GAUSS'S GAUSSIAN QUADRATURE

J. M. Sanz-Serna

Universidad Carlos III de Madrid

METHODVS NOVA INTEGRALIVM VALORES PER APproximationem inveniendi.

> AYCTORE

CAROLORRIDERICO GAVSS

In this presentation, parts in black or blue, are taken from Gauss, always keeping his notation. Parts in red are my own comments/explanations.

The memoir, published in MDCCCXV, contains 40 pages and 23 articles.
$\S 1$ to $\S 6$ (pages 3-11) review carefully the formulas by Cotes (1682-1716) (uniformly spaced nodes).
$\S 7$ to $\S 12$ (pages 11-21): construction of quadrature formulas with nonuniformly spaced nodes

- Determinare $\int y d x$ inter limites datos when several values of y are known. [No notation for functional dependence like modern $f(x)$.]
- Integrale sumendum esse ab $x=g$ usque ad $x=g+\Delta$.
$\bullet t=\frac{x-g}{\Delta}, \Delta \int y d t, a b t=0$ usque ad $t=1$.
- $n+1$ valores dati $A, A^{\prime}, A^{\prime \prime}, A^{\prime \prime \prime}, \ldots, A^{(n)}$.
- Corresponding values of $t: a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, \ldots, a^{(n)}$.
- Y functionem algebraicam ordinis n :

$$
\begin{aligned}
& A \frac{\left(t-a^{\prime}\right)\left(t-a^{\prime \prime}\right)\left(t-a^{\prime \prime \prime}\right) \cdots\left(t-a^{(n)}\right)}{\left(a-a^{\prime}\right)\left(a-a^{\prime \prime}\right)\left(a-a^{\prime \prime \prime}\right) \cdots\left(a-a^{(n)}\right)} \\
+ & A^{\prime} \frac{(t-a)\left(t-a^{\prime \prime}\right)\left(t-a^{\prime \prime \prime}\right) \cdots\left(t-a^{(n)}\right)}{\left(a^{\prime}-a\right)\left(a^{\prime}-a^{\prime \prime}\right)\left(a^{\prime}-a^{\prime \prime \prime}\right) \cdots\left(a^{\prime}-a^{(n)}\right)} \\
+ & \text { etc. }
\end{aligned}
$$

such that if t is put equal to a, a^{\prime}, \ldots, Y takes the values A, A^{\prime}, \ldots [Lagrange interpolating polynomial.]
[To compute $\int Y d t$ begin by rewriting numerators and denominators of fractions in the expression of Y.]

- Introduce

$$
\begin{aligned}
T & =(t-a)\left(t-a^{\prime \prime}\right)\left(t-a^{\prime \prime \prime}\right) \cdots\left(t-a^{(n)}\right) \\
& =t^{n+1}+\alpha t^{n}+\alpha^{\prime} t^{n-1}+\alpha^{\prime \prime} t^{n-2}+\text { etc. }+\alpha^{(n)}
\end{aligned}
$$

- then, the numerators are $\frac{T}{t-a}, \frac{T}{t-a^{\prime}}, \ldots$ and the denominators M, M^{\prime}, \ldots the values of $\frac{T}{t-a}, \frac{T}{t-a^{\prime}}, \ldots$ at a, a^{\prime}, \ldots [Recall: no notation for functional dependence.] Thus:

$$
Y=\frac{A T}{M(t-a)}+\frac{A^{\prime} T}{M^{\prime}\left(t-a^{\prime}\right)}+\text { etc }
$$

[Now we have to (i) find M, \ldots and (ii) $\int T /(t-a) d t, \ldots$]

- Gauss first computes M in terms of the coefficients $\alpha, \alpha^{\prime}, \ldots$ of T and the abscissae a, a^{\prime}, \ldots (similar for M^{\prime}, etc.)]

$$
\begin{aligned}
& T=t^{n+1}-a^{n+1}+\alpha\left(t^{n}-a^{n}\right)+\alpha^{\prime}\left(t^{n-1}-a^{n-1}\right)+\text { etc. } \\
& \begin{aligned}
& \frac{T}{t-a}=t^{n}+a t^{n-1}+a a t^{n-2} \\
&+ \text { etc. }+a^{n} \\
&+\alpha t^{n-1}+\alpha a t^{n-2}+ \text { etc. }+\alpha a^{n-1} \\
&+\alpha^{\prime} t^{n-2} \\
&+ \text { etc. }+\alpha^{\prime} a^{n-2} \\
&+ \text { etc.etc. } \\
&+\alpha^{(n-1)}
\end{aligned}
\end{aligned}
$$

In $t=a$, this takes value $n a^{n}+(n-1) \alpha a^{n-1}+$ etc. $+\alpha^{(n-1)}$.

Thus M equals the value of $\frac{d T}{d t}$ at $t=a$, uti etiam aliunde constat.

- Now find valorem integralis $\int \frac{T d t}{t-a}$ [using the complicated expression just found for the integrand]:

$$
\begin{array}{r}
\frac{1}{n+1}+\frac{a}{n}+\frac{a a}{n-1}+\text { etc. }+\quad a^{n} \\
+\frac{\alpha}{n}+\frac{\alpha a}{n-1}+\text { etc. }+\alpha a^{n-1} \\
+\frac{\alpha^{\prime}}{n-1}+\text { etc. }+\alpha^{\prime} a^{n-2} \\
+ \text { etc.etc. } \\
+\alpha^{(n-1)}
\end{array}
$$

[Which does not look too pretty?]

- Quos terminos ordine sequente disponemus: [Sum by columns from left to right]

$$
\begin{aligned}
& a^{n}+\alpha a^{n-1}+\alpha^{\prime} a^{n-2}+\text { etc. }+\alpha^{(n-1)} \\
& + \text { etc. } \\
& \frac{1}{n}(a+\alpha) \\
& \frac{1}{(n+1)}
\end{aligned}
$$

and it is manifest that this is the result of multiplying T by $t^{-1}+$ $\frac{1}{2} t^{-2}+\frac{1}{3} t^{-3}+\frac{1}{4} t^{-4}+$ etc., discarding the terms with negative powers of t and replacing t by a. !!!

- Set

$$
T\left(t^{-1}+\frac{1}{2} t^{-2}++\frac{1}{3} t^{-3}++\frac{1}{4} t^{-4}+\text { etc. }\right)=T^{\prime}+T^{\prime \prime}
$$

where T^{\prime} represents the [n-th degree] polynomial [in t] that the product contains. [Remember this formula. T^{\prime} and $T^{\prime \prime}$ are crucial later. Note their coefficients are linear in the coefficients $\alpha, \alpha^{\prime}, \ldots$ of T. Also recall primes do not mean derivatives.]

- Then $\int \frac{T d t}{t-a}$ equals the value of T^{\prime} at $t=a$.
- To sum up: if R, R^{\prime}, \ldots denote the values of $\frac{T^{\prime}}{\frac{d T}{d t}}$ at a, a^{\prime}, \ldots, [quadrature weights] then $\int Y d t$ is

$$
R A+R^{\prime} A^{\prime}+R^{\prime \prime} A^{\prime \prime}+R^{\prime \prime \prime} A^{\prime \prime \prime}+\text { etc. }+R^{(n)} A^{(n)}
$$

which multiplied by Δ will be the approximate value of $\int y d x$.

- Theory replicated, now using the variable $u=2 t-1$ (with values between -1 and +1) instead of t (values from 0 to +1). Function $U=(u-b)\left(u-b^{\prime}\right) \ldots\left(u-b^{(n)}\right)$ replaces T.
- As an example, Gauss finds the weights of Newton-Cotes formulas found with both t and u. The latter exploits symmetry $u \mapsto-u$.
- Next Gauss shows how to express the value of a rational function $\frac{Z}{\zeta}$ at the roots of a polynomial equation $\zeta^{\prime}=0$ as a polynomial in those roots. [Recall that the set (field) of rational expressions $\mathbb{Q}(\xi)$ coincides with the set of polynomials $\mathbb{Q}[\xi]$ when ξ is algebraic.] A fully detailed numerical example is given.
$\S 13$ to $\S 14$ (pages 22-24): error analysis
- For function t^{m} the error in the integral (from 0 to 1) is $k^{(m)}$ with [(recall R, \ldots are the weights and a, \ldots the abscissae]

$$
R a^{m}+R^{\prime} a^{\prime m}+\text { etc. }+R^{(n)} a^{(n) m}=\frac{1}{m+1}-k^{(m)}
$$

Multiply by t^{m-1} and sum to get:

$$
\frac{R}{t-a}+\text { etc. }+\frac{R^{(n)}}{t-a^{(n)}}=t^{-1}+\frac{1}{2} t^{-2}+\frac{1}{3} t^{-3}+\text { etc. }-\theta
$$

with

$$
\theta=k t^{-1}+k^{\prime} t^{-2}+k^{\prime \prime} t^{-3}+\text { etc. }
$$

(k, k^{\prime}, usque $k^{(n)}$ evanescere debere).
[The sequences of true values of the integral -ie moments$1 /(m+1)$, approximate values $R a^{m}+R^{\prime} a^{\prime m}+\ldots$ and errors $k^{(m)}$ are represented here by their Z-transforms or generating functions $\sum t^{-(m+1)} /(m+1), \ldots$ These are the Cauchy transforms $\int_{-\infty}^{\infty}(t-x)^{-1} d \mu(x)$ of the true measure $d x$ in $[0,1]$, the measure $R \delta_{a}+R^{\prime} \delta_{a^{\prime}}+\cdots$ associated with the quadrature rule and the difference between both.]
[Note 'natural' occurrence of the series $t^{-1}+\frac{1}{2} t^{-2}+\frac{1}{3} t^{-3}+$ etc., which appeared above like deus ex machina.]

- Now recall $T\left(t^{-1}+(1 / 2) t^{-2}+\right.$ etc. $)=T^{\prime}+T^{\prime \prime}$ to write

$$
T\left(\frac{R}{t-a}+\frac{R^{\prime}}{t-a^{\prime}}+\text { etc. }+\frac{R^{(n)}}{t-a^{(n)}}\right)=T^{\prime}+T^{\prime \prime}-T \theta
$$

- Pars prior ... est function integra ... ordinis n whose values at a, a^{\prime}, \ldots, are $M R, M^{\prime} R^{\prime}, \ldots$, i.e. those of T^{\prime}. So left-hand side is T^{\prime}.
- Hence we obtain the important relation

$$
T^{\prime \prime}=T \theta
$$

Therefore the error coefficients may be computed from the expansion of $T^{\prime \prime} / T$.

- If $y=K+K^{\prime} t+K^{\prime \prime} t t+$ etc., the error in $\int y d t$ will be $k^{(n+1)} K^{(n+1)}+$ $k^{(n+1)} K^{(n+1)}+$ etc. [Gauss can't write reminder of Taylor polynomial.]
$\S 15$ to $\S 16$ (pages 24-26): main idea
- For any values of a, a^{\prime}, \ldots, the formula obtained is exact for degrees $\leq n$.
- But for some values of a, a^{\prime}, \ldots, the formula may be exact for higher degrees, as shown by the Cotes case with n even [something Gauss has discussed in detail in §6].
- For higher order we need to successively annihilate the error coefficients $k^{(n+1)}, k^{(n+2)}, \ldots$ (coefficients of t^{-n-2}, t^{-n-3}, \ldots in $\theta)$. [i.e. it is a matter of $\theta=T^{\prime \prime} / T=\left(t^{-1}+\frac{1}{2} t^{-2}+\right.$ $\cdots)-T^{\prime} / T$ being ‘small’ at $t=\infty$.]
- Equivalently, we need to successively annihilate the coefficients of t^{-1}, t^{-2}, \ldots in $T \theta$ i.e. in $T^{\prime \prime}$. [Recall these are linear in $\alpha, \alpha^{\prime}, \ldots$, hence the advantage in multiplying by T.]
- Since we have $n+1$ free coefficients α, α^{\prime}, ..., we may annihilate the $n+1$ leading coefficients of $T^{\prime \prime}$ and achieve degree $2 n+1$.
[Writing $T(t) \int_{0}^{1} \frac{d x}{t-x}=\int_{0}^{1} \frac{T(t)-T(x)}{t-x} d x+\int_{0}^{1} \frac{T(x) d x}{t-x}$, we see that $T^{\prime}=\int_{0}^{1} \frac{T(t)-T(x)}{t-x} d x, T^{\prime \prime}=\int_{0}^{1} \frac{T(x) d x}{t-x}$. After expansion,

$$
T^{\prime \prime}=t^{-1} \int_{0}^{1} T(x) d x+t^{-2} \int_{0}^{1} x T(x) d x+\cdots
$$

Thus annihilation of coefficients of $T^{\prime \prime}$ is equivalent to orthogonality of $T(x)$ to $1, x, \ldots$]

- When the auxiliary variable u is used in lieu of t one has to approximate the function

$$
\varphi=u^{-1}+\frac{1}{3} u^{-3}+\frac{1}{5} u^{-5}+\text { etc. }
$$

by U^{\prime} / U rather than $t^{-1}+\frac{1}{2} t^{-2}+$ etc. by T^{\prime} / T.

- In the simplest example, $n=0$, coefficiens unicus of t^{-1} in producto $(t+\alpha)\left(t^{-1}+\frac{1}{2} t^{-2}+\frac{1}{3} t^{-3}+\right.$ etc.) evanescere debet. As this is $\frac{1}{2}+\alpha$, we have $\alpha=-\frac{1}{2}$ or $T=t-\frac{1}{2}$. [Midpoint rule.]
- The cases $n=1$ and $n=2$ (two and three linear equations to solve) also presented in detail; both in terms of t and u.
[Note it is assumed without proof that the linear system for the coefficients pof T has a unique solution. Also assumed that T found in this way has distinct real roots.]
- But this way, qui calculos continuo molestiores adducit, hic ulterius non persequemur, sed ad fontem genuinum solutionis generalis progrediemur.
$\S 17$ to $\S 21$ (pages 26-36): a better way
- [Relating continued fractions and series.] Proposita

$$
\varphi=\frac{v}{w+\frac{v^{\prime}}{w^{\prime}+\frac{v^{\prime \prime}}{w^{\prime \prime}+\mathrm{etc}}}}
$$

formentur duae quantitatum series V, V^{\prime}, etc. W, W^{\prime}, etc.

$$
\begin{array}{ll}
V=0 & W=1 \\
V^{\prime}=v & W^{\prime}=w W \\
V^{\prime \prime}=w^{\prime} V^{\prime}+v^{\prime} V & W^{\prime \prime}=w^{\prime} W^{\prime}+v^{\prime} W \\
V^{\prime \prime \prime}=w^{\prime \prime} V^{\prime \prime}+v^{\prime \prime} V^{\prime} & W^{\prime \prime \prime}=w^{\prime \prime} W^{\prime \prime}+v^{\prime \prime} W^{\prime}
\end{array}
$$

etc. [Note three term recursions!]

- Then [quotients provide the convergents of the cted. fraction]

$$
\begin{aligned}
\frac{V}{W} & =0 \\
\frac{V^{\prime}}{W^{\prime}} & =\frac{v}{w} \\
\frac{V^{\prime \prime}}{W^{\prime \prime}} & =\frac{v}{w+\frac{v^{\prime}}{w^{\prime}}} \\
\frac{V^{\prime \prime \prime}}{W^{\prime \prime \prime}} & =\frac{v}{w+\frac{v^{\prime}}{w^{\prime}+\frac{v^{\prime \prime}}{w^{\prime \prime}}}}
\end{aligned}
$$

and so on.

- [Fraction rewritten as series.] In addition, in the series

$$
\frac{v}{W W^{\prime}}-\frac{v v^{\prime}}{W^{\prime} W^{\prime \prime}}+\frac{v v^{\prime} v^{\prime \prime}}{W^{\prime \prime} W^{\prime \prime \prime}}-\frac{v v^{\prime} v^{\prime \prime} v^{\prime \prime \prime}}{W^{\prime \prime \prime} W^{i v}}+\text { etc. }
$$

terminum primum $=\frac{V^{\prime}}{W^{\prime}}$
summam duorum terminum primorum $=\frac{V^{\prime \prime}}{W^{\prime \prime}}$
summam trium terminum primorum $=\frac{V^{\prime \prime \prime}}{W^{\prime \prime \prime}}$
and so on. Similarly we represent differentia inter φ and $\frac{V^{\prime}}{W^{\prime}}$, $\frac{V^{\prime \prime}}{W^{\prime \prime}}$, etc.
[Recall that in terms of the auxiliary variable u the aim is to approximate by a rational function $U^{\prime} / U\left(U\right.$ of degree $n+1, U^{\prime}$ of degree n) the series

$$
\left.\varphi=u^{-1}+\frac{1}{3} u^{-3}+\frac{1}{5} u^{-5}+\text { etc. }\right]
$$

- E formula 33 Disquisitionum generalium circa seriem infinitam ..., [on the hypergeometric series (1812)] we transform φ into

- Here $v=1, v^{\prime}=-\frac{1}{3}, v^{\prime \prime}=-\frac{4}{15}$, etc. and $w=w^{\prime}=$ $w^{\prime \prime}$ etc. $=u$.
- So $W=1, W^{\prime}=u, W^{\prime \prime}=u u-\frac{1}{3}, W^{\prime \prime \prime}=u^{3}-\frac{3}{5} u$, etc. [These are the monic Legendre polynomials, generated from the three term recursion!]
- And $V=0, V^{\prime}=1, V^{\prime \prime}=u, V^{\prime \prime \prime}=u u-\frac{4}{15}$, etc. [The associated polynomials of the three term recursion!]
- If $\varphi-\frac{V^{(m)}}{W^{(m)}}$ in seriem descendentem convertitur, the first term is

$$
\frac{2 \cdot 2 \cdot 3 \cdot 3 \cdots m \cdot m u^{-(2 m+1)}}{3 \cdot 3 \cdots(2 m-1)(2 m-1)}
$$

[In modern terminology, $\frac{V^{(m)}}{W^{(m)}}$ is the Padé approximation to φ of degree $(m-1, m)$.] Thus if we set $U=W^{(n+1)}$ then $U \varphi$ is free of the powers $u^{-1}, \ldots, u^{-(n+1)}$.

- Therefore the abscissas have to be chosen as the roots of the equation $W^{(n+1)}=0$. [Zeros of Legendre polynomial.]

Next Gauss:

- Provides a closed form expression for the monic Legendre polynomials and discusses the relation to the hypergeometric function.
- Presents similar analysis for t in lieu of u. [T is of course the Legendre polynomial shifted to [0, 1].]
- Gives explicit expression for the polynomial that yields the weights.
[The relation

$$
T^{\prime}=\int_{0}^{1} \frac{T(t)-T(x)}{t-x} d x
$$

we found before (resp. the corresponding formula that expresses U^{\prime} in terms of U) is the well-known formula that relates the associated (or numerator) polynomials to the shifted Legendre polynomials T (resp. Legendre polynomials U). I am thankful to F. Marcellán for this observation.]
$\S 22$ to $\S 23$ (pages 36-40): using the rules

- For $n=0, \ldots, 6$ (one to seven nodes). Gauss provides:

1. Polynomials $U, U^{\prime}, T, T^{\prime}$.
2. Abscissas a, a^{\prime}, \ldots with 16 significant digits.
3. Weights R, R^{\prime}, \ldots with 16 significant digits. (For $n \geq 3$ also decimal logarithm with 10 significant digits.)
4. The polynomial that gives the weights.
5. The leading coefficient of the expansion of the error.

- Methodi nostrae efficaciam ab oculos ponemos computando valores integralis $\int \frac{d x}{\log x} a b x=100000$ usque ad $x=200000$ with rules with 1 to 7 nodes: (Bessel had computed 8406.24312)

$$
\begin{aligned}
& 8390.394608 \\
& 8405.954599 \\
& 8406.236775 \\
& 8406.242970 \\
& 8406.243117 \\
& 8406.243121 \\
& 8406.2431211
\end{aligned}
$$

[There are 8392 prime numbers in the interval.]

