a2···an(t; t0) =

∫ t

t0

αa1a2···an−1(s; t0)λan(s) ds.

Thus, for a word with n > 0 letters, αw(t; t0) is an n-fold iterated integral or, equiv-
alently, an integral over a simplex in R

n.
As we shall see later, for splitting numerical integrators, the numerical solution

after a single step also possesses a word series expansion.
For future reference we point out that, as t → t0, for each word of n letters,

(8) αa1a2...an(t; t0) = O((t− t0)
n).

In the simplest case where the alphabet consists of a single letter A = {a} and
λa(t) = 1 for each t, there is one word an = a . . . a with n letters, n = 0, 1, . . ., and
the corresponding coefficient is

(9) αan =
(t− t0)

n

n!
;

the word series representation (5) just coincides with the standard Taylor expansion
of x(t) around t0 with the derivatives of x expressed by means of the mapping fa,
e.g.,

d

dt
x = fa(x),

d2

dt2
x =

(
∂xfa(x)

) d
dt

x =
(
∂xfa(x)

)
fa(x) = faa(x),

d3

dt3
x =

(
∂xfaa(x)

) d
dt

x =
(
∂xfaa(x)

)
fa(x) = faaa(x),

· · · = · · ·
For an alphabet with N letters, if λa(t) = 1 for each letter and each t, then αw =
(t− t0)

n/n! for any of the Nn words w with n letters. In this case, (5) is the Taylor
series for x(t) with the derivatives of x(t) written in terms of the fa, a ∈ A.
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It is also important to note that, in (5), the coefficients αw depend on the functions
λa, a ∈ A, and are independent of the fa in (4); on the contrary, the word basis
functions fw are independent of the λa and change with fa. This will make it possible
to compare later different splitting integrators by expressing them in terms of one
common set of word basis functions.

The following two results will be required in the next section.

Proposition 1. For any choice of the functions λa, a ∈ A, and any t, t0, the
coefficients αw(t; t0) computed in (6)–(7) satisfy the shuffle relations; i.e., the element
α(t; t0) ∈ R

W lies in the group Gsh ⊂ R
W .

Proposition 2. Assume that t0 < t1 < t2; then, for any choice of the functions
λa, a ∈ A, with the notation as above,

α(t2; t0) = α(t1; t0) � α(t2; t1).

As an example, for the two-letter word ab, the proposition yields, since α∅(t1; t0) =
α∅(t2; t1) = 1,

αab(t2; t0) = αab(t2; t1) + αa(t1; t0)αb(t2; t1) + αab(t1; t0),

an equality that may be obtained elementarily by writing the left-hand side as a
double integral over a triangle and then decomposing the triangle into two smaller
triangles and a rectangle.

2.3. Word series operators. Real-valued functions χ defined in R
d shall be

called observables. For every letter a, Da is the linear differential operator that maps
the observable χ into the new observable Daχ defined by

Daχ(x) =

d∑
i=1

f i
a(x)

∂

∂xi
χ(x), x ∈ R

d.

For each word w = a1a2 . . . an with more than one letter, we define the operator Dw

by composing the operators associated with the letters of w:

Da1a2...an = Da1 ◦Da2 ◦ · · · ◦Dan .

For the empty word, the corresponding operator is the identity: D∅χ(x) = χ(x).
Note that the dependence of the Dw on the functions fa is not incorporated into
the notation. Given δ ∈ R

W , we define its word series operator as the formal linear
differential operator:

Dδ =
∑
w∈W

δwDw.

It is trivial to check that convolution product � is defined in such a way that it
corresponds to the composition of the associated word series operators:

Dδ ◦Dδ′ = Dδ�δ′ , δ, δ′ ∈ R
W .

The differential operators Dw, w ∈ W , may also be applied in a componentwise
way to vector-valued observables defined in R

d. By considering the application of Dw

to the identity map id : x �→ x, x ∈ R
d, we find that the word basis function fw

and the operator Dw are related through the formula fw = Dwid. By implication,
Wδ(x) = Dδid(x) for δ ∈ R

W and x ∈ R
d.
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2.4. Handling word series and word series operators. The following theo-
rem provides rules for handling word series and word series operators. Note the order
in which γ and δ appear in (11).

Theorem 3. Let γ be an element of the group Gsh. Then the following hold:
• (Composition of a word series and an observable.) For any (real- or vector-

valued) observable χ,

(10) χ
(
Wγ(x)

)
= Dγχ(x).

• (Composition of word series.) For every δ ∈ R
W , we have

(11) Wδ

(
Wγ(x)

)
= Wγ�δ(x).

It is important to emphasize that the hypothesis γ ∈ Gsh is essential for the
result to hold; the conclusions are not true if γ ∈ R

W does not belong to the group.
According to Proposition 1, the coefficients αw(t; t0) may play the role of γ in the
theorem. This is the key to the analysis of splitting integrators, as we show in section
3.

2.5. References and discussion. The material in section 2.2 is connected to
several algebraic theories, even though, for the benefit of more applied readers, those
connections have been downplayed in our exposition. The vector space R

W is the
dual of the shuffle Hopf algebra, and the group Gsh is the group of characters of
such algebra; see [27] and its references. The monograph [31] contains many relevant
results on the combinatorics of words.

Series indexed by the words of an alphabet were introduced and studied exten-
sively by Chen; see, e.g., [14]. Sometimes the series are presented as combining words
themselves; i.e., they are of the form

∑
w δww with δ ∈ R

W (Chen series). In other
applications, notably in control theory [16], the series combine differential operators
as in our Dδ =

∑
w δwDw above. Word series [25], [11], [13], [27] while essentially

equivalent to Chen series are series of mappings, and therefore, in numerical analysis,
they may be used in the same way as B-series. Word series may also be used to study
analytically dynamical systems: [27], [28], [29]. Chen series also play an important
role in Lyons rough path theory; see, e.g., [2].

Each series basis function fw may be decomposed as a sum of elementary differen-
tials [27]. After such a decomposition each word series becomes a B-series; the B-series
has a term for each colored rooted tree. Since there are far more colored rooted trees
with n vertices than words with n letters, the B-series format is less compact. An
additional advantage of word series over B-series is the simplicity of the operation �;
the rule for composing B-series is substantially more complicated. On the other hand,
word series have a more limited scope than B-series: not all B-series may be rewritten
as word series. Splitting integrators may be described by word series, but that is not
the case for Runge–Kutta algorithms or additive Runge–Kutta algorithms [1].

A proof of Theorem 3 may be seen in [27]. The fact that iterated integrals satisfy
the shuffle relations (Proposition 1) was first noted by Ree [30]. Proposition 2 is
due to Chen [14]; in view of (5) and (11), the result expresses in terms of words the
composition rule for solution operators φt2;t0 = φt2;t1 ◦ φt1;t0 .

3. Composing exact solutions with the help of word series. Theorem
3 leads to a technique to represent the local error of splitting integrators both for
deterministic and Stratonovich equations. Even though the idea is completely general,
for notational convenience we shall present it by means of a very simple (deterministic)
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example. Consider the particular case where in the system (4) the alphabet consists
of three letters A = {a, b, c}, i.e.,

d

dt
x = λa(t)fa(x) + λb(t)fb(x) + λc(t)fc(x),

and denote by φt,t0 : Rd → R
d the solution mapping, i.e., the mapping such that, for

each x0, φt,t0(x0) is the value at t of the solution with initial condition x(t0) = x0.
Assume that the split systems

d

dt
x = λa(t)fa(x) + λb(t)fb(x),

d

dt
x = λc(t)fc(x)

may be integrated analytically, and denote by φ
(1)
t,t0 : Rd → R

d and φ
(2)
t,t0 : Rd → R

d

their solution mappings. The simplest splitting integrator advances the numerical
solution from t0 to t0 + h, h > 0, by means of the mapping

φ̃t0+h,t0 = φ
(2)
t0+h,t0

◦ φ(1)
t0+h,t0

.

From (5) we have the word series representation (we write αw instead of αw(t0 +
h; t0))

φt0+h,t0(x0) = Wα(t0+h;t0)(x0)

= x0 + αafa(x0) + αbfb(x0) + αcfc(x0)

+ αaafaa(x0) + αabfab(x0) + αacfac(x0) + · · ·
(note that for simplicity only three of the nine terms with two letters have been
displayed). For the first split system, still using the alphabet {a, b, c} and including
all words with two letters,

φ
(1)
t0+h,t0

(x0) = Wα(1)(t0+h;t0)(x0)

= x0 + αafa(x0) + αbfb(x0)

+ αaafaa(x0) + αabfab(x0)

+ αbafba(x0) + αbbfbb(x0) + · · · ,
when computing the coefficients α

(1)
w by means of (6)–(7) we have to take λc(t) = 0,

so that α
(1)
w = αw if w does not contain the letter c and α

(1)
w = 0 otherwise. Similarly,

φ
(2)
t0+h,t0

(x0) = Wα(2)(t0+h;t0)(x0)

= x0 + αcfc(x0) + αccfcc(x0) + · · · ,
where the dots stand for words with three or more letters. Now, after invoking
Proposition 1 and (11), we find that

(12) φ̃t0+h,t0(x0) = Wα̃(t0+h;t0)(x0),

with
α̃(t0 + h; t0) = α(1)(t0 + h; t0) � α

(2)(t0 + h; t0) ∈ Gsh.

By using the definition of the convolution product �, we compute

φ̃t0+h,t0(x0) = x0 + αafa(x0) + αbfb(x0) + αcfc(x0)

+ αaafaa(x0) + αabfab(x0) + αaαcfac(x0)

+ αbafba(x0) + αbbfbb(x0) + αbαcfbc(x0) + αccfcc(x0) + · · · .
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It is extremely easy to find the coefficients in the last expansion. If w is a concatenation
w′w′′, where the (possibly empty) word w′ does not include the letter c and the
(possibly empty) word w′′ does not include the letters a or b, then α̃w = αw′αw′′ ; if
w is not a concatenation of that form, then the coefficient is 0.

The fact that the expansion of the integrator mapping φ̃ and the solution mapping
φ agree for words with < 2 letters implies, via (8), that both differ by O(h2), i.e., that
the integrator is consistent. The local error may be expanded as a word series

φ̃t0+h,t0(x0)− φt0+h,t0(x0) = Wδ(t0,h)(x0)

with
δ(t0, h) = α(1)(t0 + h; t0) � α

(2)(t0 + h; t0)− α(t0 + h, t0).

In particular, the leading O(h2) term, corresponding to two-letter words, is given by

(αaαc − αac)fac(x0) + (αbαc − αbc)fbc(x0)− αcafca(x0)− αcbfcb(x0).

In some circumstances (for instance, when studying conservation of energy or
other invariants of motion) it is of interest to look at the error in an observable χ
after a single step:

χ
(
φ̃t0+h,t0(x0)

)
− χ

(
φt0+h,t0(x0)

)
.

Expansions of errors of this kind are easily derived with the help of (10). In our
example, we may write, without any additional computation,

χ
(
φ̃t0+h,t0(x0)

)
− χ

(
φt0+h,t0(x0)

)
= (αaαc − αac)Dacχ(x0)

+ (αbαc − αbc)Dbcχ(x0)

− αcaDcaχ(x0)− αcbDcbχ(x0) + · · · .

For this simple example the results presented here could have been found easily
by elementary means. However, as pointed out above, the word series technique works
for arbitrary splitting coefficients leading to high-order algorithms and arbitrary ways
of splitting the right-hand side of (4) into two or more parts.

4. Splitting methods for stochastic differential equations. In this section
we show how word series may be used to analyze local errors of splitting integrators
for SDEs.

4.1. Expanding the true solution. Consider the d-dimensional Stratonovich
SDE,

(13) dx =
∑

a∈Adet

fa(x) dt +
∑

A∈Astoch

fA(x) ◦ dBA(t),

where Adet and Astoch are finite sets without common elements and the BA(t),
A ∈ Astoch, are independent scalar Wiener processes defined on the same filtered prob-
ability space. We shall use the material above with the alphabet A = Adet ∪ Astoch.
The letters in Adet (respectively, in Astoch) are called deterministic (respectively,
stochastic). The weight ‖w‖ of the letter w is defined as the number of deterministic
letters of w plus half the number of stochastic letters. The weight thus takes values
in the set (1/2)N = {0, 1/2, 1, 3/2, . . .}. Note that if the wj are the words resulting
from shuffling w and w′ as in (1), then, for each j, ‖wj‖ = ‖w‖ + ‖w′‖. Also, when
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two words are concatenated, the weight of the result is the sum of the weights of the
factors.

Since Stratonovich integrals follow the rules of ordinary calculus, from (5) we
conclude that the solution of (13) with initial condition x(t0) = x0 has the expansion
t > t0 ≥ 0,

(14) x(t) = WJ(t;t0)(x0),

where the Jw(t; t0) are the well-known Stratonovich iterated integrals (wa and wA
are the words obtained by appending the letter a or A at the end of w):

J∅(t; t0) = 1,

Ja(t; t0) =

∫ t

t0

ds = t− t0, a ∈ Adet,

JA(t; t0) =

∫ t

t0

◦dBA(s) = BA(t1)−BA(t0), A ∈ Astoch,

Jwa(t, t0) =

∫ t

t0

Jw(s; t0) ds, a ∈ Adet,

JwA(t; t0) =

∫ t

t0

Jw(s; t0) ◦dBA(s), A ∈ Astoch.

The expansion (14) of course coincides with the familiar Stratonovich–Taylor
expansion (see, e.g., [20, Chapter 5]).

The following result summarizes some properties of the Jw(t; t0) which will be
required later. The first item expresses the shuffle relations of iterated integrals; see
also Proposition 1. The second, third, and fifth items are well known. The fourth is
a trivial consequence of the second and third.

Proposition 4. The iterated stochastic Stratonovich integrals Jw(t; t0) possess
the following properties;

• J(t; t0) ∈ Gsh.
• The joint distribution of any finite subfamily of the family of random variables

{h−‖w‖Jw(t0 + h; t0)}w∈W is independent of t0 ≥ 0 and h > 0.
• E | Jw(t0 + h; t0) |p< ∞ for each w ∈ W, t0 ≥ 0, h > 0, and p ∈ [0,∞).
• For each w ∈ W and any finite p ≥ 1, the (t0-independent) Lp norm of the

random variable Jw(t0 + h; t0) is O(h‖w‖) as h ↓ 0.
• E Jw(t0 + h; t0) = 0 whenever ‖w‖ is not an integer.

In view of the proposition, when the word series in (14) is rewritten as

x(t) =
∑

n∈(1/2)N

∑
‖w‖=n

Jw(t; t0)fw(x0),

for each n ∈ (1/2)N, the term in the inner sum is O((t− t0)
n) in any Lp norm, p < ∞.

This should be compared with the deterministic case, where, as we saw above, the
bound (8) leads to grading the expansion (5) by the number of letters of the words.

We shall need below the following auxiliary result (Π of course denotes a product).

Lemma 5. Assume that w1, . . . , w� are words with
∑

j ‖wj‖ /∈ N. Then, for each
t0 ≥ 0 and h > 0,

E
(
ΠjJwj (t0 + h; t0)

)
= 0.
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Proof. By using repeatedly the shuffle relations (1)–(2), the product of iterated
integrals may be rewritten as a sum of iterated integrals corresponding to the words
w′

i resulting from shuffling the wj , j = 1, . . . , 
. As noted above, each w′
i has the

noninteger weight
∑

j ‖wj‖ and we may use the last item of Proposition 4.

The idea of the proof (i.e., the use of the shuffle relations to rewrite products of
iterated integrals as sums) has been used in [17] as a means to evaluate the moments of
iterated stochastic integrals. An instance of the shuffle relations for iterated stochastic
integrals is presented in Proposition 5.2.10 of [20]; this well-known monograph does
not relate the formula presented there to the algebra of word shuffles. A number of
recent papers have also exploited the connection between the Stratonovich calculus
and the shuffle Hopf algebra; see, e.g., [15] and its references.

4.2. Expanding the numerical solution. In a splitting integrator, a time
step t0 → t0 + h, h > 0, is performed by applying a mapping φ̃t0+h,t0 defined as a
composition of several solution mappings

φ
(i)
t0+cih,t0+dih

, i = 1, . . . , I,

corresponding to SDEs resulting from splitting the right-hand side of (13). The ci and
di are real constants associated with the particular integrator. By proceeding as in
the deterministic case, the use of the operation � leads to a word-series representation
(cf. (12)),

φ̃t0+h,t0(x0) = W
˜J(t0+h;t0)

(x0), i = 1, . . . , I,

where, for each nonempty w ∈ W , J̃w(t0 + h; t0) is either zero or a sum of products
of iterated Stratonovich integrals corresponding to words whose concatenation is w.
Therefore, in each product, the iterated integrals being multiplied correspond to words
whose weights add up to ‖w‖.

Proposition 6. The coefficients J̃w(t0+h; t0), w ∈ W, associated with a splitting

integrator possess the properties of the exact values J̃w(t0+h; t0) listed in Proposition
4.

Proof. The first four items of this proposition are consequences of Proposition 4
and the representation of each J̃w(t0 + h; t0), w = ∅, as a sum of products of iterated
integrals. For the last item, in view of the linearity of the expectation, it is enough
to prove that, for any tj < t∗j ,

∑
j

‖wj‖ /∈ N ⇒ E

(∏
j

Jwj (t
∗
j ; tj)

)
= 0.

Furthermore, we may assume that we are in the particular case where any two intervals
(tj , t

∗
j ) ⊂ R are either disjoint or equal to each other; the general situation may be

reduced to the particular case by decomposing with the help of Proposition 2. Under
this assumption, let us group together the iterated integrals sharing the same (tj , t

∗
j )

and write ∏
j

Jwj (t
∗
j ; tj) =

∏
k

∏
j∈Ik

Jwj (t
∗
k; tk);

here, as k varies, any two intervals (tk, t
∗
k) ⊂ R are disjoint, and, for each value of k,

the set Ik comprises the indices j for which (t∗j ; tj) coincides with (t∗k; tk). Now, by



LOCAL ERRORS OF SPLITTING STOCHASTIC INTEGRATORS 3249

independence,

E

(∏
j

Jwj (t
∗
j ; tj)

)
=
∏
k

E

( ∏
j∈Ik

Jwj (t
∗
k; tk)

)
,

and the proof will be completed if we show that there is at least a value of k for which

E

( ∏
j∈Ik

Jwj (t
∗
k; tk)

)
= 0.

Since ∑
k

∑
j∈Ik

‖wj‖ =
∑
j

‖wj‖ /∈ N,

at least one of the inner sums is not an integer and we may apply Lemma 5.

4.3. The local error. The preparations above have proved the main result of
this paper.

Theorem 7. For a splitting integrator as above, the local error possesses a word
series expansion

(15) φ̃t0+h,t0(x0)− φt0+h,t0(x0) = Wδ(t0,h)(x0) =
∑

n∈(1/2)N

∑
‖w‖=n

δw(t0, h)fw(x0),

with coefficients

δw(t0, h) = J̃w(t0 + h; t0)− Jw(t0 + h; t0), w ∈ W ,

that, in any Lp norm, 1 ≤ p < ∞, satisfy, uniformly in t0 ≥ 0,

‖δw(t0, h)‖p = O(h‖w‖), h ↓ 0.

In addition, for each observable χ, conditional on x0,

(16) Eχ
(
φ̃t0+h,t0(x0)

)− Eχ
(
φt0+h,t0(x0)

)
=
∑
n∈N

∑
‖w‖=n

(
Eδw(t0, h)

)
Dwχ(x0).

The theorem implies that the strong order conditions

(17) J̃w(t0 + h; t0) = Jw(t0 + h; t0), ‖w‖ = 0, 1/2, 1, . . . , μ, μ ∈ (1/2)N,

ensure that the series in (15) only comprises terms of size O(hμ+1/2). In fact, under
suitable assumptions on (13), the fulfillment of the order conditions ensures that the
local error possesses an O(hμ+1/2) bound (see the appendix).

It should be pointed out that, since both J(t0 + h; t0) and J̃(t0 + h; t0) satisfy
the shuffle relations, the conditions in (17) corresponding to different words are not
independent from one another. For instance, from the shuffle a ��a = 2aa, a ∈ A, we
may write(

Ja(t0 + h; t0)
)2

= 2Jaa(t0 + h; t0),
(
J̃a(t0 + h; t0)

)2
= 2J̃aa(t0 + h; t0),

and therefore the order condition for the word aa is fulfilled if and only if the same
happens for a. Lyndon words [31] may be used to identify subsets of independent order
conditions (cf. [26]), but we shall not concern ourselves with such an investigation.
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If, for a given alphabet A and given coefficients J̃w(t0 + h; t0), one demands that
the series in (15) only comprise terms of size O(hμ+1/2) for all possible choices of the
vector fields fa, fA, then the conditions (17) are not only sufficient but also necessary.
This happens because, as it is easy to show, in such a scenario, the word basis functions
are mutually independent. However, this consideration is not of much practical value;
splitting integrators are useful because they are adapted to the specific structure of
the problem being solved, and therefore one is interested in the behavior for individual
problems, not in catering for all possible choices of fa, fA. The best way to deal with
specific problems is to write down, up to the desired order, the word series expansions
of the true and numerical solutions and compare them after taking into account the
shuffle relations and the specific expressions of the word basis functions; this will be
illustrated in the next section. For instance, if, for the problem at hand, a word
basis function fw vanishes identically, then it is clearly not necessary to impose the
associated order condition in (17).

Similar considerations apply to the weak order conditions

(18) EJ̃w(t0 + h; t0) = EJw(t0 + h; t0), ‖w‖ = 0, 1, 2, . . . , ν, ν ∈ N,

which ensure that the series in (16) only comprises terms of size O(hν+1).
The conditions (17)–(18) are similar to those found in [6] for stochastic Runge–

Kutta integrators (however, [6] only shows that a condition corresponding to (18)
implies that the expectation of the local error is O(hν+1); arbitrary observables χ are
not considered there).

5. Application to Langevin dynamics. We shall illustrate the application of
the foregoing material by considering the Langevin equations

dq = M−1p dt,

dp = F (q) dt− γp dt+ σM1/2dB(t),

where M is the d × d diagonal mass matrix with diagonal entries mi > 0, γ > 0 is
the friction coefficient, σ governs the fluctuation due to noise, B is a d-dimensional
Wiener process, and the force F originates from a potential; i.e., F = −∇V for a
suitable scalar-valued function V . Since the noise is additive, there is no distinction
between the Stratonovich and Ito interpretations.

5.1. Splitting the Langevin dynamics. After setting x = (q, p) ∈ R
d × R

d,
the equations are the particular instance of (13) given by

(19) dx(t) = fa(x)dt+ fb(x)dt + fc(x)dt+

d∑
i=1

fAi(x) ◦ dBi(t)

with

fa(q, p) = (M−1p, 0), fb(q, p) = (0, F (q)), fc(q, p) = (0,−γp),

and, for i = 1, . . . , d,

fAi(q, p) = (0, σ
√
miei),

where ei is the ith unit vector in R
d. The deterministic letters a, b, and c are,

respectively, associated with inertia, potential forces, and friction; as will become
apparent below, the word basis functions fw, w ∈ W , also have clear physical meaning.
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The system (19) is split into three parts corresponding to {fa}, {fb}, and {fc,
fA1 , . . . , fAd

}.1 Each of the three split systems may be integrated explicitly. With
a terminology common in molecular dynamics, the solution of the first is a “drift” in
position, q �→ q + (t− t0)M

−1p (p remains constant). The solution of the second is a
“kick” in momentum p �→ p+(t−t0)F (q) (q remains constant). The third split system
defines an Ornstein–Uhlenbeck process in p. Leimkuhler and Matthews [21], [22] use
the letters A, B, and O to refer to these split systems and the acronym ABOBA for
the Strang-like algorithm

φ̃ABOBA = φA
t0+h;t0+h/2 ◦ φB

t0+h;t0+h/2 ◦ φO
t0+h;t0 ◦ φB

t0+h/2;t0
◦ φA

t0+h/2;t0
.

With the help of an analysis of the large friction limit and numerical experiments,
these authors find that the very similar BAOAB algorithm

φ̃BAOAB = φB
t0+h;t0+h/2 ◦ φA

t0+h;t0+h/2 ◦ φO
t0+h;t0 ◦ φA

t0+h/2;t0
◦ φB

t0+h/2;t0

substantially improves on ABOBA. In this section we analyze by means of word series
the local error of both algorithms. Our findings complement (rather than duplicate)
those in [21], [22], [23].

5.2. The word basis functions. The structure of the Langevin equations im-
plies that many word basis functions are identically zero. The vector fields fa, fb,
fc, and fAi have many null components, and additional simplifications are due to
fAi being constant, fa and fc being linear in p and independent of q, and fb being
independent of p. In particular, the relation fba(q, p) = (M−1F (q), 0) shows that fba
is a function of q alone and, since the q components of fc and fAi vanish, we have, in
view of (3),

(20) fcba(q, p) = 0, fAiba(q, p) = 0, i = 1, . . . , d,

for each q and p. Physically, (20) means that the value M−1F (q) of the acceleration
created by the potential forces would not be affected if noise or friction changed
instantaneously the momentum of the system. On the other hand, in general,

(21) fcab(q, p) = 0, fAiab(q, p) = 0, i = 1, . . . , d.

The second block of fab(q, p) = (0, ∂qF (q)M−1p) = (0, (d/dt)F (q)) is the contribution
to (d2/dt2)p that arises from the potential forces. This contribution is a function of q
and p, and its value would be affected if friction or noise changed instantaneously the
momentum. It is also useful to note at this point that, according to (3), if fw vanishes
identically, then the same is true for all words of the form w′w, i.e., for all words that
have w as a suffix. Table 1 lists the words w with weight < 3 and nonvanishing basis
function.

5.3. Coefficients. Once the relevant word basis functions have been identified,
we proceed to find the coefficients. Let us begin with ABOBA. From the definition
of the operation �, it is clear that if w is not of the form akb�w′bman, with k, 
,m, n
nonnegative integers and w′ a word not including the letters a or b, then J̃ABOBA

w = 0.
For a word that may be written in that form in a unique way (e.g., abccba), the value

1The splitting considered here is not the only meaningful way to split the Langevin equations; a
Hamiltonian/Ornstein–Uhlenbeck splitting is considered in, e.g., [5]. See also [23].
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Table 1

Coefficients of the splitting methods ABOBA and BAOBA for words w with weight ‖w‖ < 3
and nonvanishing basis function fw. A check mark signals agreement with the exact Jw. All iterated
stochastic integrals have domain (t0 + h; t0).

‖w‖ w ˜JABOBA
w

˜JBAOAB
w Exact?

0 ∅ 1 1 �
1/2 Aj JAj

JAj
�

1 a, b, c h h �
3/2 Aia hJAi

/2 hJAi
/2

Aic JAic JAic �
2 ab, ba, bc, ca, cc h2/2 h2/2 �

5/2 Aiab 0 h2JAi
/4

Aica hJAic/2 hJAic/2
Aicc JAicc JAicc �

of J̃ABOBA
w is

Jak(t0 + h/2; t0)Jb�(t0 + h/2; t0)Jw′(t0 + h; t0)

× Jbm(t0 + h; t0 + h/2)Jan(t0 + h; t0 + h/2)

or, from (9),

=
1

k!
!m!n!

(
h

2

)k+�+m+n

Jw′ .

For a word that may be written in the form akb�w′bman in several ways, we sum over
all possible ways (e.g., for aa, we have 
 = m = 0, w′ = ∅, and three possibilities
(k, n) = (2, 0), (k, n) = (1, 1), (k, n) = (0, 2) leading to a coefficient (1/2)(h/2)2 +
(h/2)2 + (1/2)(h/2)2 = h2/2). Similar considerations, with the roles of a and b
interchanged, apply to the alternative BAOAB method. It now takes next to no time
to find the coefficients in the third and fourth columns of the table.

5.4. Comparing the algorithms. At this point, we are in a position to com-
pare the algorithms. Since at the words Aia, i = 1, . . . , d, both methods are in error,
for both of them, the local error expansion in (15) begins with O(h3/2) terms. Fur-

thermore, ABOBA and BAOAB share the same coefficient values J̃w at the leading
(i.e., O(h3/2)) order and also at the next order (corresponding to words of weight 2).
In fact, for the words that are featured in the table, the only difference between both
integrators corresponds to the words Aiab, i = 1, . . . , d. For these, the exact solution
has coefficient

JAiab ∼ N
(
0,

h5

20

)
,

BAOAB has

J̃BAOAB
Aiab =

h2

4
JAi ∼ N

(
0,

h5

16

)
,

while, as noted above,
J̃ABOBA
Aiab = 0,

due to the pattern ab after the stochastic letter. The joint distribution of JAiab and

J̃BAOAB
Aiab

is Gaussian with covariance h5/24, and therefore the correlation between
both variables is

h5/24√
h5/20

√
h5/16

=

√
5

3
≈ 0.74,
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while JAiab and J̃ABOBA
Aiab

are obviously uncorrelated. Thus, for this word, ABOBA
provides a very poor approximation to the exact coefficient. Due to the symmetric
role played by the letters a and b in the algebra of words, for Aiba, it is BAOAB
that has an identically zero coefficient. However, this is irrelevant for the present
discussion because, for that word, the basis function vanishes, as noted in (20).

Cases where fw = 0, J̃ABOBA
w = 0, but J̃BAOAB

w provides a nontrivial approxi-
mation to Jw, occur for higher values of the weight. For the deterministic word cba,
J̃BAOAB
cab = h3/4 and J̃ABOBA

Aicab
= 0 (the correct value is h3/6). For Aicab with weight

7/2, the exact solution has

JAicab ∼ N
(
0,

h7

252

)
,

while

J̃BAOAB
Aicab ∼ N

(
0,

h7

148

)
,

and, again due to the ab pattern,

J̃ABOBA
Aicab = 0.

Now the correlation between the BAOAB coefficient and the true value is
√
21/5 ≈

0.91.
Why does ABOBA provide poor approximations for words like Aiba, cba, Aicba?

By looking at the physical meaning of the corresponding word basis functions (see,
e.g., the discussion of (21) presented above), we see that the above shortcomings of
ABOBA stem from the following algorithmic source. In any given time step, ABOBA
uses the same value of F in both kicks (q is not updated between those kicks) and,
furthermore, that common value of F only depends on the values of q and p at the
beginning of the step. Thus, over the whole step, the momentum increment hF due
to the potential forces does not “see” the presence of friction or noise in the current
step. On the contrary, in BAOAB the change in p at substep O (friction and noise)
causes the kicking force to vary from the first kick to the second.2

6. Further developments. We have presented a systematic method, based on
word series, for writing down expansions of strong and weak local errors of splitting
integrators for Stratonovich SDEs. The method has been illustrated with a compar-
ison between two related algorithms for the Langevin equations. The material may
be adapted to study Ito equations, where the quasi-shuffle algebra replaces the shuffle
algebra used here.

In the deterministic case, word series may also be applied to the computation
of modified equations of integrators, as in [27]. Similarly, the word series approach
may also be extended to investigate modified equations for Ito or Stratonovich SDEs.
In addition, word series may be helpful in finding invariant densities of numerical
algorithms. These developments will be dealt with in future work.

Appendix: Error bounds. In what follows, the deterministic vector fields fa,
a ∈ Adet, and the stochastic vector fields fA, A ∈ Astoch, in (13) are assumed to
be globally Lipschitz, thus guaranteeing existence and uniqueness of the initial value

2Note that BAOBA in the first kick of the next step reuses the value of F (q) employed in the
second kick of the present step, so that both ABOBA and BAOAB use each evaluation of the potential
force twice.
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problem for (13) itself and for the split systems. The theorems below provide bounds
for the weak local error and the mean square local error.

We begin with weak approximations. The third hypothesis used below is the same
as inequality (2.17) in [24], which is key in establishing Theorem 2.5 in that reference.
The first and second hypotheses just make explicit the differentiability requirements
on fa, fA, and χ that have to be imposed to guarantee that Dwχ makes sense when
w has weight ν + 1.

Theorem 8. Let ν be a positive integer. Assume the following:
• The deterministic vector fields fa, a ∈ Adet, are of class C2ν , while the

stochastic vector fields fA, A ∈ Astoch, are of class C2ν+1.
• The observable χ is of class C2ν+2 in R

d.
• There is a constant C > 0 such that for each x ∈ R

d and each word w of
weight ν + 1,

|Dwχ(x)| ≤ C(1 + |x|2)1/2.
• The weak error conditions (18) hold.

Then there exists a constant K > 0 such that for each x0, each t0 ≥ 0, and each
h > 0,

|Eχ(φ̃t0+h,t0(x0)
)− Eχ

(
φt0+h,t0(x0)

)| ≤ K(1 + |x0|2)1/2hν+1

(the expectation is conditional on x0).

Proof. Define the residuals

Rt0,h(x0) = χ
(
φt0+h,t0(x0)

)− ∑
n∈N/2,
n≤ν

∑
‖w‖=n

Jw(t0, h)Dwχ(x0)

and
R̃t0,h(x0) = χ

(
φ̃t0+h,t0(x0)

)− ∑
n∈N/2,
n≤ν

∑
‖w‖=n

J̃w(t0, h)Dwχ(x0)

associated with the true and numerical solutions, respectively. If the weak order
conditions hold, we have, after using the fifth item in Proposition 4 and its counterpart
in Proposition 6,

Eχ
(
φ̃t0+h,t0(x0)

)− Eχ
(
φt0+h,t0(x0)

)
= ER̃t0,h(x0)− ERt0,h(x0),

and our task is to successively bound the two terms on the right-hand side.
For the theoretical solution, the standard stochastic Taylor expansion (see, e.g.,

[20, section 5.6] or [24, section 1.2]) provides the following representation as an iterated
Stratonovich integral:

Rt0,h(x0) =
∑
w

∫ t0+h

t0

◦dB�r(sr)

∫ sr

t0

◦dB�r−1(sr−1) · · ·∫ s2

t0

◦dB�1(s1)Dwχ
(
φs1,t0(x0)

)
;

here the 
i are deterministic or stochastic letters, and the sum is extended to all
words of the form w = 
1 . . . 
r, where ‖
2 . . . 
r‖ = ν and it is understood that, for a
deterministic letter 
i, dB�(si) means ds. We next rewrite the iterated Stratonovich
integrals as combinations of iterated Ito integrals, as in [20, Remark 5.2.8]; in each
resulting iterated integral the sum of the weights of the letters of the Brownian motions
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that appear is ν + 1. An application of [24, Lemma 2.2] then shows that, for a
suitable constant L, E|Rt0,h(x0)|2 ≤ L2(1+ |x0|2)h2ν+2, which implies E|Rt0,h(x0)| ≤
L(1 + |x0|2)1/2hν+1.

We now turn to the residual in the numerical solution. As in the proof of Theorem
4 in [27], we observe that, given an initial condition x0 = x(t0) and any splitting
algorithm, the numerical solution after one step t0 → t0 + h is the same as the value
of the true solution at t0 + h of a time-dependent SDE in which the originally given
vector fields are switched on and off as time evolves. For instance, in the simplest
case where the SDE is dx = fa(x)dt+fA(x)◦dBA(t) and the (Lie–Trotter) numerical
scheme consists of advancing with dx = fA(x) ◦ dBA(x) and then with dx = fa(x)dt,
the time-dependent SDE is

dx = 1{t0+h/2<t≤t0+h}fa(x)2dt+ 1{t0≤t≤t0+h/2}fA(x) ◦ dBA(t0 + 2(t− t0)),

where t0 ≤ t ≤ t0 + h and 1{·} denotes an indicator function. Using this observation
the numerical residual may be bounded by reproducing the steps taken above to
bound the residual of the true solution.

The last result refers to the mean square error. The proof is parallel to that we
have just presented and will be omitted.

Theorem 9. Let μ be a positive integer multiple of 1/2. Assume the following:
• The deterministic vector fields fa, a ∈ Adet, are of class C2μ, while the

stochastic vector fields fA, A ∈ Astoch, are of class C2μ+1.
• There is a constant C > 0 such that for each x ∈ R

d and each word w of
weight μ+ 1,

|fw(x)| ≤ C(1 + |x|2)1/2.
• The strong error conditions (17) hold.

Then there exists a constant K > 0 such that for each x0, each t0 ≥ 0, and each
h > 0, (

E|φ̃t0+h,t0(x0)− φt0+h,t0(x0)|2
)1/2

≤ K(1 + |x0|2)1/2hμ+1/2

(the expectation is conditional on x0).

These local error bounds, in tandem with standard results (see, e.g., [24]), lead
to bounds for the global error. For instance, for the Langevin equations considered in
section 5, the order conditions are fulfilled with μ = 1 and ν = 2. It then follows that
both integrators are convergent with mean square global errors O(h) and weak global
errors O(h2) if the force F (q) satisfies the corresponding smoothness and growth
hypotheses.
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