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Symplectic Runge–Kutta Schemes
for Adjoint Equations, Automatic
Differentiation, Optimal Control, and More∗
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Abstract. The study of the sensitivity of the solution of a system of differential equations with re-
spect to changes in the initial conditions leads to the introduction of an adjoint system,
whose discretization is related to reverse accumulation in automatic differentiation. Similar
adjoint systems arise in optimal control and other areas, including classical mechanics. Ad-
joint systems are introduced in such a way that they exactly preserve a relevant quadratic
invariant (more precisely, an inner product). Symplectic Runge–Kutta and partitioned
Runge–Kutta methods are defined through the exact conservation of a differential geomet-
ric structure, but may be characterized by the fact that they preserve exactly quadratic
invariants of the system being integrated. Therefore, the symplecticness (or lack of sym-
plecticness) of a Runge–Kutta or partitioned Runge–Kutta integrator should be relevant
to understanding its performance when applied to the computation of sensitivities, to op-
timal control problems, and in other applications requiring the use of adjoint systems.
This paper examines the links between symplectic integration and those applications and
presents in a new, unified way a number of results currently scattered among or implicit
in the literature. In particular, we show how some common procedures, such as the direct
method in optimal control theory and the computation of sensitivities via reverse accumu-
lation, imply, probably unbeknownst to the user, “hidden” integrations with symplectic
partitioned Runge–Kutta schemes.
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1. Introduction. Symplectic Runge–Kutta (RK) [24], [31], [39] and partitioned
Runge–Kutta (PRK) [1], [40] formulas were introduced to integrate Hamiltonian sys-
tems over long time intervals. They are defined in terms of a purely geometric prop-
erty, the conservation of the symplectic structure, and provided the first widely stud-
ied instance of what was later termed geometric integration [32]. It is well known
that symplectic RK methods may be characterized as those that exactly preserve all
quadratic first integrals (invariants of motion) of the system being integrated. This is
a useful property: for instance, the (symplectic) implicit midpoint rule is sometimes
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chosen to integrate wave equations because it conserves quadratic invariants. How-
ever, quadratic conservation has taken a back seat to the symplectic property itself
in the geometric integration literature. The aim of this paper is to emphasize that
the conservation of quadratic invariants plays an important role in the computation
of numerical sensitivities, in optimal control theory, and in classical mechanics. In
all these areas there is an interplay between variational equations and their adjoints,
an interplay based on the conservation of a key quadratic invariant (see (3.5)). The
conservation of this invariant gives relevance to the symplecticness of the integrator.
In fact, some widely used procedures, such as the direct method in optimal control
theory and the computation of sensitivities via reverse accumulation, imply “hidden”
integrations with symplectic PRK schemes; therefore, the theory of symplectic PRK
integration should be helpful in understanding such procedures. From a more ab-
stract point of view one might say that the purpose of this article is to clarify the
behavior of RK integrators vis-à-vis the operation of taking adjoints: an RK method
is symplectic precisely if it commutes with the formation of adjoints.

The paper presents a coherent treatment of results spread across the literature
of various communities together with some new, unifying results. In order to cater
to a variety of possible readers, it is written without assuming much background.
We hope it will help researchers in optimal control to better understand RK schemes
and, similarly, encourage RK experts to consider sensitivities and optimal control
problems.

Section 2 provides background on numerical integrators. We introduce the neces-
sary notation and recall a number of properties of symplectic RK and related schemes.
In particular, we quote some results (Theorems 2.1 and 2.4) that ensure the exact
preservation by the integrator of quadratic conservation laws.

Section 3, the core of the paper, is devoted to the integration of the adjoint
variational equations used to perform sensitivity analysis. It is well known that an RK
method M applied to the variational equations of a system S automatically produces
the variational equations for the discretization of S by means of M (see Theorem
3.2); in other words, the operation of RK discretization commutes with the operation
of forming variational equations. The situation for the adjoints is more complicated
(cf. [37]), because commutation will only take place if the discretization is carried
out so as to exactly conserve the key quadratic invariant (3.5) and, in some way, this
demands a symplectic integrator. There are three cases of increasing complexity:

• S is integrated with a symplectic RK scheme M. Then the application of M
to the adjoint equations of S produces the adjoint equations for discretization
of S by means of M (see Theorem 3.3).

• S is integrated with a nonsymplectic RK scheme M whose weights do not
vanish. Then the adjoint equations for the discretization are obtained by
integrating the adjoint equations of S with a different set of RK coefficients,
so that the overall procedure is a symplectic PRK method (see Theorem
3.4). The recipe for the adjoint coefficients is given in (3.23) below. The
method used for the adjoint equations will in general be of lower order than
the RK scheme M used for the main integration and will also have different
stability properties. For these reasons nonsymplectic methods M should be
used with care. The computation of sensitivities of the discrete solution via
automatic differentiation with reverse accumulation implicitly provides the
symplectic PRK integration of the adjoint equations with coefficients (3.23)
(see Theorem 3.6).
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• S is integrated with a nonsymplectic RK scheme M having one or more
null weights. Then, to obtain the adjoint equations of the discretization, the
continuous adjoint equations have to be integrated with a fancy integrator
outside the RK class (see the appendix). Again an order reduction is likely to
take place and again the fancy integration is implicitly performed whenever
differentiation with reverse accumulation is used.

Section 4 deals with the Mayer optimal control problem in the case of uncon-
strained controls. There is again a quadratic conservation law that is of crucial im-
portance and this fact brings symplectic schemes to the foreground. The results there
are quite similar to those in the preceding section (the case of vanishing weights is
discussed in the appendix):

• For a symplectic RK method, commutation [29] takes place: the discretization
of the continuous first order conditions necessary for optimality provides the
first order necessary conditions for the discrete solution (see Theorem 4.3).

• When the equations for the states are discretized with a nonsymplectic RK
scheme with nonvanishing weights, to achieve commutation the costate equa-
tions have to be integrated by means of a clever set of coefficients that does
not coincide with the set used for the states (see Theorem 4.3). With this
clever set, the overall integration (states+costates) is performed with a sym-
plectic PRK method. In general, an order reduction will take place for states,
costates, and controls. As first noted by Hager [17], the required set of coef-
ficients is alternatively defined, not by imposing symplecticness of the inte-
gration, but by using the direct approach, i.e., by minimizing the cost in the
discrete realm with the help of Lagrange multipliers (see Theorem 4.4).

For a symplectic RK or PRK integration of the system for states and costates, the
direct and indirect approach are mathematically equivalent. When a nonsymplectic
PRK is used in the indirect approach, the discrete solution cannot be reached via the
direct approach, which always implies a symplectic integration of the states+costates
system.

Extensions to more general control problems are presented in section 5. Section
6 is devoted to classical mechanics. Hamilton’s variational principle may of course
be viewed as an optimal control problem: it is a matter of minimizing a functional
subject to differential constraints. As is well known, the application of the theory of
optimal control to this situation replicates the standard procedure to obtain Hamil-
ton’s canonical equations from Hamilton’s principle. In the discrete realm, this process
provides the variational derivation of symplectic PRK integrators, originally due to
Suris [40].

Section 7 relates the preceding material to the notions of reflection and transposi-
tion of RK coefficients introduced by Scherer and Türke [35], and section 8 concludes.

The appendix deals with the problem of how to “supplement” a given nonsym-
plectic RK method with some vanishing weights to produce a symplectic algorithm
for partitioned systems.

In order not to clutter the exposition with unwanted details, we shall not be
concerned with technical issues such as existence of solutions of implicit integrators,
smoothness requirements, and so on. These may be very important in some circum-
stances (e.g., lack of smoothness poses difficulties if the controls are constrained; see
[9]).

To keep the length of this work within reasonable limits some other interesting
connections are not discussed. The duality between the Fokker–Planck equations and
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the Kolmogorov backward equations in the theory of Markov stochastic processes [12]
provides another instance of the occurrence of adjoints; the material in this paper may
be easily extended to study that situation. The paper [13] shows how the symplectic-
ness of the integrator may be used to ensure symmetry-preserving simulations of the
matrix Riccati equation in the feedback representation of linear/quadratic optimal
control problems.

2. Numerical Integrators. In this section we review some results on RK and
related methods. For more details the reader is referred to [34], [5], [19], [21], [22].

2.1. Runge–Kutta Schemes. An RK method with s stages is specified by s2+2s
numbers

(2.1) aij , i, j = 1, . . . , s, bi, ci, i = 1, . . . , s.

Given a D-dimensional differential system, F : RD × R → R
D,

(2.2)
d

dt
y = F (y, t),

to be studied in an interval t0 ≤ t ≤ t0 + T , and an initial condition

(2.3) y(t0) = A ∈ R
D,

the method (2.1) finds approximations yn to the values y(tn), n = 0, 1, . . . , N , of the
solution of (2.2)–(2.3), t0 < t1 < · · · < tN = t0+T , by setting y0 = A and, recursively,

(2.4) yn+1 = yn + hn

s∑
i=1

biKn,i, n = 0, 1 . . . , N − 1.

Here hn = tn+1 − tn denotes the step-length and Kn,i, i = 1, . . . , s, are the “slopes”

(2.5) Kn,i = F (Yn,i, tn + cihn)

at the so-called internal stages Yn,i. The vectors Yn,1, . . . , Yn,s are in turn defined by
the relations

(2.6) Yn,i = yn + hn

s∑
j=1

aijKn,j, i = 1, . . . , s.

In the particular case where the matrix (aij) is, perhaps after renumbering the stages,
strictly lower triangular (explicit RK methods), the stages are computed recursively
from (2.5)–(2.6). In the general case, (2.5)–(2.6) provides, for each n, a system of
coupled equations to be solved for the stages.

The internal stages should not be confused with the values yn output by the
integrator and may be regarded merely as auxiliary variables. Alternatively, the vector
Yn,i is sometimes viewed as an approximation to the off-step value y(tn + cihn). It
is important to emphasize that the differences y(tn + cihn)− Yn,i are typically much
larger than the differences y(tn)− yn.

When the system (2.2) is autonomous, i.e., F = F (y), the ci play no role. At the
other end of the spectrum, if F is independent of y, the RK discretization amounts
to the use in the interval t0 ≤ t ≤ t0 + T of the composite quadrature rule based on
the abscissas ci and the weights bi.
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An RK scheme is said to possess order ρ if, for t0 ≤ tn ≤ t0 + T and smooth
problems, |yn − y(tn)| = O(hρ), where h = maxn hn. The expansion of the local
truncation error in powers of the step-length hn includes, for each power hkn, k =
1, 2, . . . , one or several elementary differentials of F ; an integrator has order ≥ ρ if
and only if, in that expansion, the coefficients of the elementary differentials of orders
k = 1, . . . , ρ vanish. For instance, the relations (order conditions)

(2.7)

s∑
i=1

bi = 1,

s∑
i,j=1

biaij =
1

2
,

s∑
i,j,k=1

biaijajk =
1

6
,

s∑
i,j,k=1

biaijaik =
1

3

ensure order at least 3 for autonomous problems. They correspond to the elemen-
tary differentials F (of order 1), (∂yF )F (of order 2), and (∂yF )(∂yF )F , (∂yyF )[F, F ]
(both of order 3) (∂yF is the Jacobian matrix and ∂yyF the tensor of second deriva-
tives). Since the work of Butcher in the early 1960s, order conditions and elementary
differentials have been studied with the help of graphs. To impose order ≥ ρ for
autonomous problems, there is an independent order condition for each rooted tree
with ρ or fewer vertices. Most, but not all useful RK schemes satisfy ci =

∑
j aij for

each i; for them, order ρ for autonomous problems implies order ρ for all problems.
In general RK methods do not conserve exactly the quadratic first integrals of the

system being integrated. The simplest illustration is afforded by the familiar Euler’s
rule (s = 1, b1 = 1, a11 = 0, c1 = 0) applied to the harmonic oscillator (D = 2)

d

dt
y1 = −y2, d

dt
y2 = y1

(superscripts denote components). The (quadratic) energy I = (1/2)((y1)2 + (y1)2)
is conserved by the differential system because

d

dt
I = y1

d

dt
y1 + y2

d

dt
y2 = y1(−y2) + y2y1 = 0.

However, for Euler’s rule it is trivial to check that, over one step,

I(y1n+1, y
2
n+1)− I(y1n, y

2
n) =

hn
2

(
(y1n)

2 + (y2n)
2
)
,

with an energy increase. This lack of exact preservation takes place for all explicit RK
integrators, even when their order ρ is high. On the other hand, it is well known and
easy to prove that for the implicit midpoint rule (s = 1, b1 = 1, a11 = 1/2, c1 = 1/2)
and the harmonic oscillator I(y1n+1, y

2
n+1) = I(y1n, y

2
n).

The present article is based on the following 1987 result of Cooper [8], which
ensures that some RK methods automatically inherit each quadratic conservation law
possessed by the system being integrated.

Theorem 2.1. Assume that the system (2.2) possesses a quadratic first integral
I, i.e., I(·, ·) is a real-valued bilinear mapping in R

D ×R
D such that, for each A and

t0, the solution y(t) of (2.2)–(2.3) satisfies (d/dt)I(y(t), y(t)) ≡ 0. The relations

(2.8) biaij + bjaji − bibj = 0, i, j = 1, . . . , s,

guarantee that, for each RK trajectory {yn} satisfying (2.4)–(2.6), I(yn, yn) is inde-
pendent of n.
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We shall not reproduce the proof of this result here; it is similar to that of Theorem
2.4 below. The relations (2.8) are essentially necessary for an RK scheme to conserve
each quadratic first integral of each differential system [19, Chapter VI, Theorems 7.6
and 7.10].

In many applications the system (2.2) is Hamiltonian. This means that D is even
and, after writing y = [qT, pT]T, F = [fT, gT]T, with q, p, f, g ∈ R

d, d = D/2, there
exists a real-valued function H(p, q, t) (the Hamiltonian) such that f r = ∂H/∂pr and
gr = −∂H/∂qr, r = 1, . . . , d (superscripts indicate components). Hamiltonian sys-
tems are characterized geometrically by the symplectic property of the corresponding
solution flow [2]. When d = 1, symplecticness means conservation of oriented area; in
higher dimensions a similar but more complicated interpretation, based on differential
forms, exists; such an interpretation is not required to read this paper. It is often
advisable [34], [19], [25] to integrate Hamiltonian problems by means of so-called sym-
plectic algorithms, i.e., algorithms such that the transformation yn �→ yn+1 in R

2d is
symplectic; those algorithms are particularly advisable in integrations where the in-
terval t0 ≤ t ≤ t0+T is long (for a recent reference in that direction, see [11], which is
part of a project to integrate the solar system over a 60-million-year interval). Using
the method of modified equations [16], each numerical solution may (approximately)
be interpreted as a true solution of a nearby differential system called the modified
system. For symplectic methods applied to Hamiltonian systems, the modified system
is Hamiltonian; for nonsymplectic discretizations, the modified system, while perhaps
close to the system being integrated, is not Hamiltonian and this fact is likely to imply
a substantial distortion of the long-time dynamics [34], [19].

The first symplectic integrators were constructed in an ad hoc way; it was later
discovered (independently by Lasagni [24], Suris [39], and the present author [31])
that the class of RK methods contains many symplectic schemes:

Theorem 2.2. Assume that the system (2.2) is Hamiltonian. The relations (2.8)
guarantee that the mapping yn �→ yn+1 defined in (2.4)–(2.6) is symplectic.

The proof of Theorem 2.2, not included here, is very similar to the proof of
Theorem 2.1. Just as for the conservation of quadratic first integrals, it turns out, as
seen in [34, section 6.5], that the relations (2.8) are essentially necessary for yn �→ yn+1

to be symplectic for each Hamiltonian system.
The set of relations (2.8) thus ensures two different properties: quadratic conser-

vation and symplecticness. These two properties are not unrelated: symplecticness
may be viewed a consequence of the quadratic conservation because, as noted in [3],
the preservation of the symplectic structure by a Hamiltonian solution flow may be
interpreted as a bilinear first integral of the solution flow of the associated variational
system.

The symplectic character of RK schemes satisfying (2.8) has attracted much atten-
tion in view of the importance of Hamiltonian systems in applications. On the other
hand, it is fair to say that quadratic conservation has been to some extent played down
in the geometric integration literature. For this reason, while schemes satisfying (2.8)
could have been called conservative, the following terminology is standard:

Definition 2.3. The RK scheme (2.1) is called symplectic (or canonical) if (2.8)
holds.

Our focus in this paper is on symplectic schemes in so far as they conserve
quadratic invariants, as these are actually crucial in several applications. The dis-
cussion of any possible benefits derived from the symplectic character of the map
yn �→ yn+1, including the existence of modified Hamiltonian systems, is out of our
scope here. The paper [7] is, in this sense, complementary to the present work.
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It was proved in [33] that the relations (2.8) act as simplifying assumptions vis-
à-vis the order conditions: once these relations are imposed, the order conditions
corresponding to the different elementary differentials/rooted trees are no longer in-
dependent. For instance, it is a simple exercise to show that, when (2.8) holds, the
second order condition in (2.7) is a consequence of the first and therefore symplectic
RK schemes of order ≥ 1 automatically possess order ≥ 2. Similarly, the last order
condition in (2.7) is a consequence of the first three. In this way, for a general RK
method to have order ≥ 3 for autonomous problems, there are four order conditions;
for symplectic methods the number is only two. For a symplectic RK method to have
order ≥ ρ for autonomous problems there is an order condition for each so-called
nonsuperfluous free tree with ≤ ρ vertices.

There are many symplectic RK methods [34] including the Gauss methods (of
maximal order 2s and with positive weights) as first shown in [31]; however, no sym-
plectic RK scheme is explicit. The simplest Gauss method (s = 1) is the familiar
implicit midpoint rule.

2.2. Partitioned Runge–Kutta Schemes. In some applications the components
of the vector y in (2.2) appear partitioned into two blocks: y = [qT, pT]T, q ∈ R

D−d,
p ∈ R

d. Hamiltonian problems, where d = D/2, provide an example, as we have
just seen. In those cases it may make sense to use a set of coefficients (2.1) for the
integration of the block q and a second set

(2.9) Aij , i, j = 1, . . . , s, Bi, Ci, i = 1, . . . , s,

for the integration of the block p. (There is no loss of generality in assuming that the
number of stages s in (2.9) coincides with that in (2.1); see [34, Remark 3.2].) The
overall method is called a PRK scheme. A more precise description follows.

Denote by F = [fT, gT]T, f ∈ R
D−d, g ∈ R

d, the partitioning of F induced by
the partitioning [qT, pT]T of y, so that (2.2) reads

(2.10)
d

dt
q = f(q, p, t),

d

dt
p = g(q, p, t);

then the equations for the step n→ n+ 1 of the PRK method (2.1), (2.9) are

(2.11) qn+1 = qn + hn

s∑
i=1

bikn,i, pn+1 = pn + hn

s∑
i=1

Bi�n,i, n = 0, . . . , N − 1,

where

(2.12) kn,i = f(Qn,i, Pn,i, tn + cihn), �n,i = g(Qn,i, Pn,i, tn + Cihn),

and the internal stages Qn,i, Pn,i, i = 1, . . . , s, are defined by the relations

(2.13) Qn,i = qn + hn

s∑
i=1

aijkn,j , Pn,i = pn + hn

s∑
j=1

Aij�n,j.

PRK methods are not a mathematical nicety: the Verlet algorithm, the method
of choice in molecular dynamics [36], is one of them. In its so-called velocity form,
the algorithm is written in the molecular dynamics literature as (it is a simple matter
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to rewrite the algorithm in the format (2.11)–(2.13))

pn+1/2 = pn +
hn
2
g(qn, tn),

qn+1 = qn + hnM
−1pn+1/2,

pn+1 = pn+1/2 +
hn
2
g(qn+1, tn+1).

Here the vectors p, q, and g contain, respectively, the momenta, positions, and forces
and M is the diagonal matrix of the masses. Note the way the q and p variables are
advanced in different ways.

Clearly an RK scheme may be regarded as a particular instance of a PRK method
where the two sets (2.1), (2.9) happen to coincide. For PRK methods to possess order
≥ ρ for autonomous problems, there is an order condition associated with each bicolor
rooted tree with ρ or fewer vertices (see, e.g., [19, Chapter III]). For order ≥ 2 the
order conditions are ∑

i

bi = 1,
∑
i

Bi = 1,(2.14)

∑
ij

biaij =
1

2
,

∑
ij

biAij =
1

2
,

∑
ij

Biaij =
1

2
,

∑
ij

BiAij =
1

2
,(2.15)

which correspond to the elementary differentials f , g, (∂xf)f , (∂xf)g, (∂xg)f , and
(∂xg)g, respectively. It will be important in what follows to note that, if the PRK
(2.1), (2.9) has order ρ, then the RK scheme with coefficients (2.1) and the RK scheme
with coefficients (2.9) both have order ρ. The converse is not true: if (2.1) and (2.9)
are the coefficients of two RK schemes of order ρ, then the combined PRK scheme
may have order < ρ. This is plain in (2.15), where the second and third relations are
necessary for the PRK to have order ≥ 2, but are obviously not required for (2.1) and
(2.9) to be the coefficients of two different RK schemes of order ≥ 2.

For PRK methods, the result corresponding to Theorem 2.1 is as follows (cf. [19,
Chapter IV, Theorem 2.4], where only the autonomous case is envisaged).

Theorem 2.4. Assume that S(·, ·) is a real-valued bilinear map in R
d × R

D−d

such that, for each t0 and A, the solution y(t) = [q(t)T, p(t)T]T of (2.3), (2.10) satisfies

d

dt
S(q(t), p(t)) ≡ 0.

The relations

(2.16) bi = Bi, i = 1, . . . , s, biAij +Bjaji − biBj = 0, i, j = 1, . . . , s,

and

(2.17) ci = Ci, i = 1, . . . , s,

guarantee that, for each PRK trajectory satisfying (2.11)–(2.13), S(qn, pn) is indepen-
dent of n.

As in the case of RK methods, the condition in the theorem is necessary for
conservation to hold for all S and all partitioned differential systems; see [19, Chapter
VI, Theorems 7.6 and 7.10]. In the particular case of autonomous problems the
abscissas play no role. Thus, to achieve conservation, it is not necessary to impose
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the condition (2.17) whenever f and g are independent of t. Note that the theorem
only applies to a quadratic function of the form S(q, p), which is not the most general
possible; for instance, the inner product qTq is not included in that format.

Before proving the theorem we present a simple algebraic auxiliary result that
will be used repeatedly in other contexts in what follows.

Lemma 2.5. Let qn, pn, Qi, Pi, kn,i, �n,i be arbitrary vectors satisfying (2.11)
and (2.13). If S is bilinear and (2.16) holds, then

(2.18) S(qn+1, pn+1)− S(qn, pn) = hn
∑
i

bi

(
S(kn,i, Pn,i) + S(Qn,i, �n,i)

)
.

Proof. Since S is bilinear, we may write from (2.11)

S(qn+1, pn+1)− S(qn, pn) = hn
∑
i

biS(kn,i, pn) + hn
∑
j

BjS(qn, �n,j)

+ h2n
∑
ij

biBjS(kn,i, �n,j).

Now use (2.13) to eliminate qn and pn from the right-hand side:

S(qn+1, pn+1)− S(qn, pn) = hn
∑
i

biS

(
kn,i, Pn,i − hn

∑
j

Aij�n,j

)

+ hn
∑
j

BjS

(
Qn,j −

∑
i

ajikn,i, �n,j

)

+ h2n
∑
ij

biBjS(kn,i, �n,j).

In view of the bilinearity and (2.16), the proof is complete.
Proof of the theorem. Conservation of S implies that

S(f(q, p, t), p) + S(q, g(q, p, t)) ≡ 0,

because, along each solution q(t), p(t),

S

(
d

dt
q(t), p(t)

)
+ S

(
q(t),

d

dt
p(t)

)
=

d

dt
S(q(t), p(t)) = 0.

Therefore, (2.12) and (2.17) mean that the right-hand side of (2.18) vanishes.
For the preservation of the symplectic structure, the result (derived in [40] and

[1] independently) is as follows.
Theorem 2.6. Assume that the system (2.10) is Hamiltonian. The relations

(2.16)–(2.17) guarantee that the mapping (qn, pn) �→ (qn+1, pn+1) defined in (2.11)–
(2.13) is symplectic.

The conditions (2.16)–(2.17) are essentially necessary for symplecticness [34] and
hence the following definition is commonly used.

Definition 2.7. The PRK scheme (2.1), (2.9) is called symplectic if (2.16)–
(2.17) hold.

If the PRK is symplectic, there is a reduction in the number of independent order
conditions; the classes of equivalent order conditions were first described by Hairer
[18]. An alternative treatment (see [27]) based on so-called H-trees was given by
Murua in his 1995 thesis; cf. [4]. For instance, for a symplectic PRK method to have
order ≥ 4 it is necessary to impose 13 order conditions: for general PRK methods
that number is 36.
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3. Variational Systems and Their Adjoints. We now explore the role of sym-
plectic RK schemes when integrating adjoint variational systems. A comprehensive
discussion of the use of adjoints to determine sensitivities is not within the scope of
this paper. A general introduction, together with applications to aerodynamics, is
provided in [14]. Applications of adjoints to atmospheric models are discussed in [30].
Of course, the idea of an adjoint problem is not restricted to differential equations;
see [6] for an early paper describing a very general framework.

3.1. The Continuous Problem: Quadratic Conservation. We now present the
mathematical foundations of the remainder of the paper. Consider a d-dimensional
differential system

(3.1)
d

dt
x = f(x, t)

and denote by α ∈ R
d the corresponding initial value and by x̄(t) the solution that

arises from the perturbed initial condition x̄(t0) = α + η. Linearization of (3.1)
around x(t) shows that as |η| → 0, x̄(t) = x(t) + δ(t) + o(|η|), where δ solves the
(linear) variational system (see, e.g., [21, section I.14])

(3.2)
d

dt
δ = ∂xf(x(t), t) δ

(∂xf is the Jacobian matrix of f with respect to x). Thus, when x(t) is known, solving
for δ(t0 +T ) the initial value problem given by (3.2) and δ(t0) = η yields an estimate
for the change in solution x̄(t)− x(t); see a simple example in Figure 1.

The adjoint system of (3.2) is given by

(3.3)
d

dt
λ = −∂xf(x(t), t)T λ.

(To avoid confusion, variables in this paper are always column vectors; from a math-
ematical point of view it would have been better to write sensitivities, Lagrange
multipliers, and momenta as row vectors, as they belong to the dual space of the
space of states.) The right-hand side in (3.3) has been chosen in such a way that the
following proposition is valid. More precisely, it is best to think that the adjoint is
the system for which the conservation property (3.5) holds.

Proposition 3.1. For each x, δ, λ ∈ R
d and real t,

(
− ∂xf(x, t)

T λ
)T
δ + λT∂xf(x, t)δ = 0.

Therefore, if δ(t) and λ(t) are arbitrary solutions of (3.2), (3.3), respectively, then

(3.4)
d

dt
λ(t)Tδ(t) =

( d
dt
λ(t)

)T

δ(t) + λ(t)T
( d
dt
δ(t)

)
≡ 0

and, accordingly,

(3.5) λ(t0 + T )Tδ(t0 + T ) = λ(t0)
Tδ(t0).

Why is the adjoint system useful? Regard η as a parameter and assume that
we are interested in finding ωTδ(t0 + T ) for fixed ω ∈ R

d, i.e., in estimating, at the
final time t0 + T , the change along the direction of ω of the solution of (3.1) induced
by the initial perturbation α �→ α + η. (For instance, choosing ω equal to the rth
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η

λ

ωδ

Fig. 1 Two-species Lotka–Volterra system dx1/dt = x1 − 0.2x1x2, dx2/dt = −2x2 + 0.2x1x2 (su-
perscripts indicate components of vectors); x1 and x2 represent, in suitable units, num-
bers of prey and predators, respectively. The solid lines give, for 0 ≤ t ≤ 1, the unper-
turbed solution x(t) with initial condition x(0) = (15, 10) and a perturbed solution x̄(t) with
x̄(0) = x(0)+ η = (16, 10): an increase in the number of prey at t = 0 leads at t = 1 to a de-
crease in the number of prey and to an increase in the number of predators. The stars are the
points x(t)+δ(t), t = 0, 0.05, 0.10, . . . , where δ solves the variational system; they almost co-
incide with the corresponding values of the perturbed solution x̄(t). In particular, the change
in the number of prey, x̄1(1) − x1(1), is very well approximated by δ1(1) = −0.1786 . . . ,
i.e., by the inner product ωTδ(1), where ω denotes the first coordinate vector (1, 0) = ∇x1.
The variational equations move η = δ(0) forward to δ(1). The dots show how the adjoint
equations move ω = λ(1) backward to yield λ(0) = ∇x(0)x

1(1), the gradient of x1 as a func-

tion of x(0). The inner product ωTδ(1) exactly coincides with λ(0)Tη. In a Lotka–Volterra
system with d species, a single integration of the adjoint system is necessary to find the
d-dimensional gradient of x1(1) as a function of x(0).

coordinate vector would correspond to estimating the change in the rth component
of the solution.) When x(t) is known, we solve (3.3) with the final condition λ(t0 +
T ) = ω and note that the quantity we seek coincides with λ(t0)

Tη because, from the
proposition,

ωTδ(t0 + T ) = λ(t0 + T )Tδ(t0 + T ) = λ(t0)
Tδ(t0) = λ(t0)

Tη.

The advantage of this procedure is that, as η varies, the computation of λ(t0)
Tη

requires only one integration of (3.3); the computation of ωTδ(t0 +T ) via (3.2) would
need a fresh integration for each new choice of η (see Figure 1).

As an application, consider the task of computing the gradient, ∇αC(x(t0+T )), of
a real-valued function C with respect to the initial data α. We set ω = ∇xC(x(t0+T ))
in the preceding construction and successively let the rth coordinate vector, r =
1, . . . , d, play the role of η to conclude that the gradient sought has the value λ(t0),
where λ(t) is the solution of the adjoint system with final condition λ(t0 + T ) =
∇xC(x(t0 + T )). Only one integration is required to find d derivatives ∂/∂αr. The
adjoint system (3.3) “pulls back” gradients with respect to x(t0 + T ) into gradients
with respect to x(t0).
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3.2. The Continuous Problem: Lagrange Multipliers. We shall also need an
alternative derivation of the recipe ∇αC(x(t0 + T )) = λ(t0) found above. Since the
use of Lagrange multipliers (see, e.g., [14, section 2.5]) in this context (as distinct from
their use in minimization) might not be known to some readers, we give full details.

Define the Lagrangian functional L = L(α̂, x̂, λ̂0, λ̂) as

L = C(x̂(t0 + T ))− λ̂T0
(
x̂(t0)− α̂

)
−
∫ t0+T

t0

λ̂(t)T
( d
dt
x̂(t)− f(x̂(t), t)

)
dt,

where α̂, λ̂0 are arbitrary vectors, and x̂, λ̂ are arbitrary functions. A key point here
is that, whenever x̂ is a solution of (3.1) and x̂(t0) = α̂, the value of L(α̂, x̂, λ̂0, λ̂)
coincides with C(x̂(t0 + T )).

If η and δ are the variations of α̂ and x̂, respectively, the variation δL of the
functional is

δL = ∇xC(x̂(t0 + T ))Tδ(t0 + T )− λ̂T0
(
δ(t0)− η

)

−
∫ t0+T

t0

λ̂(t)T
( d
dt
δ(t)− ∂xf(x̂(t), t)δ(t)

)
dt,

so that, after integration by parts,

δL =
(
∇xC(x̂(t0 + T ))− λ̂(t0 + T )

)T
δ(t0 + T ) + λ̂(t0)

Tη

+
(
λ̂(t0)− λ̂0

)T
δ(t0)

+

∫ t0+T

t0

( d
dt
λ̂(t)T δ(t) + λ̂(t)T ∂xf(x̂(t), t)δ(t)

)
dt.

We now make choices λ0, λ (depending on α̂ and x̂) for the (so far arbitrary) mul-

tipliers λ̂0, λ̂. We define λ as the solution of (3.3) (with x̂(t) in lieu of x(t)) subject
to the final condition λ(t0 + T ) = ∇xC(x̂(t0 + T )) and set λ0 = λ(t0). These choices
ensure that, at α̂, x̂, the intermediate variation δ(t) does not contribute to δL; we
then have (at α̂, x̂) δL = λ(t0)

Tη or, in other words, λ(t0) is the gradient of L as
a function of α̂. Since, as pointed out above, if x̂ solves (3.1) and x̂(t0) = α̂, then

L(α̂, x̂, λ̂0, λ̂) = C(x̂(t0+T )), we conclude that λ(t0) = ∇αC(x(t0+T )) as we aimed to
prove. The original system (3.1) and the initial condition may also be retrieved from

the Lagrangian by setting to zero the variations with respect to λ̂ and λ̂0, respectively.
The same approach can also be used if we wish to make things more involved

and introduce the velocity (d/dt)x̂ = k̂ as a new argument in the Lagrangian. To
simplify the notation we shall hereafter drop all hats, so that the same symbols α, x,
etc., will be used for the arbitrary arguments of the Lagrangian (that previously were
written as α̂, x̂, etc.) and for the corresponding values at the solution sought. When
the velocity is considered as a new argument, the Lagrangian becomes

L = C(x(t0 + T ))− λT0
(
x(t0)− α

)

−
∫ t0+T

t0

λ(t)T
( d
dt
x(t)− k(t)

)
dt

−
∫ t0+T

t0

Λ(t)T
(
k(t)− f(x(t), t)

)
dt.(3.6)

Taking variations and choosing the multipliers to cancel the undesired contributions
to δL leads to the relations λ(t0) = ∇αC(x(t0+T )), λ(t0 +T ) = ∇xC(x(t0 +T )), and
λ0 = λ(t0) found above and, additionally, to Λ(t) ≡ λ(t) (as expected).
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3.3. The Discrete Problem: RK Integration. Let us suppose that (3.1) has
been discretized by means of the RK scheme (2.1) to obtain, n = 0, . . . , N − 1,

xn+1 = xn + hn

s∑
i=1

bikn,i,(3.7)

kn,i = f(Xn,i, tn + cihn), i = 1, . . . , s,(3.8)

Xn,i = xn + hn

s∑
j=1

aijkn,j , i = 1, . . . , s,(3.9)

and that, in analogy with the preceding material, we wish to estimate the impact on
xN of a perturbation of the initial condition x0 = α. Linearization of the RK equations
(3.7)–(3.9) around xn, Xn,i shows that the perturbed RK solution x̄n, n = 0, . . . , N ,
satisfies x̄n = xn + δn + o(|η|) with

δn+1 = δn + hn

s∑
i=1

bidn,i,(3.10)

dn,i = ∂xf(Xn,i, tn + cihn)Δn,i, i = 1, . . . , s,(3.11)

Δn,i = δn + hn

s∑
j=1

aijdn,j , i = 1, . . . , s(3.12)

(the vectors dn,i and Δn,i are the variations in the slopes kn,i and stages Xn,i, respec-
tively).

On the other hand, if we regard the given differential equations (3.1) together with
the variational equations (3.2) as a 2d-dimensional system for the vector y = [xT, δT]T

and apply the RK scheme as in (2.4)–(2.6), we also arrive at (3.7)–(3.12). We have
thus proved the following result, as in, say, [19, Chapter VI, Lemma 4.1]:

Theorem 3.2. The process of RK discretization commutes with forming varia-
tional equations: the RK discretization of the continuous variational equations (3.1)–
(3.2) yields the variational equations (3.7)–(3.12) for the RK discretization.

The situation for the adjoint equations is not quite as neat (cf. [37]). In order to
find the discrete sensitivity ωTδN we would like to numerically integrate (3.3) with
final condition λN = ω in such a way that (cf. (3.5))

(3.13) λTNδN = λT0 δ0.

Although in the actual computation the approximations λn can be found without
using (3.10)–(3.12) for δn (this is the whole point behind the use of adjoints), let us
consider for a moment the 3d-dimensional system (3.1)–(3.3) for the extended vector
y = [xT, δT, λT]T. Then the condition (3.13) demands that we integrate this large
system in such a way as to exactly preserve the invariant I(y(t), y(t)) = λ(t)Tδ(t) in
(3.4). According to Theorem 2.1, we may achieve this goal by using the RK scheme
(2.1) provided that it is symplectic. This results in the relations (3.7)–(3.12) in tandem
with (n = 0, . . . , N − 1)

λn+1 = λn + hn

s∑
i=1

bi�n,i,(3.14)

�n,i = −∂xf(Xn,i, tn + cihn)
TΛn,i, i = 1, . . . , s,(3.15)
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Table 1 Euler integration on a uniform grid of the x, δ, λ equations for the Lotka–Volterra problem
in Figure 1. The lack of symplecticness of the integrator results in λT

0η being different
from ωTδN : the discretization of the adjoint equations does not provide the adjoint of the
discretization. The convergence of the integrator implies that, as the grid is refined, λT

0η
and ωTδN are O(h) away from their common limit λ(0)Tη = ωTδ(1) ≈ −0.1786, as borne
out by the last two columns. When, alternatively, the λ equations are integrated with the
Radau method (3.24) the numerical results for λT

0η coincide with those displayed in the
third column of the table.

h λT
0η ωTδN λT

0η − λ(0)Tη ωTδN − ωTδ(1)

0.100 −0.1070 −0.2497 0.0717 −0.0710
0.050 −0.1401 −0.2135 0.0385 −0.0348
0.025 −0.1588 −0.1959 0.0199 −0.0172

Λn,i = λn + hn

s∑
j=1

aij�n,j, i = 1, . . . , s.(3.16)

Let us summarize the preceding discussion in the following theorem.
Theorem 3.3. Assume that the 3d-dimensional system (3.1)–(3.3) is discretized

by a symplectic RK scheme (2.1). Then, for any RK solution, (3.13) holds. In
particular, for the RK solution specified by the initial condition x0 = α, δ0 = η
together with the final condition λN = ω,

ωTδN = λT0 η.

For a nonsymplectic RK scheme of order ρ, ωTδN and λT0 η are approximations of
order ρ to their continuous counterparts ωTδ(t0 + T ) and λ(t0)

Tη, respectively, and
therefore λT0 η will be an O(hρ) approximation to the true sensitivity ωTδN of the
discrete solution. See the example in Table 1 where the Euler integrator was chosen
to have large errors and show clearly the difference between ωTδN and λT0 η.

In practice, the variational equations (3.2) do not need to be integrated. We
successively find x0, x1, . . . , xN via (3.7)–(3.9) and, once these are available, we
set λN = ω and compute λN−1, . . . , λ0 from (3.14)–(3.16) taken in the order n =
N − 1, N − 2, . . . , 0. For this reason, it may be advisable to rewrite (3.14)–(3.16) in
the following “reflected” form (see section 7) that emphasizes that the approximation
λn at tn is to be found from the approximation λn+1 at tn+1:

λn = λn+1 + (−hn)
s∑

i=1

bi�n,i,(3.17)

�n,i = −∂xf(Xn,i, tn+1 + (1− ci)(−hn))TΛn,i, i = 1, . . . , s,(3.18)

Λn,i = λn+1 + (−hn)
s∑

j=1

(bj − aij)�n,j, i = 1, . . . , s.(3.19)

In analogy to the continuous case, for a symplectic RK discretization, ∇αC(xN )
may be computed by finding λ0 from the recursion (3.14)–(3.16) (or (3.17)–(3.19))
with λN = ∇xC(xN ).

3.4. The Discrete Problem: PRK Integration. Theorem 3.3 may be generalized
easily with the help of Theorem 2.4. In what follows it is understood that when
using the PRK scheme the x, δ equations are integrated with the set of coefficients
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(2.1) (so that the δn are exactly the variations in xn) and the λ equations with the
set of coefficients (2.9). In other words, the system is partitioned as q = [xT, δT]T,
p = λ.1 This approach leads to (3.7)–(3.12) supplemented by the relations obtained
by replacing the lowercase coefficients aij , bi, ci in (3.14)–(3.16) by their uppercase
counterparts:

λn+1 = λn + hn

s∑
i=1

Bi�n,i,(3.20)

�n,i = −∂xf(Xn,i, tn + Cihn)
TΛn,i, i = 1, . . . , s,(3.21)

Λn,i = λn + hn

s∑
j=1

Aij�n,j, i = 1, . . . , s.(3.22)

The generalization of Theorem 3.3 is as follows.
Theorem 3.4. Assume that the 3d-dimensional system (3.1)–(3.3) is discretized

by a symplectic PRK scheme (2.1), (2.9). Then (3.13) holds for any PRK solution.
In particular, for the PRK solution specified by the initial condition x0 = α, δ0 = η
together with the final condition λN = ω,

ωTδN = λT0 η.

Once more, for a symplectic PRK discretization, the gradient ∇αC(xN ) coincides
with λ0 if λN = ∇xC(xN ). For a nonsymplectic discretization of the adjoint equations,
λ0 is a only an approximation to ∇αC(xN ). For this reason nonsymplectic PRK
discretizations cannot be implied by the direct differentiation procedure described in
section 3.5.

How do we compute exactly (i.e., up to round-off) the sensitivity ωTδN with
the help of the adjoint system when the x integration has been performed with a
nonsymplectic RK scheme (2.1) and Theorem 3.3 cannot be invoked? Theorem 3.4
suggests a way. For simplicity we only look at the case where in (2.1) none of the
weights bi, i = 1, . . . , s, vanishes (for the general situation, see the appendix). From
the coefficients in (2.1) we compute a new set

(3.23) Aji = bi − biaij/bj , i, j = 1, . . . , s, Bi = bi, Ci = ci i = 1, . . . , s.

In view of (2.16)–(2.17), we now have a PRK scheme for the discretization of (3.1)–
(3.3) and Theorem 3.4 applies. If (2.1) is explicit, the computations required to
descend from λN to λ0 are also explicit. Here is the simplest example. Assume that
the x equations are integrated with the explicit Euler rule (s = 1, a11 = 0, b1 = 1,
c1 = 0). With that choice, Xn,1 = xn and

xn+1 = xn + hnf(xn, tn).

The trick described above yields A11 = 1, B1 = 1, C1 = 0. Accordingly, the stage

1A variation on this theme is presented in [28, section 6] in the context of optimal control
problems. There, the x equations are themselves partitioned and integrated by means of a symplectic
PRK.
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Λn,1 coincides with λn+1 and using (2.11) we see that the required λ integrator is

(3.24) λn+1 = λn − hn∂xf(xn, tn)
Tλn+1.

Obviously this is not the explicit Euler rule, because λ in the right-hand side appears
at time tn+1, and, unless the problem is autonomous, it is not the implicit Euler rule
either because t is evaluated at the retarded time tn. (For RK enthusiasts only: the
coefficients A11 = 1, B1 = 1, C1 = 0 correspond to the Radau IA method of one stage
introduced by Ehle [22, section IV.5].)

In the particular situation where the x integration has been performed by a sym-
plectic RK method (symplectic RK methods possess nonvanishing weights [34, section
8.2]), the recipe (3.23) will lead to Aij = aij and the resulting PRK method will coin-
cide with the original RK method. In the general case, for (3.13) to hold, the adjoint
equations for λ have to be integrated with coefficients different from those used for the
original equations for x.

There are hidden difficulties with the use of this recipe. When stability is an
issue, as in stiff problems or time-discretizations of partial differential equations, it is
necessary to investigate carefully the stability behavior of the λ integration [37]. On
the other hand, and as noted before, the order of accuracy of the overall PRK, x, λ,
integrator may be lower than the order of the RK method (2.1) for the x we started
with. When investigating the order of the overall PRK method we have to take into
account that the right-hand side of (3.1) is independent of λ and the right-hand side
of (3.3) is linear in λ. These features imply that many elementary differentials vanish
and that, accordingly, it is not necessary to impose the order conditions associated
with them. Furthermore, we have to take into account the reduction in the number
of independent order conditions implied by symplecticness.

3.5. The Discrete Problem: Automatic Differentiation. According to the pre-
ceding discussion, for any RK integration of (3.1) with nonzero weights, it is possible
to find the gradient∇αC(xN ) by means of an integration of the adjoint equations with
the coefficients (3.23). It is, however, clear that it is also perfectly possible to compute
∇αC(xN ) by repeatedly using the chain rule in (3.7)–(3.9), as we shall do presently.
Since C is scalar and α ∈ R

d, where d is possibly large, reverse accumulation [15]2

is preferred, and this can be performed with the help of Lagrange multipliers as in
section 3.2.

We shall need the following auxiliary result.
Lemma 3.5. Suppose that the mapping Ω : Rd+d′ → R

d′
is such that the Jacobian

matrix ∂γΩ is invertible at a point (α0, γ0) ∈ R
d × R

d′
, so that in the neighborhood

of α0, the equation Ω(α, γ) = 0 defines γ as a function of α. Consider a real-valued
function in R

d of the form ψ(α) = Ψ(α, γ(α)), for some Ψ : Rd+d′ → R. There exists

2Recall that the idea of reverse accumulation is as follows. Imagine an application of the chain
rule that leads to a product J3J2J1, where J3 is the Jacobian matrix ∂(z)/∂(y) of the final variables
z with respect to some intermediate variables y and, similarly, J2 = ∂(y)/∂(x), J1 = ∂(x)/∂(w) (w
are the independent variables). When the dimension of z is much lower than the dimensions of x,
y, and w, computing the “short” (few rows) matrices K = J3J2 and KJ1 (reverse accumulation)
is much cheaper than first forming the “tall” (many rows) matrix L = J2J1 and then J3L (for-
ward accumulation). The forward order J3(J2J1) finds successively the Jacobians J1 = ∂(x)/∂(w),
J2J1 = ∂(y)/∂(w), and J3J2J1 = ∂(z)/∂(w). In reverse mode, the intermediate Jacobians are
J3 = ∂(z)/∂(y), J3J2 = ∂(z)/∂(x), and J3J2J1 = ∂(z)/∂(w). The analogy with the δ and λ
equations is manifest.
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a unique vector λ0 ∈ R
d′

such that (superscripts denote components)

∇αψ|α0 = ∇αΨ|(α0,γ0) +
d′∑

r=1

λr0∇αΩ
r|(α0,γ0),

0 = ∇γΨ|(α0,γ0) +

d′∑
r=1

λr0∇γΩ
r|(α0,γ0).

Proof. The second requirement may be rewritten as

(3.25) (∂γΩ)
Tλ0 = −∇γΨ,

with the matrix and right-hand side evaluated at α0, γ0. This is a linear system that
uniquely defines λ0. To check that the vector λ0 we have just found satisfies the first
requirement, we use the chain rule

∂αψ|α = ∂αΨ|(α,γ(α)) + ∂γΨ|(α,γ(α))∂αγ|α,

differentiate Ω(α, γ(α)) = 0 to get

∂αΩ|(α,γ(α)) + ∂γΩ|(α,γ(α))∂αγ|α = 0,

evaluate at α0, and eliminate ∂αγ|α0 .
It is useful to rephrase the lemma by introducing the Lagrangian

L(α, γ, λ) = Ψ(α, γ) + λTΩ(α, γ),

so that the relation Ω(α0, γ0) = 0 and the equation (3.25) that defines the multiplier
are, respectively,

∇λL(α, γ, λ)|(α0,γ0,λ0) = 0, ∇γL(α, γ, λ)|(α0,γ0,λ0) = 0,

while the gradient we seek is computed as

∇αψ|α0 = ∇αL(α, γ, λ)|(α0,γ0,λ0).

Note that these developments mimic the material in section 3.2, with γ playing the
part of x̂, γ0 the part of x, etc.

In numerical differentiation, ψ is the function whose gradient is to be evaluated,
the components of α are the independent variables, and the components of γ represent
intermediate stages toward the computation of ψ. (For instance, in the simple case
(d = 1) where ψ(α) = α

√
1 + α exp(α) cos(exp(α)), we may set the constraints Ω1 =

γ1 − exp(α) = 0, Ω2 = γ2 − cos(γ1) = 0, Ω3 = γ3 − αγ1γ2 = 0, Ω4 = γ4 −
√
1 + γ3,

ψ = αγ4.) The interpretation of the γr as successive stages implies that, in practice,
Ω will possess a lower triangular structure: Ωr will only involve γ1, . . . , γr. The
evaluation of ψ successively finds the numerical values of γ1, . . . , γd

′
in a forward

fashion. The numerical values of the components λr0 are then found by backward
substitution in the upper-triangular linear system (3.25), and finally the lemma yields
the required value of the gradient. If Ψ and Ω have been judiciously chosen, then the
mappings ∇αΨ, ∇γΨ, ∇αΩ

r, ∇αΩ
r required to compute the gradient will have simple

analytic expressions, easily derived by a human or by a computer program.
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We now apply this technique to find ∇αC(xN ). In (3.7)–(3.9) we let (the compo-
nents of) xn, n = 0, . . . , N , and kn,i, n = 0, . . . , N − 1, i = 1, . . . , s, play the role of
(the components of) γ and introduce the Lagrangian

C(xN )− λT0 (x0 − α) −
N−1∑
n=0

hnλ
T
n+1

[ 1

hn
(xn+1 − xn)−

s∑
i=1

bikn,i

]

−
N−1∑
n=0

hn

s∑
i=1

biΛ
T
n,i

[
kn,i − f(Xn,i, tn + cihn)

]
,(3.26)

where we understand that the stage vectors Xn,i are expressed in terms of the xn and
kn,i by means of (3.9). Clearly this discrete Lagrangian is the natural RK approxi-
mation to (3.6).

A straightforward application of Lemma 3.5 now directly yields the following
result, where we note that the hypothesis bi 	= 0, i = 1, . . . , s, is natural because
when, say, b1 = 0, the Lagrangian (3.26) does not incorporate the constraint kn,1 =
f(Xn,1, tn + c1hn). (The case of zero weights is considered in the appendix.)

Theorem 3.6. Consider the RK equations (3.7)–(3.9), with bi 	= 0, i = 1, . . . , s.
The computation of ∇αC(xN ) based on the use of Lemma 3.5 with Lagrangian (3.26)
leads to the relations (3.20)–(3.22), with the coefficients Aij, Bi, Ci given by (3.23),
together with ∇xC(xN ) = λN and ∇αC(xN ) = λ0.

Note that, in the scenario of the theorem, λN , λN−1, λN−2, . . . successively yield
the gradients ∇xNC(xN ), ∇xN−1C(xN ), ∇xN−2C(xN ), . . . . It is well known that the
reverse mode of differentiation implies an integration of the adjoint equations. The
theorem shows additionally that, for an RK computation of x, the implied adjoint
equation integration is such that the x, λ system is discretized with a symplectic PRK
method. Recall that we showed in the preceding subsection that nonsymplectic PRK
methods cannot appear in this setting as they do not find ∇αC(xN ) exactly. In a way,
the chain rule provided us with symplectic integration before the latter was invented.

A further remark: the use of the chain rule with forward accumulation implies
an RK integration of the variational equations (3.2) with the original RK coefficients
(2.1). In agreement with a previous discussion, the forward mode is more expen-
sive; each partial derivative ∂/∂αr, r = 1, . . . , d, in the gradient requires a separate
integration.

4. A Simple Optimal Control Problem. We explore next the role of symplectic
methods when integrating the differential equations that arise in some optimal control
problems [38], [41], [42]. In this section we look at the simplest case, where the
developments are very similar to those just considered; more general problems are
treated in the next section.

4.1. The Continuous Problem. Consider now the d-dimensional system

(4.1)
d

dt
x = f(x, u, t),

where x is the state vector and u a ν-dimensional vector of controls. Our aim is to
find functions x(t) and u(t), subject to (4.1) and the initial condition x(t0) = α ∈ R

d,
so as to minimize a given cost function C(x(t0 + T )).

The variational equation is (cf. (3.2))

(4.2)
d

dt
δ = ∂xf(x(t), u(t), t) δ + ∂uf(x(t), u(t), t) ζ,
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where ∂u is the Jacobian matrix of f with respect to u and ζ denotes the variation in
u; see, e.g., [38, section 2.8], [41, section 5.1]. Now δ(t0) = 0, as x(t0) remains nailed
down at α.

An adjoint system (cf. (3.3))

(4.3)
d

dt
λ = −∂xf(x(t), u(t), t)T λ

and constraints

(4.4) ∂uf(x(t), u(t), t)
Tλ(t) = 0

are introduced; see, e.g., [38, section 9.2]. As was the case with the adjoint in (3.3),
the actual form of these equations is chosen to ensure the validity of the conservation
property (3.5). More precisely, we have the following result.

Proposition 4.1. For each choice of vectors x, u, δ, ζ, λ and real t,

(4.5)
(
− ∂xf(x, u, t)

T λ
)T

δ + λT
(
∂xf(x, u, t)δ + ∂uf(x, u)ζ

)
= 0.

Therefore, if δ(t), λ(t), ζ(t) satisfy (4.2)–(4.4), then (3.4)–(3.5) hold.
The use of the proposition is as follows. We solve the two-point boundary problem

given by the states+costates system (4.1), (4.3)–(4.4) with initial/final conditions

(4.6) x(t0) = α, λ(t0 + T ) = ∇C(x(t0 + T )).

Then the variation δ(t0 + T ) at the end of the interval is orthogonal to the gradient
of the cost, since, from (3.5),

(4.7) ∇C(x(t0 + T ))Tδ(t0 + T ) = λ(t0 + T )Tδ(t0 + T ) = λ(t0)
Tδ(t0) = 0.

This of course means that any solution [x(t)T, λ(t)T, u(t)T]T of the boundary value
problem satisfies the first order necessary condition for C to attain a minimum. As in
sensitivity analyses, the costates λ may be interpreted as Lagrange multipliers.

It is customary to introduce the function H(x, λ, u, t) = λTf(x, u, t) (pseudo-
Hamiltonian) so that (4.1), (4.3)–(4.4) take the very symmetric form

(4.8)
d

dt
x = ∇λH,

d

dt
λ = −∇xH, ∇uH = 0.

4.2. The Discrete Problem: Indirect Approach. In the indirect approach, ap-
proximations to the optimal states, costates, and controls are obtained by discretiza-
tion of the boundary value problem (4.1), (4.3)–(4.4), (4.6). Note that we have to
tackle a differential-algebraic system [22, Chapter VI.1], with the controls being alge-
braic variables since (d/dt)u does not feature in any of the equations (4.1), (4.3)–(4.4).
Under suitable technical assumptions (invertibility of the second derivative of H with
respect to u), the system is of index one. This means that the constraints (4.4) may
be used to express, locally around the solution of interest, the algebraic variables as
functions of the differential variables, u = Φ(x, λ, t). (When applying the implicit
function theorem, the relevant Jacobian matrix is the Hessian ∂uuH and this will
generically be positive definite if Pontryagin’s principle [41, section 7.2] holds, so that
H(x, λ, ·, t) is minimized by Φ(x, λ, t).) For a system of index one suppose that the
right-hand sides of (4.1) and (4.3) have been written as functions of x, λ, and t by set-
ting u = Φ(x, λ, t), thus transforming the differential-algebraic system into a system
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of ordinary differential equations. In fact, the transformed system is the canonical
Hamiltonian system with Hamiltonian function H(x, λ, t) = H(x, λ,Φ(x, λ, t), t), be-
cause the chain rule and ∇uH = 0 imply that, in (4.8), ∇xH(x, λ, u, t) = ∇xH(x, λ, t)
and ∇xH(x, λ, u, t) = ∇xH(x, λ, t). This Hamiltonian system may be discretized with
the PRK scheme (2.1), (2.9). (Recall that RK schemes are included as particular cases
where both sets of coefficients coincide.) The discrete equations are solved to find the
approximations xn and λn to x(tn), λ(tn) and finally the approximations to the con-
trols are retrieved as un = Φ(xn, λn, tn).

The analytic expression of the implicit function Φ will in general not be available,
so it will not be possible to find H explicitly. This is not a hindrance: the approx-
imations xn, λn, un that one would find by a PRK integration of the Hamiltonian
system can be found in practice as solutions of the set of equations (4.9)–(4.16) below,
obtained by direct discretization of the differential-algebraic format (4.1), (4.3)–(4.4).
The equivalence between the two approaches, differential and differential-algebraic, is
seen by eliminating the controls from (4.9)–(4.16); see [22, Chapter VI.1].

The discrete equations are (n = 0, . . . , N − 1)

xn+1 = xn + hn

s∑
i=1

bikn,i,(4.9)

kn,i = f(Xn,i, Un,i, tn + cihn), i = 1, . . . , s,(4.10)

Xn,i = xn + hn

s∑
j=1

aijkn,j , i = 1, . . . , s,(4.11)

λn+1 = λn + hn

s∑
i=1

Bi�n,i,(4.12)

�n,i = −∂xf(Xn,i, Un,i, tn + Cihn)
TΛn,i, i = 1, . . . , s,(4.13)

Λn,i = λn + hn

s∑
j=1

Aij�n,j , i = 1, . . . , s,(4.14)

∂uf(Xn,i, Un,i, tn + Cihn)
TΛn,i = 0, i = 1, . . . , s,(4.15)

together with (n = 0, . . . , N)

(4.16) ∂uf(xn, un, tn)
Tλn = 0

and the boundary conditions x0 = α, λN = ∇C(xN ) from (4.6).
What is the accuracy of this technique? We encounter the same difficulty as in

the preceding section, relevant here is the order of the overall PRK scheme rather than
the (possibly higher) order of the RK coefficients (2.1) used for the state variables. In
the preceding section, the approximations xn were found independently of the λn and,
accordingly, the possible order reduction did not affect them. In the optimal control
problem, states and costates are coupled, and any order reduction will harm both of
them. This was first noted by Hager, who also provided relevant counterexamples; see
[17, Table 3]. Hager [17, Proposition 6.1] also shows that there is no order reduction
for explicit fourth order RK schemes with positive weights.

The obvious analogue of Theorem 3.2 holds: the variations δn in the discrete
solution xn satisfy the equations that result from discretizing (4.2) with the coefficients
(2.1). These equations are (3.10) and (3.12), where now

(4.17) kn,i = ∂xf(Xn,i, Un,i, tn + cihn)Δn,i + ∂uf(Xn,i, Un,i, tn + cihn)Zn,i

(Δn,i, Zn,i are the stages associated with the variables δ and ζ).
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Assume next that the PRK method is symplectic. Recall that symplecticness may
be the result of choosing the RK coefficients (2.1) (bi 	= 0, i = 1, . . . , s) for the state
variables and retrieving from (3.23) the coefficients (2.9) for the integration of the
adjoint system. The symplecticness of the integrator makes it possible to formulate
a discrete analogue of Proposition 4.1.

Theorem 4.2. Assume that xn, λn, un, n = 0, . . . , N , satisfy (4.9)–(4.16) arising
from the application of a symplectic PRK method and that, furthermore, δn, n =
0, . . . , N , δ0 = 0 are the variations in xn. Then, for n = 0, . . . , N − 1,

λTn+1δn+1 = λTnδn.

The PRK scheme may be a symplectic RK scheme or the result of choosing freely the
RK coefficients (2.1), bi 	= 0, i = 1, . . . , s, for the states and then using (3.23) to
determine the coefficients for the integration of the costates.

Proof. Use Lemma 2.5 with S(q, p) = λTδ. This results in

λTn+1δn+1 − λTnδn = hn
∑
i

bi(Λ
T
n,ikn,i + �Tn,iΔn,i),

where kn,i and �n,i come from (4.17) and (4.13), respectively. According to (4.5), each
of the terms being summed vanishes.

When the boundary conditions (4.6) are imposed,

∇C(xN )TδN = λTN δN = λT0 δ0 = 0,

which means that the discrete solution satisfies the first order necessary conditions for
C(xN ) to achieve a minimum subject to the constraints (4.9)–(4.11) and x0 = α. In
this way we have proved that symplectic discretization commutes [29] with the process
of forming necessary conditions for minimization:

Theorem 4.3. Let {xn}, {λn}, {un} be a solution of (4.9)–(4.16) arising from
discretizing with a symplectic PRK integrator the necessary conditions for the contin-
uous optimal control problem. Then {xn}, {λn}, {un} satisfy the necessary conditions
for C(xN ) to achieve a minimum subject to the discrete constraints (4.9)–(4.11) and
x0 = α. The PRK scheme may be a symplectic RK scheme or the result of choosing
freely the RK coefficients (2.1), bi 	= 0, i = 1, . . . , s, for the states and then using
(3.23) to determine the coefficients for the integration of the costates.

When the states+costates system is integrated by means of a nonsymplectic PRK
scheme, xN will not satisfy the necessary conditions for C to be minimized subject to
the constraints (4.9)–(4.11) and x0 = α. Therefore, nonsymplectic PRK discretiza-
tions cannot be obtained via the direct approach considered next.

4.3. The Discrete Problem: Direct Approach. The direct approach (see, e.g.,
[41, Chapter 9]) based on RK discretization begins by applying the scheme (2.1) to the
differential equation (4.1) to get (4.9)–(4.11). Then these equations and x0 = α are
seen as constraints of a finite-dimensional optimization problem for the minimization
of C(xN ).

We use the standard method of Lagrange multipliers based on the Lagrangian
in (3.26), trivially adapted to the present circumstances by letting f depend on the
controls. The method leads in a straightforward way to the following result, first
proved by Hager [17]; see also [4]. However, [17] does not point out that the relations
(3.23) correspond to symplecticness. Furthermore, [17] and [4] do not use a discrete
Lagrangian obtained by discretization of the continuous Lagrangian, and they along
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with [7] do not point out that the occurrence of symplectic schemes in this context is
really due to the conservation property (3.5).

Theorem 4.4. The first order necessary conditions for the minimization of
C(xN ) subject to x0 = α and (4.9)–(4.11), bi 	= 0, i = 1, . . . , s, are x0 = α and
∇C(xN ) = λN together with (4.9)–(4.15), with the coefficients Aij , Bi, Ci given by
(3.23).

In other words, when the direct approach is used, we arrive at exactly the same set
of equations for xn, λn, Xn,i, Λn,i, Un,i we obtained, with the help of RK technology,
via the indirect approach in Theorem 4.3. Observe that the direct approach does not
provide “natural” approximations un to u(tn). Hager [17] suggests defining un by
locally minimizing H(xn, λn, u, tn), which leads to (4.16). He also notes [17, Table
4] that the order of convergence of the control stages Un,i might be lower than that
in un, which is not at all surprising: typically, internal stages are less accurate than
end-of-step approximations. We remark that, in the direct approach and once the
RK method for x has been chosen, the minimization of C implicitly provides the
“right” coefficients Aij , Bi, Ci to be used in the integration of the costates in order to
ensure symplecticness of the overall PRK integrator. In the indirect approach, those
coefficients have to be determined using the relations (2.16)–(2.17) and Theorem 2.4.

While the direct and indirect approaches can be seen as mathematically equiva-
lent, each has its own appeal. The direct approach suggests solving the discrete PRK
equations with the help of optimization techniques, which might be an efficient choice
in practice. On the other hand, the direct approach “hides” the PRK integration of
the costates, a fact that might lead to the false impression that the order of accuracy
of the overall procedure coincides with the order of the RK scheme used to discretize
the differential constraint (4.1). This was emphasized in [17], where the order of the
PRK method (2.1), (2.9), (3.23) is called the order of the RK method (2.1) for optimal
control problems. A discussion of the advantages of the direct and indirect approaches
is outside our scope here; see, e.g., [41, Chapter 9], [10].

5. Some Extensions. We now consider more general optimal control problems.
We need to generalize Theorems 2.1 and 2.4 to the situation where the quantities I
or S are not constant along trajectories of the system, but vary in a known manner.

5.1. Generalized Conservation. In this section we give simple generalizations
of Theorems 2.1 and 2.4. Only Theorem 5.2 will be proved; the other proof is very
similar.

In order to better understand Theorem 5.1, we look at the case where y comprises
positions and velocities of a mechanical system and I is the kinetic energy. Conserva-
tion of energy demands that the rate of change of I coincides with the rate of change
(power) ϕ of the work of the forces. Along each trajectory, the gain in kinetic energy
exactly matches the total work exerted by the forces.

Theorem 5.1. Assume that, for the differential system (2.2), there exist a real-
valued bilinear mapping I in R

D ×R
D and a real-valued function ϕ in R

D such that,
for each solution y(t),

d

dt
I(y(t), y(t)) = ϕ(y(t))

and, therefore,

I(y(t0 + T ), y(t0 + T ))− I(y(t0), y(t0)) =

∫ t0+T

t0

ϕ(y(t)) dt.
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If the system is integrated by means of a symplectic RK scheme as in (2.4)–(2.6), then

I(yN , yN )− I(y0, y0) =

N−1∑
n=0

hn

s∑
i=1

bi ϕ(Yn,i).

Note that the last sum, based on the RK quadrature weights bi and the approx-
imation y(tn + cihn) ≈ Yn,i, is the “natural” RK discretization of the corresponding
integral.

Theorem 5.2. Assume that, for the partitioned system (2.10), there exist a real-
valued bilinear map S in R

D−d ×R
d and a real-valued function ϕ in R

D−d ×R
d such

that for each solution

d

dt
S(q(t), p(t)) = ϕ(q(t), p(t))

and, therefore,

S(q(t0 + T ), p(t0 + T ))− S(q(t0), p(t0)) =

∫ t0+T

t0

ϕ(q(t), p(t)) dt.

If the system is integrated by means of a symplectic PRK scheme as in (2.11)–(2.13),
then

S(qN , pN )− S(q0, p0) =
N−1∑
n=0

hn

s∑
i=1

bi ϕ(Qn,i, Pn,i).

Proof. Use Lemma 2.5 and note that, under the present hypotheses,

S(kn,i, Pn,i) + S(Qn,i, �n,i) = ϕ(Qn,i, Pn,i),

because S(f(q, p, t), p) + S(q, g(q, p, t)) ≡ ϕ(q, p) (cf. the proof of Theorem 2.4).

5.2. Other Optimal Control Problems. Consider first the situation in section
4, but assume that the value x(t0) is not prescribed. Then δ(t0) is free and for (4.7)
to hold it is necessary to impose the condition λ(t0) = 0. This replaces in (4.6) the
initial condition x(t0) = α. The results in section 4 are valid in this setting after the
obvious modifications.

We next look at the case where (4.1) and x(0) = α are imposed, but the cost
function is given by

(5.1) C(x(t0 + T )) +

∫ t0+T

t0

D(x(t), u(t), t) dt

(this is often called a Mayer–Lagrange cost [41], as distinct from the Mayer cost
C(x(t0 + T )) envisaged before). The adjoint system and constraints are, respectively,

d

dt
λ = −∂xf(x, u, t)T λ−∇xD(x, u, t),

∂uf(x, u, t)
Tλ+∇uD(x, u, t) = 0.

These take the form given in (4.8) for the pseudo-Hamiltonian H = λT f +D.
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The conservation property (3.5) is replaced by the generalized conservation for-
mula

λ(t0 + T )Tδ(t0 + T )− λ(t0)
Tδ(t0)

+

∫ t0+T

t0

(
∇xD(x(t), u(t), t)Tδ(t) +∇uD(x(t), u(t), t)Tζ(t)

)
dt = 0,

which holds for arbitrary δ(t), λ(t) satisfying the variational equations (4.2), the
adjoint system, and the constraints. After setting δ(t0) = 0 and λ(t0+T ) = ∇C(x(t0+
T )), the generalized conservation formula expresses that the variation of the cost
vanishes, i.e., that the first order necessary conditions for the minimization hold.

For a symplectic PRK discretization of the algebraic-differential system, Lemma
2.5 may be used, as in the proof of Theorem 5.2, to show (the notation should be
clear by now) that

λTNδN − λT0 δ0 +

N−1∑
n=0

hn

s∑
i=1

bi

(
∇xD(Xn,i, Un,i, tn + cihn)

TΔn,i

+∇uD(Xn,i, Un,i, tn + cihn)
TZn,i

)
= 0.

By setting λN = ∇C(xN ) and δ0 = 0, this formula expresses the necessary condition
(orthogonality between gradient and variation) for the discrete solution to minimize
the discretized cost

C(xN ) +

N−1∑
n=0

hn

s∑
i=1

biD(Xn,i, Un,i).

Therefore, in this case as well, results corresponding to Theorems 4.3 and 4.4 hold for
a symplectic PRK discretization.

It is of course possible to combine the cost (5.1) with alternative boundary spec-
ifications. If x(t0) is not prescribed, then we have to impose λ(t0) = 0, as pointed
out above. If both x(t0) = α and x(t0 + T ) = β are imposed (in which case the term
C(x(t0 + T )) may be dropped from the cost), then λ(t0) and λ(t0 + T ) are both free.

5.3. Constrained Controls. Let us go back once more to the problem in section
4 and suppose that the controls u are constrained so that, for each t, it is demanded
that u(t) ∈ U , where U is a given closed, convex subset of Rν . Then (see, e.g., [17]),
the constraint (4.4) on λ has to be replaced by

u(t) ∈ U, −∂uf(x(t), u(t), t)Tλ(t) ∈ NU (u(t)),

where NU (u) is the cone of all vectors w ∈ R
ν such that, for each v ∈ U , wT(v−u) ≤ 0.

Proceeding as in Proposition 4.1, we see that now (d/dt)λ(t)Tδ(t) ≥ 0 and therefore

∇C(x(t0 + T ))Tδ(t0 + T ) ≥ 0,

which is the necessary condition for a minimum in the continuous problem. For a
PRK discretization of the boundary value for the states+costates system, the relation

(d/dt)λ(t)Tδ(t) ≥ 0

implies

kTn,iΛn,i +ΔT
n,i�n,i ≥ 0,

and therefore we may use Lemma 2.5 yet again to conclude that for symplectic PRK
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methods and if the weights bi are positive,

∇C(xN )TδN ≥ 0.

Once more, results similar to Theorems 4.3 and 4.4 hold. See [9] for order reduction
results.

6. Lagrangian Mechanics. Let us now consider Lagrangian mechanical systems
[2]. Denote by L(x, u, t) the Lagrangian function, where x ∈ R

d are the Lagrangian
coordinates and u = (d/dt)x the corresponding velocities. According to Hamilton’s
principle, the trajectories t �→ x(t) of the system are characterized by the fact that
they render stationary (often minimum) the action integral

∫ t0+T

t0

L(x(t), u(t), t) dt

among all curves t �→ x̄(t) with x̄(t0) = x(t0) and x̄(t0 + T ) = x(t0 + T ). This
may of course be viewed as a control problem that aims to make stationary (or even
maximum) the cost (5.1) with C ≡ 0 and D = −L, subject to the constraint ẋ = u
with fixed end-values x(t0) and x(t0 + T ). The theory in section 5 applies and the
pseudo-Hamiltonian is H(x, λ, u, t) = λTu − L(x, u, t). The constraint ∇uH = 0
reads λ = ∇uL(x, u, t); thus, the control costates coincide with the mechanical mo-
menta. The elimination of the controls with the help of Pontryagin’s principle would
determine u as a function Φ(x, λ, t) by maximizing (recall that we are trying to max-
imize the cost here!) the function u �→ H(x, λ, u, t). In mechanics, this corresponds
exactly with the theory of the Legendre transformation as presented in [2, section
14]: that theory shows that, if L is a strictly convex function of u, then, at given
x and t, the velocity vector u that corresponds to a given value of the momentum
λ is globally uniquely defined and maximizes λTu − L(x, u, t). In most mechanical
problems L = T (x, u, t) − V(x, t), with T and V the kinetic and potential energy,
respectively, where T is quadratic, positive-definite as a function of u, thus ensuring
the required convexity. In control theory the elimination of the controls u in the
pseudo-Hamiltonian H gives rise to the “control” Hamiltonian H; correspondingly, in
mechanics the Hamiltonian is defined as the result of expressing in λTu − L(x, u, t)
the velocities as functions of the momenta (and x and t). Finally, the evolution of the
states and costates (mechanical coordinates and momenta) obeys Hamilton’s canon-
ical equations. Hamiltonian solution flows are symplectic and, in this way, we have
traveled all the way from action minimization to symplecticness.

A similar journey may take place in the discrete realm. Choose any RK scheme
(2.1) with nonzero weights to discretize the differential constraint (d/dt)x = u and
minimize the associated discrete action

N−1∑
n=0

hn

s∑
i=1

bi L(Xn,i, Un,i, tn + cihn).

As we know from Theorem 4.3, this direct approach implies a symplectic PRK inte-
gration of the Hamiltonian system for x and λ, where the λ equations are integrated
with the coefficients (2.9). This is nothing more than the variational construction of
PRK symplectic integrators presented in the early paper [40] by Suris (see [26] for
more information on integrators based on the principle of least action; cf. [23]). In
this way, Hager’s result [17] may be viewed as an extension of Suris’s work to general
control problems.
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7. What Is the Adjoint of an RK Method? Reflecting and Transposing Coeffi-
cients. In this section we examine the relations between the preceding material and
the notion of the adjoint of an RK method.

Scherer and Türke [35] associated with the set of RK coefficients (2.1) two new sets
called the reflection and the transposition of the original. The reflected coefficients
are given by (i, j = 1, . . . , s)

arij = bj − aij , bri = bi, cri = 1− ci

and the transposed coefficients are defined, only for methods with nonzero weights bi,
by

atij = bjaji/bi, bti = bi, cti = 1− ci.

The operations of reflection and transposition commute: the transposition of the
reflection coincides with the reflection of the transposition, as both lead to

artij = bj − bjaji/bi, brti = bi, crti = ci.

Furthermore, both operations are involutions: each is its own inverse.
The paper [35] introduces the operations of reflection and transposition as al-

gebraic manipulations that make it possible to interrelate important families of RK
methods; no attempt is made there to interpret computationally the meaning of in-
tegrating with the reflected or transposed coefficients. What do reflection and trans-
position mean? The interpretation of reflection is well known [34, section 3.6], [21,
Chapter II, Theorem 8.3]: a step of length −hn with the reflected RK method in-
verts the transformation yn �→ yn+1 induced by a step of length hn with the original
method. In this paper we have seen this idea at work when moving from (3.14)–(3.16)
to (3.17)–(3.19). The formulas (3.23) give meaning to the idea of transposition: to
construct a symplectic PRK method out of a given RK method with nonvanishing
weights, the p coefficients are determined by reflecting and transposing the given q
coefficients. The transposed of the q coefficients are then those required to integrate
backward the p equations in, say, sensitivity analyses.

As a further illustration of these ideas, consider the linear nonautonomous system

d

dt
q =M(t)q,

d

dt
p = −M(t)Tp,

integrated with the PRK method (2.1), (2.9) (this is a Hamiltonian system). Since
p and q are uncoupled, this amounts to an RK integration of the q equations with
the coefficients (2.1) together with an RK integration of the p equations with the
coefficients (2.9). The system has the invariant qTp; Theorem 2.4 ensures that it will
be preserved if the p coefficients are the transposition of the reflection of the q coef-
ficients. Both sets of coefficients only coincide if q itself is integrated symplectically.
If we wish to preserve the invariant, a nonsymplectic integration of q is possible, but
then one has to compensate by integrating the p equations in an appropriate way
and the order and stability of the p integration have to be investigated separately.
Again, if the p equations are integrated backward in time, then preservation of qTp
requires that such a backward integration be performed with the transposition of the
coefficients used to propagate q forward.

We conclude this section with a remark on terminology. Monographs such as
[19] and [34] use the word adjoint to refer to the method with reflected coefficients.
Section 3 and our last comments suggest that, in order to proceed as in the differential
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equation case, it would have been better to keep the word adjoint for the reflected
and transposed method, and let reflected refer to what in [19] or [34] is called adjoint.
Using that alternative terminology, for RK schemes, symplecticness would simply be
self-adjointness.

8. Conclusion. Symplectic RK and PRK schemes preserve, by definition, the
symplectic form in phase space; in addition, they may be characterized as those RK
or PRK integrators that exactly preserve each quadratic invariant of the system being
integrated. In sensitivity analysis, optimal control, and other areas, adjoint systems
are introduced and possess paramount importance; these adjoints are defined so as
to preserve the key quadratic invariant (3.5). Therefore, there are tight connections
between those areas and the theory of symplectic integration; we hope the present
article has helped to explain those connections.

Appendix. Schemes with Some Vanishing Weights. If one or more weights bi
in (2.1) vanish, then it is not possible to use the recipe (3.23) to define the coefficients
required to create a combined symplectic PRK method (2.1), (2.9). Given the parti-
tioned system (2.10) and the q coefficients (2.1), how do we integrate the p equations
so as to have a symplectic scheme? The solution to this problem is rather weird and
it is best to begin with the simplest example.

Let us study the second order scheme (due to Runge in his 1895 original paper
[21, section II.1]), s = 2,

(A.1) a11 = a21 = a22 = 0, a12 = 1/2, b1 = 1, b2 = 0, c1 = 1/2, c2 = 0.

While it is customary to label the stages so that the abscissas ci increase with i, we
have departed from this practice; if we adopted it, formula (A.6) below would have a
rather disordered appearance.

We regularize the zero weight and consider the one-parameter family, ε 	= 0,

(A.2) a11 = a21 = a22 = 0, a12 = 1/2, b1 = 1, b2 = ε, c1 = 1/2, c2 = 0.

(The regularized scheme is not even consistent, but this does not hinder the argument.)
From (3.23), we set

(A.3) A11 = 1, A12 = A22 = ε, A21 = 1− 1/(2ε), B1 = 1, B2 = ε, C1 = 1/2, C2 = 0.

Thus, the PRK scheme specified by (A.2)–(A.3) is symplectic for each ε. The idea
now is to take limits as ε→ 0; the limit integrator, if it exists, will preserve quadratic
invariants and, when applied to Hamiltonian problems, the symplectic structure. The
difficulty is that from the equation that defines Pn,2,

Pn,2 = pn + hn

(
1− 1

2ε

)
g(Qn,1, Pn,1, tn + hn/2) + hnε g(Qn,2, Pn,2, tn),

we may expect that, for fixed qn, pn, the stage vector Pn,2 grows unboundedly as
ε → 0 and that, therefore, a limit integrator cannot be defined. However, the stage
Pn,2 only affects Pn,1 and pn+1 through the small coefficients A1,2 = B2 = ε, and this
makes it possible to prove that the limit scheme exists for some particular differential
equations. Specifically, we assume in what follows that in the partitioned differential
system (2.10) being integrated, f and g have the special form

(A.4) f = f(q, t), g = L(q, t) +M(q, t)p

(with q = x, p = λ; this format includes the system (3.1), (3.3) in section 3). When
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(A.4) holds, the q integration with coefficients (A.2) converges, as ε → 0, to the
integration with the originally given coefficients (A.1). The system for the p stages
P1, P2 (the index n is sometimes dropped to shorten the formulas) may be written as

P1 = pn + hn(L1 +M1P1) + hn(εL2 + hnM2m2),

m2 =
ε

hn
pn +

(
ε− 1

2

)
(L1 +M1P1) + ε(εL2 + hnM2m2),

where we have scaled m2 = (ε/hn)P2 to avoid blow-up and used the abbreviations

L1 = L(Q1, tn + hn/2), M1 =M(Q1, tn + hn/2),

L2 = L(Q2, tn), M2 =M(Q2, tn).

Now take limits as ε→ 0 to find

P1 = pn + hn(L1 +M1P1) + h2nM2m2,

m2 = −1

2
(L1 +M1P1).

Since B1 = A11 and B2 = A12, the end-of-step approximation is given by pn+1 = P1.
We write these equations in a way similar to (2.11)–(2.13):

pn+1 = pn + hn�1 + h2nM2m2,(A.5)

�1 = g(Q1, P1, tn + hn/2),

M2 =M(Q2, tn),

P1 = pn + hn�1 + h2nM2m2,

m2 = −1

2
�1.

The combination of these formulas for p with the scheme (A.1) for q is a first order
integrator that conserves quadratic invariants as in Theorem 2.4 and, for Hamiltonian
problems, preserves the symplectic structure. Of course, the integrator is not a PRK
method; since M = ∂pg, the formula (A.5) is reminiscent of RK methods that use
higher derivatives of the solution [21, section II.13]. (Such high order derivative
methods cannot be symplectic for general problems [20].) Note that, while �1 is an
approximation to the first derivative (d/dt)p, the vector M2m2 has the dimensions of
the second derivative (d2/dt2)p.

Let us now turn to the general case. Assume that in (2.1) the first r weights b1,
. . . , br do not vanish, while br+1 = · · · = bs = 0. The regularization procedure used
for Runge’s method leads to the following fancy integrator:

pn+1 = pn + hn

r∑
i=1

bi�i + h2n

s∑
α=r+1

Mαmα,(A.6)

Pi = pn + hn

r∑
j=1

(
bj −

bjaji
bi

)
�j(A.7)

+ h2n

s∑
β=r+1

(
1− bjaβi

bi

)
Mβmβ, i = 1, . . . , r,

mα = −
r∑

j=1

bjajα�j − hn

s∑
β=r+1

aβαMβmβ , α = r + 1, . . . , s.(A.8)

Here the r vectors �i are as in (2.12), so that the method uses r slopes and, additionally,
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s − r matrices Mα = M(Qα, tn + cαhn). From the relations (A.8) the mα may be
viewed as functions of the �i.

The following result is a consequence of the construction via regularization.
Theorem A.1. Consider partitioned systems of the special format (A.4), where

the q equations are integrated with the RK scheme (2.1), b1 	= 0,. . . , br 	= 0, br+1 =
· · · = bs = 0, and the p equations with the formulas in (A.6)–(A.8). If S(q(t), p(t))
is a conserved quantity as in Theorem 2.4, then S(qn, pn) is independent of n. If the
system is Hamiltonian, then the map (qn, pn) �→ (qn+1, pn+1) is symplectic.

With the terminology of section 7, for systems of the special form (A.4), the
scheme (A.6) may be viewed as the reflected and transposed scheme of (2.1) when it
possesses one or more zero weights.

Proofs of Theorem A.1 that do not rely on taking limits as ε → 0 are of course
possible. For such an alternative proof of the conservation of S, we may note that
manipulations (not reproduced here) similar to those used to prove Lemma 2.5 show
that for the present method, in lieu of (2.18), we may write

S(qn+1, pn+1)− S(qn, pn) = hn

r∑
i=1

bi
(
S(ki, Pi) + S(Qi, �i)

)

+ h2n

s∑
α=r+1

(
S(kα,mα) + S(Qα,Mαmα)

)
.

This is an algebraic identity that does not require the system integrated to be con-
servative. When S is conserved, the first sum vanishes as in the proof of Theorem
2.4. For the second sum note that from S(f(q, t), p) + S(q, L(q, t) +M(q, t)p) ≡ 0 it
follows that S(f, p) + S(q,Mp) ≡ 0.

For the adjoint equations in section 3, the conclusion of Theorem 3.4 holds if
the x equations are integrated with a (nonsymplectic) RK method with one or more
vanishing weights and the λ equations are integrated as in (A.6)–(A.8). Similarly,
Theorem 3.6 holds for a suitable choice of the Lagrangian (details will not be given,
but see below).

What is the situation for the control problem in section 4? Recall that the cor-
responding system of differential equations is given by (4.1), (4.3), where, in the
right-hand sides, u has been expressed as u = Φ(x, λ, t). That system of differen-
tial equations does not possess the format (A.4) for which (A.6) makes sense and,
accordingly, we cannot provide analogues to Theorems 4.2 and 4.3.

In order to gain additional insight, let us use the direct approach based on Runge’s
second order integrator (A.1). We define the Lagrangian (compare with (3.26) and
note consistency with (3.6) due to the factor h2n)

C(xN )− λT0 (x0 − α)−
N−1∑
n=0

hnλ
T
n+1

[ 1

hn
(xn+1 − xn)− kn,1

]

−
N−1∑
n=0

hnΛ
T
n

[
kn,1 − f(Xn,1, Un,1, tn + hn/2)

]

−
N−1∑
n=0

h2nμ
T
n

[
kn,2 − f(Xn,2, Un,2, tn)

]
,

where, as on other occasions, the stages Xn,1 = xn + (hn/2)kn,2, Xn,2 = xn must be
seen as known functions of xn and kn,2. Taking gradients with respect to xn, kn,1,
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kn,2 leads to the necessary conditions

λn+1 = λn − (∂xf(Xn,1, Un,1, tn + hn/2))
TΛn

− h2n(∂xf(Xn,2, Un,2, tn))
Tμn,

Λn = λn+1,

μn =
1

2
(∂xf(Xn,1, Un,1, tn + hn/2))

TΛn,

which clearly correspond to the integrator (A.5). (By considering the case where f is
independent of u, this shows that Theorem 3.6 holds in this case.) However, taking
gradients with respect to Un,1 and Un,2 yields

(∂uf(Xn,1, Un,1, tn + hn/2))
TΛn = 0, (∂uf(Xn,2, Un,2, tn))

Tμn = 0.

The second equation is totally meaningless. It cannot be seen as a discretization of
(4.4) because μn is not an approximation to the costate λ; it does not even possess the
right dimensions for that to happen. The values of Un,2 retrieved from this constraint
will have no relation to the true optimal controls. The paper [17] nicely illustrates
this with an example (see also [9]).

Since the trouble arises from the presence of the controls, things may be fixed
by tampering with Un,2, as pointed out in [17], [9]. However, there is no shortage of
RK schemes with nonzero (or even positive) weights, so that, in practice, resorting to
such fixes seems ill-advised.
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