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ON THE USE OF THE PRODUCT APPROXIMATION
TECHNIQUE IN NONLINEAR GALERKIN METHODS

L. ABIA AND J. M. SANZ-SERNA
Departamento de Ecuaciones Funcionales, Facultad de Ciencias, Universidad de Valladolid, Valladolid, Spain

The term ‘product approximation’ (PA) was introduced by Christie et al." to refer to a technique
for the treatment of nonlinear terms in the finite element method. This technique is also
referred to as ‘group formulation’.> The present note contains a discussion of some of the
practical advantages and disadvantages of the PA procedure.

For simplicity, we restrict ourselves to the model elliptic equation

Au+bu,+f(u)=0 (1)

in a bounded region in R", with suitable boundary conditions. In (1), A denotes the Laplacian
operator in n space variables x, y,... and b is a constant. The numerical solution of many
time-dependent problems requires an equation similar to (1) to be solved at each time step.

When Galerkin’s method with shape functions ¢;, j=1,..., N is used, the nonlinear term
in (1) contributes to the discrete system of nonlinear equations with an N-vector F whose ith
entry is given by the inner product

F=(fX $U), &) (2)

Here, Uj, j=1,..., N denote the nodal parameters of the numerical solution U =} ¢;U;. (For

simplicity, we assume the elements to be of Lagrange type. Hermite elements can be treated

in a similar manner.) The vector F must be evaluated (at least) once within each step of the

iterative method being employed for the solution of the discrete nonlinear system. Typically,

this evaluation requires the use of numerical quadrature to compute the inner products (2).
In the PA technique, (2) is replaced by

Fi=Y (¢, $)f(U)) (3)

a device which does not imply loss of accuracy as shown both theoretically and experimentally
in References 1, 3 and 4. In (3), the inner products (¢;, ¢,) can be computed once and for all
before the iteration starts. From here, it is sometimes concluded'® that the PA improves on
standard quadrature Galerkin methods (QG) as far as computational effort is concerned. In
our experience this is probably true in one-dimensional problems (n = 1), but is not necessarily
so in higher dimensions. In order to clarify this the following remarks are in order.

1. In one-dimensional problems the following implementation of the PA technique has proved
to be highly useful (see Reference 6 among many others). The mass matrix M with entries
(¢ ¢;) is assembled before the iteration begins and stored in band form. The bandwidth is
usually a small integer m. Then, F is evaluated at each step as the product Mf, where f is the
vector whose ith entry equals f(U;). Thus, the evaluation of F requires Nm multiplications
and N evaluations of f, and is easily coded. This compares favourably with QG methods (even
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more so when higher order elements are used, as these would require expensive quadrature
rules if a QG method were employed).

2. In two or three space dimensions the implementation described above for the PA technique
is very inefficient.* In fact, for a uniform rectangular or triangular mesh in the unit square
0<x<1, 0<y=<1, with element diameter h, there are O(h 2) nodes or entries in F, while
the bandwidth of M is O(h™"), so that the procedure in remark 1 above, for the computation
of Mf, leads to a total of O(h™) flops. This compares unfavourably with the O(h™?) count
in QG methods. Efficient implementations of the PA technique will, in general, resort to the
computation of F by assembly within each iteration. The procedure is then not substantially
different from QG algorithms and so the advantages of the PA technique, if any, will not be
marked. A final assessment will depend critically on the particular implementation, the type
of element and the problem at hand. Note that (3) can be evaluated analytically for any function
[, as distinct from the situation for (2). In favourable geometries, it might be useful to resort
to analytical evaluation.

3. When PA is used, the Jacobian dF/oU with entries (¢;, ¢;) f'(Uj) is readily computed, but
unfortunately is not symmetric®*. Thus, if Jacobians are required (as they will be in Newton’s
method) the PA technique may introduce nonsymmetric matrices in situations which otherwise
demand only symmetric ones (e.g. equation (1) when b=0). This doubles the storage require-
ments and greatly increases the computational cost. In these instances, the PA technique is
not to be favoured, except perhaps in one-dimensional problems.
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