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A Gaierkin method is introduced for the numerical solution of a system equiv~ent to the equation 
we = (1 f f$ wzdx)w, which models the vibrations of a string when the increase in tension due to 
extension is taken into account. We prove the convergence of the semidiscrete approximations and 
present some numerical tests. 

1. Introduction 

It is well known that the familiar wave equation w, = W, constitutes only a first ap- 
proximation in the study of the transversal vibrations of a string [l]. The dimensionless 
nonlinear integro-di~ere~ tial equation 

provides a better model in that it takes into account the increase in tension resulting from the 
extension of the string [2]. Similar nonlinear integro-differential corrections have also been 
suggested in the study of beams and plates [3,4). 

In this paper we present a Galerkin method for the solution of (1.1) rewritten as the 
first-order system 

which arises from the substitutions u = W, and v = w,. 
Along with (1.2a) we have the boundary conditions 

u(O,t)=u(n,t)=O, t>o 

(1.2a) 

(1.2b) 
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(corresponding to the string being fixed at both ends}, and the initiai conditions 

u(x,O), u(x,O), O<x<n. (I .2c) 

A sem~discrete (continuous in time) Galerkin method for the numerica solution of (1.2) is 
introduced in Section 2 and its convergence is proved in Section 3. In Section 4 we discuss 
some methods for the integration in time of the semidiscrete system. Finally, numerical 
experiments are reported in Section 5. 

The modifications required in order to deal with boundary conditions more genera1 than 
(1.2b) or with a forcing term in (l.l), (1.2a) are straightforward and there is no need to present 
them here. 

It should be pointed out that for (1,2a) subject to (1.2b) the law of conservation of energy 
holds under the form (see [2]) 

2. Gab-kin method 

The interval [O, rr] is divided into N elements of equal length h = n/N, by means of a mesh 
xi=&, i=O,l,..., N. We consider the space Sh of real, continuous, piecewise linear 
functions in [0, n] and the subspace Sk consisting of the functions in Sh that vanish at x = 0 
and x = T. 

The Galerkin approximation of u and u is a mapping t -+ (U(t), V(t)); U(t) CZ S,“, V(t) E Sh 
defined by 

(V, $I= turn 4% $ESh. (24 

V(0) - u(. , 0) ‘small’ . (2.3) 

We denote by (- . -), I]* 11 the inner product and norm in L2(0, n), respectively. 
Upon noticing that (2.1), (2.2) is essentially a system of nonlinear di~erential equations in 

2N unknowns (2N = dim(S~ x Sh)) we can prove the following result. 

T~EURE~ 1.1. For uny value of h = T/N, N a positive integer and any choice of initial 
approximations U(0) E S8, V(0) E Sh, there exists a unique Galerkin solution satisfying (2.1). 
(2.2) for 0 6 t < cc. Furthermore, the following a priori L*-estimate holds: 

PROOF. It is sufficient to prove (2.4). From (2.1) (2.2), 
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and integration by parts shows that this last term is zero. 

Notice that (2.4) establishes the conservation of mechanical energy. 
When the usual basis functions 4i E Sh, i = 0, 1, . . . , N, 4i(Xi) = 1, +i(Xj) = 0, i # j are 

introduced, the approximations U(t), V(t) can be written in the form U(t) = xE;“=;’ Ui(t)4i, 
V(t) = CE(l K(t)& where tYi(t), Vi(t) are the nodal values of U(t), V(t), respectively. 
Conditions (2.1) (2.2) are readily seen to be equivalent to the following system of ordinary 
differential equations for the nodal values: 

d 
M dt U = (1+ hVNV)QV, 

d 
NSF’=-Q’U 

(2.5) 

where U= [U,, U2,. . ., UN-J, V= [V,,, VI,. . ., I&]‘. The matrices M, N, Q have dimen- 
sions (N - 1) X (N - 1), (N + 1) X (N + l), (N - 1) X (N + l), respectively, and are given by 

ME; = h-‘((& &j))*=si, jGV-I 3 

NC; = h-‘((& 4j))CKi,jsN 7 

3. Convergence 

It is well known that for first-order hyperbolic systems, finite element analysis leads in 
general to suboptimal convergence estimates in Lz [5]. It is therefore advisable to analyze the 
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Galerkin method presented in Section 2 in its finite difference formulation (2.5) (see [6]). Thih 
will be seen to yield an optimal error estimate. 

Let Y, 2 be (N - 1) vectors whose entries Yj, Zi, i = 1,2, . . . , R! - 1. are values of certain 
functions at the nodes xj. We set 

N-l 

(Y, Z), = h x YiZi 7 
*=I 

Analogously, if Y, 2 are (N + 1) vectors whose entries Yi, Zi, i = 0, 1, . . . , I’?, are function 
values at the nodes xi. we set 

The bounds 

fllYll”h =s (Y, MY)h G IIYll"h , y E lftN-’ 3 (3.1 a) 

$]]Y]]‘h <(Y, NY)k d I]Y]/“h , YE RN+’ * (3.lb) 

]lQ’Yllh d h-“II Yilh 3 Y E RN-‘. (3.14 

follow easily from Gerschgorin’s theorem applied to M, N, QQ’, respectively. 
We assume that (1.2) has a unique solution (u, u), with U, u E C3([0, ~1 x [0, 7’1) and denote 

by u = u(t), et = u(t) the corresponding vectors of nodal values [u(x,, t), . . . , u(x~-~, t)]‘, 

b(& f), * * * 3 u(xN, t)]‘. The vectors of truncation errors p = p(t), a = a(t) are defined by the 
equations 

M$u=(l+ho’Nu)Qv+p, 

d 
Ndt~=-Q’u+rr. 

(3.2a) 

(3.2b) 

Note that for any (N + 1) vector 2 the product hZ’N2 = (2, NZ)h equals the square of the 
L*(O, ?r)-norm of the element in Sh with nodal values Zi. Thus in (3.2a) the product hv’Nv is, 
for each value of t, the square of the norm of the interpolant 6 of U. Accordingly, 
hv’Nv = jjv(* , t)jl’ + O(h’). N ow a Taylor expansion reveals that ]lp(t)llh + j[a(t)]j,, G Ch’, 0 s t G 
T, where C is a constant depending only on bounds of the first, second and third derivatives of 
u and ~1 in [0, IT] x [0, ‘I’]. 

THEOREM 3. I Assume that u, v sa~sfy the hy~utheses above and that //u(O) - U(0)/jh + /v(O) - 
V(0)llh s Clh2. Then there exist positive constants C,, C, depending on Cl, T and on bounds of 
the derivatives of u and v in [0, n] x [0, T] such that for h d C, and 0 s t d T, 

llu(t)- u(t)lC -+- llv(t)- W>lb, =s Gh2 . (3.3) 
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PROOF: It is sufficient to carry out the proof under the a priori assumption 

as this can be removed by means of a standard argument. We shall denote by C, a generic 
constant depending only on C1, T and bounds for the derivatives of U, ZL 

The energy method based on the functional 

E(t) = (24 - u, kf(u - u)), + [l + (v, NV)& - v, N(e - v))k 

will be employed. Note that from (3.1) 

and the last expression can be bounded independently of h. On considering the identity 
(V, bfV)k = IIvp and the a priori estimate (2.4), we conclude that (V, NV)k can be bounded 
independently of h for 0 s t G II: Therefore (3.1) implies the existence of positive constants A, 
B independent of h such that 

where 
AE*(t) d E(t) =S BE*(t) (3.5) 

Differentiation of E(t), the use of (2.4), (3.2) to eliminate u, z+, U, 

+ [l f (v, NV)k](u - v, e)k - (v, Q’u)k(v - v, N(u - v))k - (3.6) 

We now estimate the right-hand side of (3.6) as follows: First 

and 
(a - u, P>tt =s &J - Wl”h + IIPIM (3.7) 

where I) is an a priori bound for (V, lVV)h. Next we write 

and observe that l[Q’&, can be bounded independently of h. Thus, on considering (3.1~) and 
(3.4) we conclude that 
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Q’U),I s c, 

and 
(a NV)h - (V, NV)h = (U + v, N(v - V)), s cl/u - Vl]h . 

Substitution of (3.7)-(3.1(I) in (3.6) leads to 

(3.0) 

(3. IO) 

$ E(t) s C(E”(t) + IIpll’h + 11~113) =2 CW) + h4) ’ 

and now Gronwall’s lemma can be used to complete the proof. 

It should be pointed out that (3.3) clearly implies the optimal estimate in the L*[O, T]-norm: 

l]u(* , t)- U(t)ll+ iiv(* , t)- V(t)11 = O(h2), 0 s t s T. 

4. Integration in time 

Care should be exercised in the time integration of the system (2.5) as this is not a banded 
system as a result of the presence of the ‘nonlocal’ term VAT. 

In our experiments, a predictor-corrector algorithm was used in order to avoid the need for 
full matrices. We denote by k the step size in time and by U”, V” the approximations of 
U(nk), V(nk), respectively. A step of the algorithm consists of a predictor stage 

N(V+ V”) = -kQtU” 

and the corrector stages 

(4.1) 

IV{&,- Un) = ikf(l+ F(V;,-#WI,, + (I+ J?V”))QV”l t 

N(VIsl - Vn) = -;k(Q’U&, + QW) . 
(4.2) 

Here, s = 1,2, . . . , F(2) = hZ’NZ. Formulas (4.2) are applied until a value of s is found for 
which the iterates s, s - 1 are identical within the accuracy of the machine. Then U”+‘. Vn+’ 
are taken to be Ut+ Visl respectively. 

The matrix N can be factorized once and for all and therefore an application of the 
predictor demands a backward and a forward substitution on an (N + I) vector. Each corrector 
stage requires the solution of a linear system in 2N unknowns, whose matrix changes with n 
and s. This matrix is block-tridiagonal with 2 x 2 blocks, provided that the unknowns are taken 
in the order V,, U,, V,, l.4, V,,..., VN. 

Clearly the accuracy and stability properties of the algorithm (4.1) (4.2) are identical. except 
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for round-off [7, p. 861, with those of the implicit Crank-Nicolson method 

~(u~+l- U”) = &[(1+ ~(v~+l))~v~+l+ (1+ ~(v~))Qvn] 7 

N( vn+’ - v”) = -;k(Q”U”+l+ QW”), 
(4.3) 

the predictor-corrector procedure being simply a technique for the solution of the implicit 
equations for Un+*, Vn+‘. The use of Newton’s method in (4.3) is not recommended as the 
relevant Jacobian matrix is not sparse due to the term F(Vn+‘). 

Some computational effort can be saved by allowing only one application of the corrector 
per time step. In that case the resulting algorithm is not identical to (4.3) and nonlinear 
instabilities may threaten. See the experiments in [8], based on a similar procedure, and the 
discussion in 19, lo]. 

An alternative to (4.3) is given by the modified Crank-Nicolson method [lo, 11, I2f: 

M(U”+‘- u”) = ;k(2 f F( V”+l) + F( V”))Q( V”+’ + V”) , (4.4a) 

N( V”” - v”) = -;k(QtU=+l+ ~tg,p), (4.4b) 

which possesses the conservation property (cf. (2.4)) 

(U”, A4U”)h f (V, NV”)h + i(V, NV”): = constant. 

This is derived by taking the scalar products of (4.4a) with (EF’ + IP) and of (4.4b) with 
(V”+’ + V”) and adding the results. The importance of conserving discrete analogues of 
continuous invariants of motion is now widely appreciated (see the discussion in [9] and the 
literature cited there). 

The local accuracy of both (4.3) and (4.4) is 0(k2 -t h2). C onvergence proofs of these fully 
discrete methods will not be presented in this paper. 

5. Numerical experiments 

We applied the method outlined in Section 2 to the problem given by the system (1.2) with 
initial conditions 

u(x, 0) = 0) V(X, 0) = 0.25 cos X . 61) 

The exact solution is given by 

u(x, t) = &(t)sin x, u(x, t) = a(t)cos x (5.2) 

where dot denotes differentiation. The function a(t) satisfies the Duffing equation 

ci+*+$ra3=o, (5.3) 
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Table 1 

Error x 10’ at x = 0.5, t = 5 

k = 0.001 k = 0.05 

h = ?r/lO 235.1 370.1 
h = 71/40 13.0 149.3 

h = +rr/I@l 0.8 136.4 

with initial conditions cy (0) = 0.25, &t(o) = 0. The predictor-corrector (4.1), (4.2) was employed 
to march in time. Two different values k = 0.05, 0.001 were used for the time step. When 
k = 0.001, the error due to the time integration is negligible and accordingly the computed 
solution is virtually identical to the solution of the semidiscrete system (2.5). The value 
k = 0.05 was chosen to assess the effect of the integration in time. For this latter value of k the 
convergence of the corrector needed two or three iterations per time step. 

Table 1 displays the error (numerical - theoretical) associated with the approximation 
u(O.5,5)- 0.2301349. This ‘exact’ value was computed by solving (5.3) with a standard ODE 
package. 

The column k = 0.001 exhibits an O(h’) behavior. Each entry in the column k = 0.05 

approximately exceeds the corresponding entry on the left by the fixed quantity 135. This is 
explained by the fact that the error in the fully discrete method (p.1). (4.2) behaves like 
0(k2 + h*), 135 x 10Y being the O(k2) term corresponding to k = 0.05. 

Other nodal errors in the u and u components follow the pattern presented in the table 
for the error in u at x = 0.5, t = 5. 

Experiments involving up to 20000 time steps (h = Ian, k = 0.0125) and ‘rough’ initial data 
were also performed without stability problems. 
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