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Barrelledness conditions on C, (E)

By

A. MarquiNa and J. M. SANZ SERNA

Abstraet. Some conditions of barrelledness are considered and studied on the space
Co(E), defined as follows: If E is a real or complex Hausdorff locally convex space
and Zg is a saturated family of seminorms, defining the original topology of E,
then the vector space of all the sequences f = {f(n): ne N} in E, convergent to
zero, provided with the locally convex topology

p(f) =sup{p(f(n)) :neN} pePg

is defined as the space Co(#). The main result of the paper is the following char-
acterization: Co(F) is quasibarrelled (see [3], p. 367) if and only if, E is quasibarrelled
and the strong dual of E has property (B) (see [5], p. 30, for definition). We obtain,
as a consequence, commutativity properties of the operator Cy, acting on certain
inductive limits (3.3 Theorem). We also prove that Cy does not commute with un-
countably strict induective limits. In particular, there are ultrabornological spaces £
for which Cy(E) is not quasibarrelled. 3.1. Example provides a complete ¢-tensor
product of two complete ultrabornological spaces which is not quasibarrelled.

1. Notation and introduetion. The vector spaces used here will be defined over the
field of the real or complex numbers. With the expression “locally convex space”
we shall mean a Hausdorff topological vector space with a zero neighbourhood basis
consisting of convex sets. If (&, E'> is a dual pair (see [3]), we shall denote by
o(E,E'), u(E,E') and B(E, E’'), the weak, the Mackey and the strong topology
on E. If E is a locally convex space, then E’ will denote the topological dual of E.
If U is an absolutely convex set in E, then py will represent the Minkowski func-
tional of U defined on the linear hull of U, Ey.

1.1. Definition. If £ is a locally convex space and %z is a saturated family of
seminorms defining the original topology of E, then Cy(E) is defined as the space
of all null sequences in E, provided with the locally convex topology generated by
the system of seminorms

B(f)=sup{p(f(n) :neN}, peF
for f= {f(n):neN}, convergent to zero in E.
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The space Cp(E) has been studied in various situations. In [6], the topological
dual of Co(E), was characterized improving a result given in [1]. Perhaps one of the
major problems about the space Co(E) is to know whether Co(E) is a barrelled,
quasibarrelled, ..., space provided E satisfies the same property. This problem is
closely related with the question of commutativity of the topological operator Cy
acting on certain inductive limits and it was treated in [2]. In this paper, we give
a complete characterization of the spaces Cy(E) that are quasibarrelled. giving a
partial answer to the above question. As consequence, the barrelledness on Cy(E)
is characterized in a very general situation. 3.3. Theorem includes, as a particular
case, the result of [2] and 3.1. Example provides an example of a complete ultra-
bornological space E such that Co(E) is not quasibarrelled.

1.2. Definition. Let E be a locally convex space. Let 11 be a saturated family (in
the sense of [3], § 21) of closed bounded absolutely convex subsets of K. Let
{fr :ne N} be a sequence in E. We say that {f,:n e N} is a U totally summable
sequence, if there is an element 4 € U, such that

%pA(fn) < + o0

ie., {pa(fa) :meN}elL

If #(E) is the family of all closed bounded absolutely convex subsets of E, then
the above definition gives the concept of a totally summable sequence (see [5],
P- 29).

1.3. Definition. Following Pietsch ({5], p. 23), a sequence {u,:n e N} of E’, the
topological dual of a locally convex space E, is o(E’, E)-summable if for every f e E,
the condition

is satisfied. We shall denote by @ (E’> the vector space of all sequences in E’ which
are ¢(£', E)-summable and generate finite-dimensional subspaces of E'.

Let E be a locally convex space. Let 11 be a saturated family of closed bounded
absolutely convex subsets of E. We shall denote by £2(11} the set of all U-totally
summable sequences of E, which is a vector space with the pointwise operations.
The vector space of all totally summable sequences of E will be denoted by /1{E>.
The family of all o(E’, B) closed absolutely convex and equicontinuous subsets of
E’ will be denoted in the sequel by #(E").

The following result was given in [6] and ([9], p. 463/464, 18a) and b)):

1.4. Proposition. Let E be a locelly convex space. Then the topological dual of Co(E)
is algebraically isomorphic to LU (E')>.

1.5. Remark. The equicontinuous sets on Co(E) are characterized as follows:
A subset H c Co(£) (the topological dual of Cy(E)) is equicontinuous if and only



Vol. 31,1978 Barrelledness conditions on C, (E) 501

if there is an equicontinuous set U € #(E’) and a constant M > 0, such that
D pu@m) =M
N

for all @ € H. This remark was settled in [6].

Following Pietsch, we shall denote by IL{E} the locally convex space of all ab-
solutely summable sequences of the locally convex space E, provided with the
z-topology.

1.6. Proposition. Let E be a locally convex space. The topological dual of Co(E) is
algebraically isomorphic to a sequentially dense subspace of £2{E’'[B(E’, E)]}.

Proof. If {u,:ne N} e/i{E'[B(, E)]}, then for every positive integer k, we de-
fine the sequence {u®:n e N} as follows: ¥ = u, if 1 <n <k, and «P = 0 if
n > k. Thus, for £ = 1, {u®:ne N} € p(E">. On the other hand, if W is a closed
absolutely convex neighbourhood of zero in E'[S(E’, E)], we have that

ZPW(un)< + oo,
N

Let us take e > 0 arbitrary, then there is a positive integer ng such that

> pw(ug) <e

nzno
and hence

awl[{un:neN} — {@®:neN} =D pw(us)<e for all k=ny,
n>k

(using the notation of [5] for the seminorms of the a-topology). Thus,

a— lim {u®:neN} = {uz:neN}.
k—>+ oo

1t follows that ¢ (E’) will be sequentially dense in 2 {E'[8(E’, E)]}. Since
@<B> cOKUE)y cL{E'[B(E, B)]}
we have the result by 1.4. Proposition. Q.e.d.

2. The Main Result.

2.1. Proposition. Let E be a locally convex space. Then, the topology induced by the
n-topology of (L{E'[B(E’, E)]} on Co(E'), coincides with B[Co(E)’, Co(E)].

Proof. If B is a closed bounded absolutely convex subset of E, then it is easy
to see that
sup{|<f.a>|:f={f(n):neN}eCo(E) and f(n)e B, ¥n}=
= > sup{|{g, &(n))| : g B}
N

where @ = {@(n) :neN} e Co(E), (see Proposition 1 of [7]). From this remark and
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the fact that the family of subsets of Co(E):
B* = {f:feCo(E) and f(n)e B, Vn},

B running through the family of all closed bounded absolutely convex subsets of E,
is a fundamental system of bounded subsets in the locally convex space Cy(E), we
obtain: The family of seminorms on Cy(E)’,

(2.1.1) u—>ZpBo w(n))

where B = {v:v<=E’, |v(f)| <1, for all fe B}, and B runs through the family
B (E) of all bounded closed absolutely convex subsets of E, defines the topology
BICo(E)Y, Co(E)]. On the other hand, the seminorms (2.1.1) define exactly the
7- topology on fH{E'[B(E', E)}. Q.ed.

2.2. Remark. The normed spaces are examples of locally convex spaces E, for
which the equality

Co(B) = H{E'[B(E', E)}}

is satisfied. The following remark shows that the inclusion

(221)  ColE) cOH{E[BE, B}

may be strict. On the one hand, for every locally convex space £ one has:
Co(Elo(E, E))) = ¢<lE').

Let E be a locally convex space such that E[o(E, E')] is not quasibarrelled. Then
there exists an infinite-dimensional bounded sequence {u,:n e N} in E'[8(E’, E)],
whence {2-7uy,:neN}elI(E'[S(E, E)]> ~ ¢{E">. Thus, for the locally convex
space F = E[o(E, E')] the above inclusion is strict.

2.3. Example. The following example is stronger than the one discussed in
2.2. Remark in the sense that it shows that the inclusion (2.2.1) may be strict, for
locally convex spaces E, such that the original topology of E coincides with the
Mackey topology u(E, E’) (the so called Mackey spaces).

In Kéthe’s book ([3], § 27, p. 369) an example is given of a vector subspace Fy
of /1, dense and different from 71, such that with the induced norm of /! is a bar-
relled space. The strong dual (or conjugate) of Fy will be £~ (i.e. the space of all
the bounded sequences of scalars with the supremum norm topology). We set £ =
£2[u(f”, Fo)l. Since Fg = £1, then there is an element { € /1 ~ Fo. Since /! is the
completion of the subspace Fy, there exists a sequence {f,:n e N} in Fy, which
is absolutely summable in £}, i.e. Z I fn| (where |-|1, is the /l-norm)
and

f= Z fn, in 1
N
(for a proof of this fact see for instance [5], p. 55, 3.2.2. Lemma). We set

k
se=>fn, k=1.
n=1
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Let § = {f»: n € N}. Since Fy is barrelled, the strong topology §(Fo./™) coincides
with the induced topology by the norm of /1, and therefore § € /1 {Fo[f(Fo, 7)1},
1 J 1w ‘!‘ |

‘J1-summable. On the other hand, § ¢ /1{%(E')>. Indeed, let us sup-
pose that § e £1(#%(E')>, then, for a suitable U € #(E’), we have that

M =3 pylfa) < + oo.
N

Thus, for every ke N,

k k
visk) = (Z )<2PUU")§M-

n=1

We set I"={u:u=M-v; veU}. Then, Ve#(E') and sz eV, for all ke N.
Since 1" is o(E', E)-compact and absolutely convex, it follows that {s;: ke N}
has a o(E’, E)-adherent point foe V c E'= Fy. On the other hand, {s;:ke N}
converges to f in (£1, [I-1), hence in £1[g (£, £™)]; since fo is in particular an ad-
herent point of {sy:ke N} in the space /1[g(/},/™)], one obtains f = fo, and,
therefore, f lies in Fg, and this is a contradiction.

2.4. Remark. The result of 2.3. Example is valid for any normed barrelled space
X and any barrelled dense subspace Fg c X, and different from X. (Use the same
proof!)

2.5. Definition. Let E be a locally convex space. Following A. Pietsch ([5], p. 30),
E has property (B), if for every bounded subset H of /1 {E}, there is a closed bounded
absolutely convex set B in E such that

Zpg(]‘n) <1, forall {fn:neN}eH.
N
Now, we can give our main result:
2.6. Theorem. Let E be a locally convex space. The following properties are equi-
valent:
(2.6.1) E is quasibarrelled and E'($(E’, E)} has property (B).
(2.6.2) Co(E) is quasibarrelled.
If Co(E) is quasibarrelled, then,
Co(B) = (*{E'(B(E', E))} -

Proof. (2.6.1) - (2.6.2): If E is quasibarrelled, then, every §(Z£’, E)-bounded
subset of E’ is equicontinuous, and therefore we have that

(U E)) =E'[BE, E)].

Since E'[f(E’, E)] has property (B) by hypothesis, applying 1.5.6. Proposition from
([5], p. 30), we obtain that

(BB, B ={HE[BE, B},
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and therefore Co(E)Y = (1{E'[B(E’, E)]}. Let us see now that Co(£) is quasibar-
relled. Let H be a bounded subset of the strong dual of Co(£). From 2.1. Proposition
it results that H is w-bounded. Since the strong dual of E has property (B), there
is a strongly bounded subset B of E’, which can be chosen absolutely convex and
o (E’, E)-closed (since the ¢(E’, E)-closure of a B(E’, E)-bounded subset of E’ is
B (£, E)-bounded), and such that for all @ € H, the inequality

%pa(d(n)) <1

is satisfied.

E being quasibarrelled, B is equicontinuous, therefore B e #(E'), since B is
o(E’', E)-closed. By an appeal to 1.5. Remark it results that H is an equicontinuous
subset of Co(E)'.

(2.6.2) — (2.6.1): Let us suppose that Co(E) is quasibarrelled. We define the
linear mapping p1 from Co(E) onto E, as follows: if fe Co(E), then py (f) = f(1),
the first component of the sequence f. p; is clearly continuous. On the other hand,
if W is a neighbourhood of zero in Cy(E), there is a continuous seminorm p such
that for a certain ¢ > 0,

= {/eCo(B); p(f) = sup{p(fin) :neN} < ¢}

is a subset of W. Then, U, = {f: fe E; p(f) < €} is a neighbourhood of zero in
E, such that

pr(W)op1(V3)>Up
because if fe U,, we define f = {f(n):ne N}, such that f(1) = f and f(n) =
if n > 1, and we have that fe V: and p1(f) = f. Thus, p; is open, and therefore
it is a quotient mapping. Thus, E as a quotient of Cp(E), will be quasibarrelled.

Combining 1.6. Proposition, 2.1. Proposition and the fact that Co(E) is quasi-
complete for the topology S{Co(E)’, Co(E)] ([3]. §23), we can deduce that

Co(E) = 1{E'[B(E', E)]} .

To show that E'{f(E’, E)] has property (B) the following argument works: If
H cY{E'[B(E', E)]}is wi-bounded, Cg (E) being quasibarrelled, 2.1. Proposition yields
that H is equicontinuous; from 1.5. Remark there is an equicontinuous subset U
of E', Ue % (E') and a constant M > 0 such that for all @ ¢ H,

ZPUTL N=M.

We set B= {v:v= M -u with ue U}. Therefore, from the Banach-Mackey theo-
rem ([3], §20), B will be S(E’, E)-bounded and such that

Zde y=<1, forall deH.

Thus, Z'[§(E’, E)] has property (B). Q.e.d.

2.7. Remark, From 2.6, Theorem it follows that if £ is a quasibarrelled DF-
space, then Co(E) is a quasibarrelled DF-space, since E'[S(E’, E)] is metric and
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every metric locally convex space has property (B) by ([5], 1.5.8., p. 31). In par-
ticular, if £ is an LB-space, then, Co(£) is quasibarrelled.

3. Concluding Remarks.

3.1. Example. Let I be an uncountable index set. Let £ = K be the locally
convex direct sum of spaces K; = K (being I the field of scalars), ie [. In ([5],
1.5.7. Example) it is proved that E'{f(E’, E)] does not satisfy property (B). Since
E is the inductive limit of finite-dimensional subspaces, it follows that £ will be
barreled (even, ‘‘ultrabornological”, i.e. inductive limit of Banach spaces). If we
apply our 2.6. Theorem, we obtain that Cy(F) is not quasibarrelled, and, therefore,
it is not the inductive limit of the corresponding subspaces Co{F), F running through
the finite-dimensional subspaces of E. Thus, Cy does not commute with the sirict
nncountable inductive limits. The space Co(E) can be interpreted as a complete
£-tensor product (see [5], p. 108) of two complete ultrabornological spaces, such that
it is not quasibarrelled.

Recall that a locally convex space E is locally complete if for every closed bounded
absolutely convex set in E, B, then, the normed space Ep is Banach. A Mackey-
Cauchy (resp. Mackey-convergent) sequence in E, is a Cauchy (resp. convergent)
sequence in certain Eg, B being a closed bounded absolutely convex set in Z.

3.2. Corollary. Let E be a locally complete locally convex space. Then the following
conditions are equivalent:

(3.2.1) E is barrelled and E'[f(E’', E)] has property (B).
(3.2.2) Co(E) is barrelled.

Proof. If {(f":neN):me N} is a Mackey-Cauchy sequence in Cg(E), then
{f . m e N} is a Mackey-Cauchy sequence in E, hence convergent to some f, € £,
(n € N); it follows easily that {f,:n e N} e Co(E) and that {(/%":ne N):me N}

converges to {f,: 7 € N}. Thus, Co(E) is locally complete if (and only if) £ is locally
complete. Applying 2.6. Theorem we have the result. Q.e.d.

3.3. Theorem. Let E be a locally complete locally convex space. Let {Ey:n e N} be
an increasing sequence of locally complete subspaces of E such that

E=\J{En:neN}.
If Co(E) is barrelled, then,
(3.3.1) Co(E) = J{Co(Es) :neN}.
(3.3.2) Co(E) is the inductive limit of the sequence {Co(Eyn):ne N}.

Proof. (3.3.1): If fe Co(E), then, {f(n): n e N} is a null sequence in E; since £
is locally complete, the closed absolutely convex hull B of the sequence is corpact.
Since Eg is Banach and E,, is locally complete, we have that Bz N E, is closed
in Eg, for every n, since every sequence converging in Eg is a Mackey-Caachy
sequence in E. Since

Eg=\J{(Esn E,) :neN}

38%
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we have that, by using Baire’s Category Theorem, there is a positive integer np € N
such that Eg N E,, > Eg, and, therefore, B c E,,. That implies fe Co(E,,).

(3.3.2) follows from the barrelledness, (3.3.1) and the following result of Valdivia
([8]): If a barrelled space is the union of an increasing sequence of subspaces. then
such space is the inductive limit of that sequence. Q.e.d.

3.4. Remark. The condition “locally complete” for the space E in 3.3. Theorem
can not be eliminated. since if £ is the non-complete LB-space constructed by Kothe
in ([3]. p- 434), and if £,,, » = 1, 2, ... is the increasing sequence of subspaces of E,
such that there is a topology 7, finer than the induced topology by the one of E,
with E,{t,] topologically isomorphic to Co, n = 1,2, ..., then

Co(E) £\ J{Co(Eqs) :neN}
since there is a null sequence f, in E, such that f, ¢ E,,.

3.5. Note. Conditions under which a locally convex space E, which is the union
of an increasing sequence of subspaces, is locally complete, are given in Corollary 2.4
of [4]. concerning the hypothesis of 3.3. Theorem.

3.6. Remark. If £ is a locally convex space, then there is a topological iso-
morphism between Cy(E) and Co(E) x E. This isomorphism can be constructed
from the topological isomorphism that exists between €y and Cy x K. In particular,
E is a quotient space of Cy(E), as it was obtained in the proof of 2.6. Theorem.

Acknowledgements. I am grateful to the referee for suggesting a number of
improvements, specially in the third section of the exposition, and for the refer-
ence [9].
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