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INTERPOLATION OF THE COEFFICIENTS IN NONLINEAR
ELLIPTIC GALERKIN PROCEDURES*

J. M. SANZ-SERNA* anp L. ABIAt

Abstract. A continuity argument is employed to prove that the interpolation of the coefficients in
aonlinear Galerkin procedures does not result in a reduction of the order of convergence.

L. Introduction, It is well known that the use of interpolation for the evaluation
of integrals in nonlinear Galerkin methods can lead to important savings in computa-

does not result in a reduction of the order of convergence of the method. They did
not consider, however, the nonlinear (elliptic) situation for which existence of the
approximate solution does not follow from the variational argument they employed.
Recently Christie et a]. [4] have introduced the term product approximation to refer
to finite-element techniques based on interpolation or related projections. In this

presented in a model, one-dimensional situation, the ideas and techniques possess a
wider generality. In fact, the proofs are carried out in a fashion which renders them
readily applicable to higher dimensional problems and some of the possible extensions
are discussed in § 4, (Further results can be seen in [1]) Section 2 is devoted to the
formulation of the problem to be solved, together with a discussion of the product
approximation technique. The main theorem is stated and proved in § 3.

2. Formulation of the problem. We consider the nonlinear two-point boundary
value problem

(2.1a) ~u"+f(x,u)=0, O<x<1,
(2.1b) u(@®=u(1)=0,

where a prime denotes differentiation with respect to x and f is a real function
continuous and continuously differentiable with respect to u on the strip

Q={(x,v): 0=x =1,-0o<y <oo}.

In addition we assume that there exists a constant m > —#2 sych that the partial
derivative f, satisfies on ) the inequality £, = m. These hypotheses guarantee [61,[7],

[9] that (2.1) possesses a unique weak solution, i.e. there exists a unique u in A such
that for v in i}

(2.2) (u',v')+(f(',u),v)=0.

Furthermore it wilj be assumed that u is a classical solution and that f has
bounded, continuous partial derivatives up toorderk +1on 3 strip

_ ﬂ,={(x,v):0§x§1,u(x)—c <v<u(x)+e}
(Here & is a positive integer and ¢ >0.) Thus u belongs to C“’[O, 1].
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78 1 M SANY/-SERNA AND I ABIA

For Q< h <1 we consider a mesh
-h . =h -h
031(‘<X|<‘ ¢ ‘<XN$|=1

with h = max, & o dtis required that the family of meshes is quasiuniform.
We denote by S the space of continuous functions on [0, 1] which reduce to a
polynomial of degree =k on e:ery subinterval of the mesh. The approximations to
u« are sought in the subspace So consisting of those functions in S* which satisfy the
boundary conditions 2.1 (It should be stressed that Hermite finite-element sub-
spaces can be treated analogously.) As usual the Galerkin approximation Ux € St is

defined by
(2.3) (U VI+HC U, V=0, VeSs.

Next, every interval (X b)) i=0,1,--+ Ny—1,is divided into k uniform
subintervals (&, ik (E 17k %), . In order to shorten the notation the
subscript/superscript & will often be omitted in the sequel. Also expressions such as
f(,u), fC,U) will be simply written as f), f(U). We relabel Eieiyk 8S Xeivp
i=0,1,--- ,N,,—lsndsetMﬁ=N;.k—1.

Let Q, be the operator which associates with every continuous function g its
interpolant Qug € s* defined by (Qug)(x:) = glx),i=0,---,M+1.Thenthe so-called

product approximaaon W, € So is defined by
(2.4) (Wi V) +(Qf(Wa), V)=0, vesh

If ¢:(x), i=0,1."- M+l is the usual interpolatory basis for § k then to compute
W, one has to sobe the nonlinear system

yAax

M
‘ WWLd)+ 'Z:l flxi, Wil(¢i ¥;) +£(0, 0) (o, ¢)

) SO Wnen ¥ =0, =L M,
where W, are the nodal values of W,i=1,---,M Itis now clear that we can first
find the inner products W& ¥, (Ui ¢;) and then iteratively solve (2.5). On the other
hand, to obtain ©¢ standard Galerkin approximation the computation of inner prod-
ucts and the sokzo0d of the equations are not separate processes and at each step of
the iteration pu=erncal quadrature must be used in order to evaluate the contribution
of the nonlines: RTMS:

By introdund the M -dimensional vectors W, f(W), b with components W,
fxi, Wi, flO.0-9 g1+ fil,0)(¥m+1, ¢:) and the M xM matrices S and A with
entries (WL ¢ - ¥V \. the system (2.5) becomes

2.6) SW+Af(W)+b=0.
The Newton 113 37370 ;o1 the solution of (2.6) is given by
2.7 SW-M+Af(w..)+b+AD(W,.+,—w")=0,

where D is ©% Zagonal matrix with diagonal entries equal to fu(xi Wai). (We have
denoted by ®. ¢ .th component of the iterant W,.) Thus the updating of the
Jacobian car. -iiad out very cheaply. If we consider now the functions W, in So
defined by the »30°F of nodal values W, it is easy to see that (2.7) leads to

2.8) (W.. * -On.ﬂWn)yV)+(On[f..(Wn)(Wn+,—W..)],V)=0, VeSo,

which, in turm. 537 ~¢ :nterpreted as the result of the linearization of (2.4) around W,.
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INTERPOLATION OF COEFFICIENTS IN GALERKIN PROCEDURES 79

Finally let us introduce some further notation. We shall consider the Sobolev
space W™ which, for any integer m 20 and any number p with 1 sp = oo, consists
of those functions which have m distributional derivatives in L°(0, 1). The symbol
[l-llm, denotes the usual norm on W™ . If V belongs to $* and v is an eiement of
W™, the norm [jv — V.., must be interpreted elementwise; i.e..

dn
dx"”

(v-V)

flo = V]mo =max max sup” tXi<x <f.»|},

i OzZnsm
with ||-|lm,, p <o, defined in an analogous manner. Similar interpretations must be
given to expressions like ||[f(V)lm,, {(d/dx)f(V)m etc - - - .

3. Main result. Under the above smoothness requirements on f and u, we can
state the following

THEOREM. There are positive constants C, ho such that for h < hg there exists a
product approximation which verifies

(3.1) fu — Willo2+ hllu - Wil 2= CR**'.

Proof. We first prove the theorem under the additional hypothesis that f has
bounded continuous partial derivatives up to order k +1 on ). We set g(x) = f(x, u(x))
and for 0 =A =1 consider the problem given by (2.1b) and

(3.2) -v"+Af(x,v)+(1-A)g=0,

which obviously has u as its unique solution. We introduce the Galerkin approximation
Ui, € 5§ given by

(3.3) Ui VI+A(f(Un), V)+(1-A)@g, V)=0, VeSs,

and the approximation W, € S¢ defined by
(3.4) (Wia VI+A(Quf(Wia), V)+(1-2)(g, V)=0, VeSh

Note that, for A =0, (3.3) and (3.4) are identical, while for A =1, (3.4) reduces to (2.4).

In what follows C will denote a positive constant independent of & and A and
not necessarily the same at each occurrence. The proof, which is somewhat lengthy,
is best presented by introducing some lemmas, whose proofs will be postponed until
the end of the section.

LEMMA 1. (i) For every h and A the Galerkin approximation U, exists and is
unique.

(ii) There exists a positive constant C, independent of h and A such that

(3.5) lu — Uiillo2+ Allu = Ul 2= CR**.

(iii) The norms Um0, r=0,1, - - -, k can be bounded independently of h and A.
LeMMA 2. There exists a positive constant, independent of h and A such that if
W satisfies (3.4) then

(3.6) U - W&u\"l.z§C“f(wu)"ohf(wu)“o.z-

The theorem will follow from Lemmas 1 and 2, provided that a suitable bound
can be found for the interpolation error in (3.6). This is achieved by the introduction
of an a priori assumption, which will later be removed by means of a continuity
argument.
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We consider the sets
B ={VeSh: WU - Vliiash* '),
Bl ={VeSh: U - VlIha<h* '}

Li-MMA 3. (i) There exists a positive constant C, independent of h and A, such
that if V € By, then V|, «=C,r=0,1,-- -,k

(ii) There exists a constant C >0, independent of h and A, such that if Wy, € By,
and W,, satisfies (3.4) then

e = Winllo.2 + hllu - Wm“l.zéCh“‘.

(iii) There exists a constant by >0 such that, if h <h,, 0= A =1, and Wy, € B,
then Wi, € Bia.

(iv) There exists a constant hy >0 such that, if X € By, TeS, and 0=A=1
satisfy

(3.7 (T', V)+MQulfu(X)T], V)=0,  VeSs,

then T =0.

LEMMA 4. There exists a constant ho such that, for any A such that 0=A =1, and
any h <hy, then (3.4) has a solution Wy, € Bp,.

It is clear that the theorem follows from Lemma 3(ii) and Lemma 4. In order to
remove the hypothesis that f has bounded derivatives in (1 we note that (3.1) together
with the inverse assumption on the spaces § * show [5] that Jju — Willo.w =0(1). Then
it suffices to resort to a standard argument. (See, for instance, the proof of [2, Thm.
3.11)

Proof of Lemma 1. For fixed A, the existence, uniqueness and optimal rate of
convergence of the Galerkin approximation are well known [6], [7], [9]. Inspection
of the standard proofs of these facts shows that the constant C in (3.5) can be chosen
independently of A, 0=A =1. Finally (3.5) and the inverse assumption imply that
s — Unallo.o = O(h**'/?), where i, is the interpolant of u, and (iii) follows easily. (In
fact it is known [9] that ||iZix — Unllo possesses an estimate of optimal order. This
optimality does not always hold for two-dimensional problems [10] and therefore we
have preferred not to resort to it.)

Proof of Lemma 2 (cf. [4]). From (3.3), (3.4) with V = U, — Wj, we can write

(Ui = Win, Upa = W) +A(f(Un) = Quf (W), Una = Wia) =0,
whence
U = Wiallo 2+ A(F(Un) = f(Wia), Una = Wia)
= (W) — Quf (Wi o 2lUns = Wiallo -

The condition f,2m > -7 implies that the left-hand side of (3.8) is larger than
a||Ups — Wi} .2 where a is an absolute constant.

Proof of Lemma 3. The conclusion (i) follows from Lemma 1{iii), the inverse
assumption and the triangle inequality. In order to establish (i), we first write from (3.6)

(3.8)

dt
(3.9) "Um_Wm"x.zéC“f(Wm)"an(Wm)“o.zéChk lidxknf(wm);}

0.2

(Recall from § 2 that, if necessary, the Sobolev norms must be understood element-
wise.) The derivative in (3.9), when expanded, yields a nonlinear expression involving
the derivative of f up to order k +1 and the derivatives of Wj, up to order k. (Note
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that (dh’/dx“’)Wm 1s identically zero within each element.) Therefore, by the
additional hypothesis on f and (i) of this lemma,

(3.10) Ui - Wil o= Ch* ",
whence
(3.11) Ui = Winlloo= CE* .

Now (3.10), (3.11) lead to the required bound. A new application of the inverse
assumption yields Uy, — Wi, |l .o = KA** 2 with K >0 inde))endent of h and A, and
thus A, can be chosen to be any positive number with Kh**"/? < y*- !

Let us now turn to the proof of (iv). With V =T (3.7) gives

(T, T)+ A fu(X)T, TV = - QW[ fu(X T Nlo 2 Tl 2,
where I stands for the identity operator. As in the proof of Lemma 2, this leads to

BTl 2 =1d - Q) fu(X) T o
with 8 an absolute constant. Upon bounding the interpolation error, we can write

d* _
1Tl = Ch “§—k(fu<X)T>ﬂ

dx 0.2
An argument similar to the one after (3.9) shows that for X € B, the derivatives
(d'/dx")(f (X)), r=0,1,-- -,k can be bounded independently of X, k, A. Then the
Leibnitz formula for the derivative of a product and the inverse assumption yield

175 Ch¥( £ ITl,2) = Chi T

and the proof of the lemma is complete.

Proof of Lemma 4. Fix h with h <min (h,, h,) and consider the set A [0, 1] of
all values of A for which (3.4) has a solution in B,,. The value A =0 belongs to A,
because for A =0 (3.4) reduces to (3.3). An easy continuity argument shows that A
is closed. The proof will conclude if we prove that A is open in [0, 1]. Let Age A and
consider the corresponding solution of (3.4) Wi, € B, It follows from Lemma 3(iii)
that W, e By,,. According to Lemma 3(iv), with X = Wi, the system (3.4) has a
nonsingular linearization around Wi, and thus the implicit function theorem forces
the existence of solutions of (3.4) for A in a neighborhood of A,. If A is close enough

to Ao, then the corresponding solution lies by continuity in B, and therefore A, is
interior to A.

4. Remarks and extensions. (1) The fact that llu — Uillo possesses an optimal
estimate and the inequality (3.10) imply that the rate of convergence of the product
approximation is also optimal in the L= norm.

(2) Newton’s method for the computation of the approximation W, provided by
the theorem is locally well defined and convergent. It suffices to note that Lemma
3(iv) with A = 1 forces the nonsingularity of the relevant Jacobian.

(3) The existence and uniqueness of the product approximation can be proved
in some instances by analyzing the system (2.6). The reader is referred to [1] for a
discussion of this point.

(4) So far, each element (£, £!.1) has been divided into uniform subintervals
!, f?’,/k), (i."ﬁ,k,if‘q,k ),--+. f F, G are elementwise smooth functions, this
leads to an estimate |(F - Q,F, G )|=Ch’, where C depends on F and G and the
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exponent r equals k + | or k +2 according to whether r is odd or even respectively.
If the nodes within each clement £,.4, 7=0,1,- -k, are chosen to be the Gauss-

Lobatto points and Q. v.(x) modified accordingly, then the form of the product |

approximation equations (2.4), (2.5) is not altered, while, in the above quadrature
error estimate, the exponent r is raised to 2k. For a linear problem (i.e. f independent
of u), this implies readily [13, p. 107] superconvergence of order 2k at the knots.
Recall however that for linear or quadratic elements the uniform subintervals would
be identical with those associated with the Gauss-Lobatto abscissae.

(5) The results of § 3 can be extended to the problem

~Au+flx,y,u)=0, (x,y)eG,
utx, y)=0, (x,y)edG,

where G is a rectangle with sides parallel to the coordinate axes. The region G is
divided uniformly into rectangular or triangular elements and S, is taken to be one
of the usual Lagrange type finite element spaces with interpolatory bases (linear,
quadratic, Lagrange bicubic elements on rectangles, those elements which can be
obtained from the previous ones by removing internal nodes .. .).

If f and u are smooth and k is the greatest integer such that all the polynomials
of degree not larger than k lie in S, then the theorem in § 3 and its proof carry over
to the two-dimensional situation with very minor modifications.

(a) The hypothesis f,Zm>—= ? must be replaced by f, Zm > u, where u is the
smallest eigenvalue of the corresponding linear problem.

(b) The relation [Vi«SCh™|V]1, V €SG5, used in the proof and valid for
one-dimensional problems should be replaced by [Vil.o= Ch |Vl ..

(c) In the proof of Lemma 3 advantage was taken of the fact that the derivative
d**'o/dx**" was elementwise identically zero if ¢ € S*. In two-dimensional situations
not all derivatives of order k +1 of the trial functions are necessarily zero. It should
be kept in mind, however, that in order to bound the interpolation error ||f(U) — Qf (U]
one must bound only these derivatives D°f(U) (a a multi-index with |a|=k +1) for
which D° restricted to S" is identically zero [3]. Inspection of the expansion of D°f(U)
shows that only the derivatives D®U, |B| = k, feature in the bound for the interpolation

error.
(6) The reader is referred to [1] for further extensions and numerical results.

Acknowledgment. The authors are very thankful to one of the editors (Prof. Jim
Douglas Jr.) for pointing cut the advantages to be gained by using the Gauss-Lobatto

abscissae.
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