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Lambert & Sigurdsson’s linear multistep formulae with variable matrix coefficients
for the numerical integration of stiff systems are analysed. The maximum attainable
order of an A-stable formula of this type is determined. We associate with a given
linear multistep method a variable coefficient formula which has the same order and
stability properties and does not require the solution of nenlinear systems. Some
numerical examples are presented.

1. Introduction

VARIABLE COEFFICIENT METHODS for the numerical solution of initial value problems in
ordinary differential equations go back to Brunner (1967) and Lambert (1970). In
1972, Lambert & Sigurdsson developed a class of methods
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where y and f are N-vectors, I is the N x N unit matrix and Q, is an N x N matrix
coefficient which varies with n. The real coefficients a{”, b} are constants and it is
assumed that a{® = 1. In practice Q, is an approximation to the negative Jacobian
—3f /@y over [X,. X,4,], although Lambert & Sigurdsson are able to carry out their
analysis under much weaker assumptions (see their work).

A method of class (1.1) (henceforth an LS method) is said to be linearly implicit if
B9 =0,5=0,1,...,5—1, otherwise is said to be fully implicit. Fully implicit
methods require the solution at each step of a non-linear system, whilst for a linearly
implicit method the system to be solved is linear.

When (1.2) is stiff, LS formulae enjoy the following potential advantages:

(1) There exist A-stable LS methods with orders 2, 4,6,...as opposed to the
situation in the linear multistep case.

(2) Furthermore such high order A-stable methods can be found even if we require
them to be linearly implicit to avoid the expensive Newton iteration.

(3) The order of the method, being independent of the choice of Q,, does not suffer
if 0, is a poor approximation to the negative Jacobian.
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On the other hand note that the computational complexity will clearly increase
significantly with increasing §.

Of course there are a host of LS methods. Lambert & Sigurdsson (1972) focus their
attention on so-called “stabilized” methods. Skeel & Kong (1977) have studied an
implementation of what they call a “blend” of the Adams Moulton and backward
differentiation formulae. They point out that such a blend is an LS method which is
not stabilized.

In this paper, which was inspired by the “blending approach”™, we shall analyse the
stability properties of LS methods, without making the restriction that the methods
should be stabilized. Let us quote the main results. (See the next section for more
precise definitions of the terms involved.)

THEOREM 1. A convergent, A-stable LS method has order p < 28.

This result was proved by Lambert & Sigurdsson for the particular case of stabilized
methods. In fact they established that p < 25 for any stabilized method.

As a consequence of Theorem 1, if we are not prepared to take S > 1 the method
cannot both be A-stable and have order greater than two. When facing this dilemma
in the linear multistep case, the usual practice is to choose high order formulae with
“large” regions of absolute stability (Lambert, 1973). Thus we are led to the question:
are there high order A,-, A(x)- or stiffly stable LS methods with § = 1? Fortunately
one can prove:

THEOREM 2. Given a convergent linear k-step method of order P < k+1, there exist
convergent, linearly implicit LS methods with the same order and stability region, S = 1
and at most k+ 1 steps.

So LS methods with minimum computational effort can mimic the stability properties
of the commonest linear multistep methods. Furthermore Theorem 2 can be
sharpened in a very important instance to yield:

THEOREM 3. Given a convergent linear k-step method of order k (such as the backward
differentiation formulae, k < 6), there exists a convergent, linearly implicit LS method
with S = 1, and the same step number and order, such that both methods generate the
same numerical solution when applied to the test system

y = Ay, (1.3)
when Q, is chosen to be — A. (And hence they have the same region of absolute stability.)

Note that stabilized LS methods cannot enjoy the favourable properties referred to in
Theorems 2 and 3, since their order would necessarily be restricted to two.

2. An Analysis of LS Methods
We shall have to deal with k-step m-derivative (Obrechkoff) methods of the form
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where a;, B, i=1,2,...,m;j=0,1,... k are real constants. We introduce the

characteristic polynomials p(r), o(r),i = 1,2, ..., m, as in Lambert (1973) or Stetter
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(1973), and denote (2.1) by (p(r), ,(r), . . ., 7,,(r)). For notational convenience and
contrary to the usual practice, we do not assume o, = 1 or

ol + 3. 1Bl # O,
i=1

so that (2.1) may have less than k steps. Neither shall we suppose that p(r), o,(r), . . .,
o,,(r) have no non-constant common factor.
We associate with formula (1.1) polynomials
k
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j=0

e®)(r) = 0,

and use {p'2(r), . .., p®r); O(r), . . ., 6¥ 7 V(r)} to symbolize (1.1).
Some results of Lambert & Sigurdsson (1972) are easily stated with this notation,
for instance,

Proposition 1. Formula (1.1)is zero-stable if and only if (p'®(r), 6‘®(r)) is a zero-stable
linear multistep method.

Proposition 2. Formula (1.1) has order p = S if and only if the linear multistep method
(), (), s=0,1,...,8, has order p—s.

In order to study the (weak) stability properties of formula (1.1) we apply it with
Q, = — A4 to the system (1.3), where it is assumed that the matrix 4 has a complete set
of eigenvectors. (It should be pointed out that Lambert & Sigurdsson do not make
this assumption and correspondingly their A-stability is a property slightly stronger
than our A-stability.)

Setting @, = — A 1n (1.1), applying the resulting formula to (1.3) and uncoupling,
one sees that the growth of a component in the uncoupled system is governed by the
difference equation
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where A is an eigenvalue of A. With i = hi the corresponding characteristic equation
can be written

F(—1¥Tp(r)+ 6%~ ()] = 0. (2.3)
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Definition 1. The set (or “region”) of absolute stability of (1.1) is the set of all complex
values h for which all the roots r, of (2.3) satisfy |r| < 1,s =1, 2,. .., «. The method
(1.1) is A-stable if its set of absolute stability contains the left half-plane Re h < 0.
This is consistent with the original definition of A-stability (Dahlquist, 1963).
Analogously we can define A(x)-, Ao-, L-, . . ., stability (Lambert, 1973).
Clearly (2.3) is also the characteristic equation of the k-step, S-derivative method

(p(r), a,(r), ..., a4(r)) where
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p(r) = pOr),
(=)o (r) = p()+ 6" V), i=1,2,...,8.

We say that (p(r), o4 (r), . . ., o5(r)) is the companion (Obrechkoff ) method of the LS
method (1.1).

Proposition 3. An LS method has at most the same order as its companion Obrechkoff
method.

Proof. Apply the linear operators associated with the methods (p®(r), o®(r)),
i=0,...,8,to the ith derivative of the test function y(x) and combine the results (see
Lambert, 1973, paragraphs 2.6 and 7.2).

Proof of Theorem 1. Assume that (1.1) is A-stable, is convergent and has order p > 2S.
It follows that the companion method given by (2.4) is also A-stable and has order
p > 2§, in contradiction with a result of Wanner, Hairer & Norsett (1978) (proof of
the conjecture of Daniel & Moore). [We may need to suppress common factors
amongst p(r), 6,(r), . . ., og(r); convergence implies that (r—1) is not such a factor,
and so the order is not decreased in that process.]

Proof of Theorem 3. Let (p(r), a(r)) be the multistep method. Set
o*(r) = a(r)— frlr—1),

so that 0*(r) has degree k— 1. Then the LS method {p(r), B,.(r—1)*; 6*(r)} is found
to possess all the required properties. [Note that its companion method is
(p(r), a(r)).] To prove that its order is k, write

(2.4)

plr)

i —o(r)=0((r—1)), r-1, (2.5)
which yields

20) _ oy = or—1p), 71, (26)

logr

so that (p(r), 0*(r)) has order k. Now (B, ,(r—1)*, 0) has order k— 1, and Proposition
2 applies. Of course (f,,(r—1), 0) is not zero-stable, but this fact is irrelevant.)

Proof of Theorem 2. It is similar to the previous one. The method we seek is of the
form

{p)r—a), Bulr—=1"1; a(r)r—o)—Brulr— 1)1}
where « is real, |o| < 1. Of course we have to increase the step number because there is
no method of the form (p')(r), 0) which has order k and step number <k.

Note. Given a linear multistep method as in Theorem 2 and provided that we are
prepared to increase the step number, it is possible to obtain LS methods which have
S =1, and the same stability set, order and principal truncation error. Take

PO =rp(r), ¢ O(r)=rPo(r)— Byulr—1)**2
and
pAr) = Brr—1)k72.
Now (p°(r), ¢'”(r)) and (p'*)(r), 0) have both the same order.
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This suggests a way of controlling the step size analogous to Milne’s device for
predictor-corrector algorithms. In fact the theories of order for LS and PC methods
appear to be very much alike.

3. Numerical Results

The basic idea in Theorems 2 and 3 is, as Skeel & Kong (1977) put it, “to take a
linear multiderivative multistep formula and convert it into a variable matrix
coefficient, linear multistep formula so that the region of absolute stability and the
order of accuracy are unaffected”. They also note that “there is no reason to suspect
that this transformation would either improve or degrade the performance of the
transformed formula”. Extensive experimental tests would be necessary in order to
obtain an assessment of that performance. The following numerical examples,
although very limited, might throw some light on this matter.

We consider the third order backward differentiation method

Yn+3 é%%YrrJrZ +Tgi-Yr!+ 1 _71;1Yn = h'iéffn+3= (3~1)

whose principal truncation error is (—3/22)h*y'*). The proof of Theorem 3 associates
with this formula the LS method

Yo+ —%yn+ 2 +T9ﬂ'n+ 1 —'Lz"yn‘FTﬁi'hQn(Yw s—3¥naat Waia— Ya)
:h(%%fn+2*‘i'%fn+1 +1_61'fn)- (3.2)
The principal local truncation error is now (9/22)*y™ + (12/22)h*Q,y®. When (3.2)
is applied to the linear system (1.3), it is identical to (3.1) (provided Q, = —A).

We applied (3.2) to the following well-known stiff systems (Liniger & Willoughby,
1967):

(I) The linear variable coefficient problem
¥y = 100y, — (60-0—0-125x)y, +0-125x,
¥2 = 02(y1—¥2)
¥1(0) = y2(0) =0, 0 < x=<400.
(IT) The non-linear problem
¥y = 001 = [1+(y; +1000)(y, +1)J(O0L +y; +y2),
¥s = 0:01—(1+y3)(0-01 +y; +y2),
y,(0) = y,(0) =0, 0<x< 100.

The step length used was 1-0 for system I and 0-1 for system I1;in both cases Q, was
chosen to be the negative Jacobian evaluated at x = X, 5. The results are displayed in
Tables 1 and 2, respectively. A fourth-order Runge-Kutta method provided us with
the “theoretical solution” and the necessary starting values. In order to assess the
effect of the choice of Q,, we performed some runs keeping that matrix fixed over a
number of consecutive steps. The parameter NUP in the tables refers to that number;

for instance NUP = 50 means that the Jacobian was updated every 50 steps.
It appears that (3.2) has more difficulties in integrating accurately fast transients
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TabLE 1

X Theoretical Error = Theoretical — Numerical

NUP =1 NUP = 50 NUP =w

10 ¥ = 023448858 x 10! —61x10"8 —66x1078 —66x1078
y2=013015276 x 10" —47x10"7 —47x10~7 —47x10~"
100 0:32754980 28x 1078 32x10°8 37x 1078
0-30630032 26x 1078 29 %1078 34x10°8
200 0-98104589 13x 1077 16 x 1077 26x 1077
093463309 12x1077 14x10~7 23x 1077
300 0-28638768 x 10! 17x10°¢ 23x10°¢ 60x10°°¢
0-26973467 x 10! 14x10°¢ 19x10°° 50x10°°
400 027110713 x 10? T4x 10™% 18103 10x 1072
0-22242220 % 10> 44 % 10™# 11x1073 64 x 1073
TaBLE 2
X Theoretical Error x 10°

NUP =1 NUP =100 NUP = 500

10 vy = —0-109754 12 12 12
¥, = 0.099777 =12 —12 =2

20 ¥1 = —0-209508 12 12 12
va= 0199533 —13 —13 — 1

40 ¥, = —0-408862 12 12 13
¥, = 0398896 —-12 —12 S

60 y; = —0607812 12 12 12
y2= 03597862 —12 —9 =

80 1 = —0:805642 12 12 12
ya= 0795743 -12 o 12

100 y; =—0991642 8 12 36
v, = 0983336 =9 19 29

than other third-order methods for stiff systems. [ Performances of some of these are
reported by Lambert & Sigurdsson (1972).] On the other hand (3.2) enjoys the
potential advantages referred to in the Introduction : in particular the Jacobian can be
held fixed over large intervals without drastic losses in accuracy. At any rate a
meaningful, practical comparison between LS and other methods is only possible on
the basis of using variable step implementations and no study in that direction has
been made by the present author.
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