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In this presentation, parts in black or blue, are taken from
Gauss, always keeping his notation. Parts in red are my own

comments/explanations.

The memoir, published in MDCCCXYV, contains 40 pages and

23 articles.

31 to 36 (pages 3—11) review carefully the formulas by Cotes

(1682—1716) (uniformly spaced nodes).



§7 t0 12 (pages 11-21): construction of quadrature formulas

with nonuniformly spaced nodes



e Determinare [ ydx inter limites datos when several values
of y are known. [No notation for functional dependence like
modern f(x).]

e Integrale sumendum esse ab x = g usque ad x = g + A.
ot ="79 A [ydt,abt =0 usque adt = 1.

on + 1 valoresdati A, A’, A" A" ... A"),

e Corresponding values of t: a, o/, a”, a'", ..., a(™).



e Y functionem algebraicam ordinis n.:

q (t=a)(t—a")(t—a")- - (t —al™)
(a—a')(a—a")(a—a")--(a—al)

(=)t —a”)(t—a") - (t —al™)

tc(a/ —a)(a —a(a —a") - (a — a(n))

+e

such that if ¢ is put equal to a, o/, ..., Y takes the values A,
A’,...[Lagrange interpolating polynomial.]

[To compute | Y dt begin by rewriting numerators and deno-
minators of fractions in the expression of Y]



e Introduce

(t—a)(t—a")(t—a")- - (t —al™)
— ¢l o L 2 4 etel 4 oM,

T

e then, the numerators are 7, L, ... and the denominators
M, M',...the values of L. t_Ta,,...at a, @, ...[Recall: no

notation for functional dependence.] Thus:

v AT A'T - ote
 M(t—a)  M'(t—ada)

[Now we have to (i) find M, ...and (i) [ T/(t — a)dt, ...]
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e Gauss first computes M in terms of the coefficients «, o/, ...of T and
the abscissae a, d, ... (similar for M’, etc.)]

T=t"Tl Tl o™ —a™) + /@1 —a" 1) + etc.

T

. = "4+ at" 1 4+ qgat™? +etc. +a”
—a

4+ at" 1+ qat™ 2 +etc. + aa™ !
+ ot 2 4 etc. + /a2
+etc.etc.
4 on=1)

In ¢t = a, this takes value na™ + (n — 1)aa” "1 + etc. + aln—1),

Thus M equals the value of % att = a, uti etiam aliunde constat.



e Now find valorem integralis | Ldi [using the complicated ex-

t—a
pression just found for the integrandj:
1

IEI ad - etc. + a”

n—+1 n n-—1
24 Y L ete 4+ aa L

n n—1

/

| L etc. 4+ o’a™ 2

n—1
etc.etc.
+an—1),

[Which does not look too pretty?]



e Quos terminos ordine sequente disponemus: [Sum by col-

umns from left to right]

a” + a1+ /a2 + etc. + a(n=1)
+etc.
1
—(a + )
n
1
(n+1)

and it is manifest that this is the result of multiplying 7" by ¢t —1+

5t72 42t 342t ~*+etc., discarding the terms with negative

powers of ¢ and replacing t by a. !!!
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o Set

T(t ™+ %t‘Q + +%t‘3 + +%t—4 +etc) =T +1",

where T" represents the [n-th degree] polynomial [in ¢] that the
product contains. [Remember this formula. 77" and T" are cru-
cial later. Note their coefficients are linear in the coefficients

a, o, ..., of T. Also recall primes do not mean derivatives.]
o Then [ L% equals the value of T' att = a.
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e To sum up: if R, R/, ...denote the values of dLT/ ata, d, ...,
dt
[quadrature weights] then [ Y dt is

RA + R A + R A" + R A + etc. + R(”)AW,

which multiplied by A will be the approximate value of [ y dz.

e Theory replicated, now using the variable v = 2¢ — 1 (with
values between —1 and +1) instead of ¢ (values from O to
+1). Function U = (u—b)(u—"¥) ... (u—b{") replaces T.
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e As an example, Gauss finds the weights of Newton-Cotes
formulas found with both ¢t and u. The latter exploits symmetry

U — —U.

e Next Gauss shows how to express the value of a rational
function % at the roots of a polynomial equation ¢’ = 0 as a
polynomial in those roots. [Recall that the set (field) of rational
expressions Q(&) coincides with the set of polynomials Q[€]
when & is algebraic.] A fully detailed numerical example is
given.
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313 to 414 (pages 22-24): error analysis
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e For function ¢ the error in the integral (from 0 to 1) is k(")
with [(recall R, ...are the weights and a, ...the abscissae]

Ra™ + R'a™ + ete. + RMWgmm — 1 4 m)
m-+ 1
Multiply by ¢™~1 and sum to get:
R R T R
- etc. 4 =1t —t —t tc. — 0
with

0=kt 1+ Kt 2 +E"t3 + etc.

(k, k', usque k(") evanescere debere).
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[The sequences of true values of the integral —ie moments—
1/(m + 1), approximate values Ra™ + R'a’™ + ... and er-
rors k(™) are represented here by their Z-transforms or ge-
nerating functions 3" ¢t~ (m+1) /(;m 4 1) , ... These are the
Cauchy transforms [ _(t — )~ 1du(z) of the true measure
dx in [0, 1], the measure R, + R'S, + - - - associated with

the quadrature rule and the difference between both.]

[Note ‘natural’ occurrence of the series t~1 + 5t=2 4 2173 +

etc., which appeared above like deus ex machina.]
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e Now recall T(t—1 4+ (1/2)t72 4+ etc.) = T + T" to write

/ R(n)
T R + R —l—etc—l— =17 4+7T" —T6.
t—a t— t — a(n)

e Pars prior ... est function integra . .. ordinis n whose values at a, d,...,
are MR, M'R/, ..., i.e.those of T’. So left-hand side is T".

e Hence we obtain the important relation

T" =T89.

Therefore the error coefficients may be computed from the expansion of
T"/T.

o lfy = K+ K't+K"tt+etc., the errorin [y dt willbe k(?+1) g (n+1) 4
k(nt1) g(nt1l) 4 etc. [Gauss can’t write reminder of Taylor polynomial.]
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315 10 §16 (pages 24—26): main idea
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e For any values of a, d/, ..., the formula obtained is exact for
degrees < n.

e But for some values of a, a/, ..., the formula may be exact
for higher degrees, as shown by the Cotes case with n even
[something Gauss has discussed in detail in §6].

e For higher order we need to successively annihilate the error
coefficients k(1) (n+2)  (coefficients of t "2, t—7—3,
...in 6). [i.e. itisamaterof @ = T7/T = (t71 + 3t72 +
...) —T"/T being ‘small’ at t = co. ]
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e Equivalently, we need to successively annihilate the coeffici-
entsof t—1, ¢t 2, ... inTOi.e. in T". [Recall these are linear

in o, o/, ..., hence the advantage in multiplying by T'.]

e Since we have n + 1 free coefficients o, o/, ..., we may
annihilate the n + 1 leading coefficients of T and achieve
degree 2n + 1.
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[Writing T'(¢) fol tdf”’m 01 T(t%:T(w)daz + fl T(f)wdaj we see

that 77 = fol T(t%_T(x)d T = fol Tgid"j. After expansion,

1 1
T”=t_1/ T(x)d:z:—l—t_Q/ T (x)dx + - --
0 0

Thus annihilation of coefficients of 7" is equivalent to ortho-

gonalityof T(x) to 1, x, ...]
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e When the auxiliary variable u is used in lieu of ¢ one has to approximate
the function

1 1
p = et —+ gu_S -+ gu_S -+ etc.

by |U’/U |rather than t—1 4 3t=2 + etc. by T'/T.

e In the simplest example, n = 0, coefficiens unicus of t—1 in producto
(t+ )t~ + 5t72 + 2173 4 etc.) evanescere debet. As this is 5 + a,
we have o = —5 or T' =t — 5. [Midpoint rule.]

e The cases n = 1 and n = 2 (two and three linear equations to solve)
also presented in detail; both in terms of ¢ and w.
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[Note it is assumed without proof that the linear system for the
coefficients pof 1" has a unique solution. Also assumed that T’

found in this way has distinct real roots.]

e But this way, qui calculos continuo molestiores adducit, hic
ulterius non persequemur, sed ad fontem genuinum solutionis

generalis progrediemur.

23



317 to 421 (pages 26—36): a better way
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e [Relating continued fractions and series.] Proposita

(Y
Y = /

| v
w 77

/ v
w +w”—|—etc.

formentur duae quantitatum series V, V', etc. W, W', ete.

Vi=w W= wW
V=WV 'V W' = w'W' 4+ o'W

" 1y 1 1y 7/ " 1yx ! "yxs!
VVi=w' V" 4+ov'V W =wW"+v'W

etc. [Note three term recursions!]
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e Then [quotients provide the convergents of the cted. fraction]

w =0
V! v
w' T w
V! v
/! — v
1% w4+ 2
V/// v
mnmo | v/
w w Y
w'+—=

and so on.
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e [Fraction rewritten as series.] In addition, in the series

v U’U/ | ’U’U,U// UU/,U//,U///

- _ |
ww’!'  wW'w!" ' wrwnr wirwiv etc.
'] L] /
ferminum primum = %
, , /!
summam duorum terminum primorum = 7
. _ _ Vel
summam trium terminum primorum = T
. . . /
and so on. Similarly we represent differentia inter ¢ and 7,

V//

T etc.
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[Recall that in terms of the auxiliary variable u the aim is to approximate by
a rational function U’ /U (U of degree n + 1, U’ of degree n) the series

1 1
O = w4+ 3 S+ etc.]
3 5
e E formula 33 Disquisitionum generalium circa seriem infini-

tam ..., [on the hypergeometric series (1812)] we transform ¢

Into
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e Here v = 1, v/ = —%, V! = 145, etc. and w = w' =

w'’etc. = wu.

OSOW=1,W’zu,W”zuu—%,W”’=u3—%u,etC.

[These are the monic Legendre polynomials, generated from
the three term recursion!]

e AdV =0,V =1, V" = u, V" = uu — &, etc. [The

15=
associated polynomials of the three term recursionl!]
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o If p — % In seriem descendentem convertitur, the first

termis
2.2.3.3...m -m y—(2m+1)
3-3---(2m—-1)(2m — 1)

[In modern terminology, % Is the Padé approximation to ¢
of degree (m — 1, m).] Thus if we set U = W (n+1) then U
is free of the powers v 1, ..., v (nt1),

e [herefore the abscissas have to be chosen as the roots of

the equation W ("+1) = 0. [Zeros of Legendre polynomial.]
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Next Gauss:

e Provides a closed form expression for the monic Legendre
polynomials and discusses the relation to the hypergeometric
function.

e Presents similar analysis for ¢ in lieu of w. [1" is of course the
Legendre polynomial shifted to [0, 1].]

e Gives explicit expression for the polynomial that yields the

weights.
31



[The relation

/1 T(t) — T(x)
— dx
t—x
we found before (resp. the corresponding formula that expres-

ses U’ in terms of U) is the well-known formula that relates the
associated (or numerator) polynomials to the shifted Legendre
polynomials 1" (resp. Legendre polynomials U). | am thankful

to F. Marcellan for this observation.]
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322 to 923 (pages 36—40): using the rules
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e Forn =0,...,6 (one to seven nodes). Gauss provides:

1. Polynomials U, U’, T, T".

2. Abscissas a, a/, ... with 16 significant digits.

3. Weights R, R/, ... with 16 significant digits. (For n > 3 also decimal
logarithm with 10 significant digits.)

4. The polynomial that gives the weights.

5. The leading coefficient of the expansion of the error.
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e Methodi nostrae efficaciam ab oculos ponemos computando valores in-
tegralis | % ab x = 100000 usque ad x = 200000 with rules with 1
to 7 nodes: (Bessel had computed 8406.24312)

3390.394608
3405.954599
8406.236775
8406.242970
8406.243117
3406.243121
8406.2431211

[There are 8392 prime numbers in the interval.]
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