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the use of functional analysis to the bare, indispensable minimum. It is

hoped that in this way the paper will be beneficial to a wide audience.

The ideas have been grouped in what we call the first and second paradigms.
In the first paradigm, the only elements that feature in the analysis are the
discrete equations, >:cr = f being studied and (a discretization of) the

theoretical solution u being approximated. There is no need to introduce
The second paradigm investigates the

restriction or prolongation operators.
= f and its discretizations >:c: =

interplay between the original problem Au
m:. The first paradigm is simpler (and therefore more versatile and less

powerful) than the second. Most current research papers (particularly in
nonlinear situations) are written within a first paradigm setting. On the

other hand, the general theories of discretizations usually work within a
An important exception is given by Spijker's

second paradigm framework.
thesis [35], which is limited to initial value problems.

The paper is divided into five chapters. The first describes the basic
ideas of the first paradigm: consistency, stability and convergence. The

chapter concludes with the (trivial) proof of the most important theorem in
numerical analysis: consistency and stability imply convergence. The second

chapter studies the question as to whether consistency and stability are
Stability is not: there exist convergent dis-

necessary for convergence.
Accordingly we. introduce the stronger

cretizations that are not stable.

concept of L-convergence (i.e., convergence under perturbations) in such a
way that L-convergent discretizations are necessarily stable. It is also ,

possible to have convergence without consistency or convergence of order p

with consistency of order less than p. Unknown to many, this is quite a common

occurrence in practical situations. In Section 2.3 we show (following a

communication of R.D. Grigorieff) that central differences on a nonuniform
grid achieve second order of convergence in the sup norm, a fact some people

are not aware of. The characterization of those circumstances under which

the order of convergence cannot be higher than that of consistency leads to

the idea of uniformly bounded discretizations.
The third chapter presents the second paradigm.
tain an account of the classical ideas of the Lax-Richtmyer theory [23].

fourth chapter examines the useful notion of regular approximation, while the
last particularizes all the previous material to the highly important case of

The examples there con-
The

initial value problems.
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The references provided are not intended as a complete survey of the exist-
ing literature, a task well beyond the author's capabilities. They rather
supply illustrations to some concrete points or show the way to further mat-
erial in the various fields.

It is obvious that a paper such as the present one must have been influ-
enced by a considerable number of people. I want to express my gratitude to
the Numerical Analysis Group of the University of Dundee, my former teachers.
1 learnt from them, among many other things, that numerical analysis is about
computing numbers. Thanks also go to Professor R.D. Grigorieff (Berlin), who
made me familiar with a number of German contributions, and to Professor Guo
Ben-Yu (Shanghai), who provided much initial motivation. And, last but not
least, I am indebted to my colleague Dr C. Palencia for countless valuable

conversations.

1. THE FIRST PARADIGM. THE BASIC THEORY

1.1 Discrete problems

We consider a given, fixed, linear aaﬁ*mxmzﬁmmd equation problem with solu-
tion u. In most instances u cannot be wmmgi_< expressed in terms of the data
of the problem and then one must obtain a 'numerical' approximation c: to u.
We have appended a subscript h in order to reflect that the numerical approxi-
mation c: depends on a (small) parameter h such as a mesh-size, element dia-
meter, reciprocal of number of terms retained when truncating a series etc.
In what follows we always assume that h takes values in a set H of positive
numbers with inf H = 0.

The numerical approximation c: is reached by solving a discretized problem

Ay = o (1.1a)

where, for each h in H, >: is a fixed linear operator mapping a vector space
x: into a <mnmow space <:J and ﬁ: is a fixed element in <:. (In this paper
we assume tacitly that when several vector spaces occur simultaneously, they
are either all real or all complex.)

Note that at this stage one is not concerned with endowing x:, <: with
norms: the discrete problem (1.1a) can be formulated and the approximation U,
obtained prior to the introduction of norms to be made later for the sake of
the analysis.
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A natural requirement that >s should satisfy is that the inverse >:-a

exists in order to guarantee the existence and uniqueness of cs. However the
invertibility of >s js not demanded at this stage, because we shall show below
that this invertibility is, under appropriate hypotheses, a consequence of

the stability of (1.1a). We only assume that

aﬂanwmxﬁ>rvv = noaﬂaﬁxﬁ>:vv < oo, (1.1b)

where ker and R denote respectively kernel and range. (Recall that
noa¢sﬁzﬁ>:vv is, by definition, the dimension of a supplementary subspace of
xﬁ>sv.v The requirement (1.1b) is very weak. It is satisfied in any of the
following cases:

(i) x:, <: are both finite-dimensional and aﬁaﬂxsv = aéaﬁ<:v.

(i1) >: is invertible.
(iii) >: can be written in the form >= = w: + o:, with m: invertible and
din(R(C,)) < =

Two examples will be used throughout this paper in order to ii
in a simple setting, the presentation.

lustrate,

Example A. Two-point boundary value problem. We consider the problem

u"(x) = f(x), 0% xs 1, . (1.2a)
u(0) =u(1) =0, {1.2b)

where f is a given, fixed, real continuous function. If J is a positive

integer and h = 1/J, we introduce the grid-points xg = jh, j = 0,1,...,5d.

Replacement of the second derivative in (1.2a) by central differences leads,
on taking into account (1.2b), to the discrete problem
2 . _ ‘
(1/h%) (20 + Up) = f(xq),
z - . -
(1/n%) Acuua|wcg + :u+ﬂv = f(x.)y § = 25350005372,
2 -
A\_\I V ACLIMINCLR_V = ,mAXr_I._vn

which can be rewritten in the form (1.1) as follows:
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-2 “ -

hcl-2 1 0 e v . 0 0ol [u = [fix) 1 (1.3)
1 -2 1 . . . 0 0 U, f(x,)
0o 1 =2 .o 0 0 :w wﬁxuv

v 0 o0 e 1 -2

LF(xg-1)

Note that, rigorously speaking, xg. cg depend on h. This dependence and
others similar to it are not displayed in the paper to simplify the notation
Here X, , <: are both identical to the space of real (J-1)-vectors. The
requirement (1.1b) is satisfied, since Q¢sﬂxsv = aﬁaﬁ<:v = J-1.

Example B. Periodic initial-value problem for the linear convection
equation. We now consider the problem

CH = ICXu = £ X £ o, 0 < t < T < 0, Aﬁ-bmv
u(x,0) = n(x), -=»<x<w, (1.4b)
u(x+1,t) = u(x,t), -0 <x<w, 0ctcg T, (1.4¢)

2 .
b of 1-periodic, complex

valued functions which are square integrable in 0 < x < 1. The solution of
this problem is given by u(x,t) = n(x~-t) (cf., Section 3.1).

If h a positive parameter, r a fixed positive constant and square brackets
denote integer part, we introduce the time levels ﬁ: =nk, n=0,1,...,N

N = [T/k], k = rh and consider the discretized equations

0
U" = n(x), == < x <o,

where the initial datum n belongs to the space L

(176) W™ G0-U"(x)) = =(1/h) (U () -U"(x=h)), - < % <

n=20,1,...,N-1,

based on replacement of the derivatives in (1.4a) by one-sided differences.
These formulae enable us to compute recursively the functions c: € rm.
n=20,1,...,N. On introducing the identity operator I, the ﬁwmzm_mnwo:
operator T, given by ﬁq:<VAxv = v(x-h), == < x < = and the operator
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n: = (1-r)I + 14:»

the discretized equations can be written as the recursion

TR . (1.5a)
I T e, 0= 0, e (1.5b)
These formulae can in turn be expressed in the form (1.1) as follows:
ar 1 T.0 r
D B SR ' T I 7o) I PN A (1.6)
1 0 u! 0
h e e e
2
v un: I . . . . 0
N
AR S R § I (1 B 1Y

Here x: and <: are both identical to the space of (N+1)-vectors H<o.<_....<2uﬁ
where each entry V" is a function V7 = v"(x) which belongs to rm. The
operator >: is clearly invertible, due to its bidiagonal structure. The

inverse >:L is explicitly given by

At ok [

) . _ (1.7)

Note that, for reasons to be made clear later, we have chosen to retain the
factor raa in both sides of (1.5b) (cf. also Stetter [39], para,2.2.2).

Remark  The derivation of the discretizations (1.3), (1.6) from problems
(1.2), (1.4) has been a motivated one, namely that of replacing derivatives
by divided differences. However it is by no means necessary that the dis-
cretized problems resemble formally the original differential problem (cf.
high order linear multistep or Runge-Kutta methods in ODEs). The way in
which the discrete problem is derived is immaterial in the analysis and
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practical performance of a numerical method.

1.2 Global error, convergence

Let us suppose that we nave formulated a discretized problem (1.1) in such a
way that it possesses a unique solution c: and let us also suppose that we
have computed c:. To what extent does c: provide a good approximation to u?
A first difficulty in answering this question stems from the fact that c:
can be completely dissimilar to u. Consider, for instance, Example A, where
u is a function ul(x), 0 s x <1, while c: is a real (J-1)-vector. This
difficulty is circumvented as follows. Since the numerical solution c:
yielded by (1.1) is bound to be an element in X, we first make up our minds
as to which element up in x: should be regarded as the most desirable numer-
jcal result. (For instance, in the context of Example A, we may decide that
the (J-1)-vector up = Lu(xy)s cﬁxmv,...,chg-avua provides an 'ideal' num-
cerical result, so that we would be really pleased if the discretized problem
gave U = c:.v Once u, has been chosen, we can define the vector e, = U=y
as the error in the numerical approximation c:. To distinguish between this
concept of error and others to be introduced below, we say that e, is the
global error in U .

In order to measure the size of the global error we introduce, for each
h in H, a norm :.__x: in Xy (In Example A, the elements Vp in X are (3-1)-
vectors with entries <u and one can use the norm =<:__3.x = smx~_<u_ :

h
1 < j g J-1}.) Hereafter the subscript X, will be omitted from the notation

of the norm. Often norms in different spaces will simply be denoted by || ||
without mention of the space.

We are now in a position to summarize the discussion above and to intro-
duce the concept of convergence.
pefinition 1.1 Assume that for each h in H an element U in x: and a norm
in X, have been chosen. Then if U is a solution of (1.1) the element
-U, € X is called the global error in U. The discretization (1.1)

e u

h h
is said to be convergent if there exists :o > 0 such that, for each h in H,
h g zo, (1.1a) possesses @ unique solution and, as h -0, lim =m:__u 9.

The convergence is said to be of order p if =m:__u 0 o(hP).
some remarks are in order:
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(i) The convergence of a given approximation U, can be investigated under
different choices of norm and different choices of u. For ¢=mww=nm. in the
context of Example A, one can also consider the choice of the L~ norm
=<L,w = gw_ :_<u_m. (Note the normalizing factor h. This factor is not

3= , .
essential: any norm in X, is eligible, However the introduction of the factor
ensures that =<:,_N < =<:__e and that, with our previous choice of u,

Tim, =cs#.w = :c__rmﬁo 0 thus rendering the norm more meaningful.)

Also in Example A we could have chosen up to be the vector with entries

-1 axg.._.w—;

v u(s) ds, j = 1,2500050"13
xg-w:

h
i.e., we could have thought that the numerical solution obtained attempted
to reproduce cell-averages rather than grid-values. This way of thinking
js in fact advisable in practice when the solution u develops very steep
gradients. Under those circumstances, attempts to reproduce exactly a nodal

value cﬂxuv are doomed to fail. For further discussion of this point see
Cullen & Morton [63.

(ii) There js an alternative technique for dealing with the difficulties
stemming from the fact that u, cs 1ie in different spaces: one can no:mmxcoﬁ
from cs an element m: of the space X that contains u, and then compare u,
and Up+ (In the context of Example A, one could interpolate the values cQ
to obtain a function m:Axv defined for 0 ¢ x = a%v In our opinion this
technique of analysis introduces an arbitrary process of interpolation or
usodosomawoz which does not correspond to any operation actually carried out
in cxmnawnmd ¢acdmsm:nmﬁ¢o=m. Therefore the alternative technique is not to
pe preferred to the one previously discussed (see also Stetter [39] p. 7).

For a theory based on interpolation or prolongation procedures, See Aubin [3].

In some applications (e.g. finite elements) the spaces x: are subspaces
of X and then it would be possible, in principle, to regard :-c: as error.
However, note that u - c: = (u - ::v + ﬁcs - csvw the second term in the
1ao:a-sm=a side is the global error in Definition 1.1, whereas the first term
merely reflects the approximation capabilities of x: and does not relate to
the discretization (1.1). Thus, even in the case where U and c: are directly
comparable, we prefer to define the global error as c:-:s.

gefore closing this section, and for further reference, we make our choices
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of up and norms in x: in problems A and B above.

Example A. Here we mmﬂ up = [u(x av u(x Nvu...chxg avuq and, if
= [Vy, <m,....<,H au is m: element in X, _< || = max _< |

mxmaudm B. Now up = [u{«,t v. u(e,ty Yseoostu(e,t vu (The notation
cﬁ.,ﬁ ) represents the mcznﬁdoz of x owﬂmdsma when a is kept fixed t =

If <: m<oo 1ovees Zu , with < € rN is an element in xs, we set

p’
191 = maxg 1V 11 2-
1.3 Local truncation error, consistency

.)

Qur aim is now to obtain bounds for the global error. A first step in that

u - f

) AUn h?
an element which measures to what extent the equation (1.1a) is satisfied by
The importance of 4: arises from the fact that it is often easily bound-

direction is the introduction of the local truncation error ._:

Upe
able.

Definition 1.2 Assume that for each h in H an mdmam:w :: mx: m:am:ows
in < have been chosen. Then the element _ >:c: : is called the local
ﬁﬂ::omﬁ,os error of the discretization (1. dv The discretization is said to
pe consistent (resp. consistent of order p > 0) if, as h = 0, Tim =d:__u

(resp. lI1,11= 0(hP)).

Example A. With our previous choice of Ups the j-th component of d

is given by
= IN - - .
md:uu = h Achu h) chxuv + :Axu+:vw - wauv.

If u has four bounded derivatives in 0 s x s 1, a Taylor expansion of the
right-hand side, taking dzﬂo wonocsﬁ (1.2a), shows that _mi:u | < A:N\awvwa
where mp is a bound of _a :\ax |. If we choose in <: the maximum norm, it
follows that

2
1, 11= maxs [0 351 5 (h°/12)8,
and thus the discretization is consistent of the second order.

Remark Checking consistency typically involves some sort of Taylor expansion.
This demands a certain degree of smoothness in u. We shall present later
(Theorem 3.4) indirect means of establishing consistency which may bypass
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the need for smoothness requirements.

2 1

0’ we employ the L

Example B. Here if <: = m<o.<a....,<2uq c <:. <= €L
norm '

N
Vol = Ival, 2 + = kv 2. (1.8)
Wil =1i o__ru o IV, J

Note the factor k in the right-hand side, in agreement with previous dis-
cussion. The term =<o__~m not multiplied by k, reflecting the fact that
(1.5a) does not include the factor x-a as distinct from (1.5b). On the
advisability of using an rﬂ norm in <:, rather than a maximum norm, see
Stetter [39] p. 75.

With our previous choice of u, and on proceeding as in Example A, the
discretization (1.6) is seen to be consistent of the first order, provided
that (1.4) possesses a maooﬁ: solution. In the special case r = 1, the local
truncation error is zero, 1.e. c: satisfies exactly the discrete equations
and therefore c: = Ups since >= s invertible.

1.4 Stability. The main theorem

Once bounds of the local truncation error a: are available, they can be
transferred to the global error by means of the idea of stability.

e ————

cretizations (1.1) are said to be stable if positive constants h , L exist
such that, for each h g :o. <: € x:.

Definition 1.3 Assume that norms in x: and <: have been chosen. The dis-

s LAY (1.9)

The no:mamzd L is the stability constant of (1. 1).

It is clear that the stability of {(1.1) does not depend on the right-hand
sides *:. Obviously, for stable discretizations, xm1A> ) = {0}, which in view
(1.1b) shows that >z:a exists for h < hg, thus @cmxm:ﬁmmdsm the mxdmﬂmsnm

and the uniqueness of the solution cs of (1. amv When the existence of >:

has been proved, (1.9) is equivalent to :>: < L. When (1.9) holds,
__m:__ st =>:m_.___ =L :>3:3«>:c:__ =L __>_._::|ﬁ_,.__ =L ___:__ 4

so that e, can be bounded in terms of d: through the h-independent constant
L. In this simple way is proved the most jmportant single theorem in the
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numerical analysis of differential equations.

q:moxma_.AHw,ﬁo1@m<m=n:oAnmm0ﬁ :: m:a5013m&= x:. <:. ﬁ:mnimnxmnm-
zation (1.1) is consistent and stable (with constant L), then (1.1a) possesses,
for h sufficiently small, a unique solution U . These solutions converge.
Furthermore, for h small enough, :m:__m L zd:__ so that if the consistency

is of order p, then the convergence is also of order p.

Example A. Here the stability inequality (1.9) can be derived from a

diserete maximum principle analogous to the maximum uxmzoAUAm for (1.2).
(The latter simply asserts that if u"(x) 20, 0sxs 1, i.e.u is convex,
then u(x) s 0, 0 £ x s 1.) We mroz that if ﬁ:m vector >:<: has nonnegative
entries, then <: = m<a...., J- au is nonpositive. In fact, assume that the
i-th entry in <: is as large as any other entry, i.e. that i is such that
<.-<¢ <0 for1<jsd=1. If1<i<(J-1), then (a subscript denotes com-

_om:m:: 0 < [AVY ] = :-mz Y rs-NA Vi,qV5) € 0, so that Vo = V. .. By
induction, <¢ <A 1= < Thus the first entry is always the largest.
But then, 0 < [ :< u = h NA m < )-h~ <1 showing that < 0 and therefore
; 0 for each j.
We are now in a position to prove the stability inequality (1.9). Let
m<ém..._< -ﬁua € x and let M Um the (maximum) norm of >s< H:ﬁxoacnm
ﬁ:m vector z: € x: sdws j-th entry 3h™j N. One has > m_,....a_ and

:z:__m 3. Then N = w<: + zz: are such that >:N: is :o::m@mﬁd<m. By the
maximum uﬁd:nau_mu +< < M, so that (1.9) holds sAﬁ: L = 3.

Note that the amxdaca principle shows that > Asran: exists by stability)
js nonpositive. Further material on matrices sdﬁ: nonpositive inverses and
their importance in the discretization of elliptic problems can be seen, e.g.,
in Varga [47].

We conclude from Theorem 1.1 that (1.3) is uniquely solvable and that

2 .
sme_ch cu_ = 0(h®), provided that f possesses two bounded derivatives.

ou.v

Example B. The following lemma is needed.

Lemma 1.1 Let W, Z be normed spaces, k a positive number, N a positive

integer. Let X denote the space of (N+1)-vectors V = m<o,...,<2uq, V €W
. : ’

with the norm :<__x Max =<:__z. Let Y denote the space of (N+1)-vectors

m<o,...,<2ua <: € Z, with the norm
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N
Vil = Vgl 5 v 1l 5
Let B = Awasv, are bounded

operators from Z into W.

m,n = 0,1,...,N, be a matrix whose entries ma
Then B defines a bounded operator from Y into X

with norm

B = max { amx 1B o__ c_mw__w
1<ngN

Proof When W and Z are both the real line, the proof is analogous to those
in Section 1.1 of Isascson and Keller [20]. The extension to general normed

spaces W, Z is trivial.

rmAﬁo the inverse operator >:.d in

On applying the lemma with W = JA v
N} and therefore stability

(1.7), we see that [[A -d__ amxh__n:__
means

sup max =n =0 L <o, (1.10)

h  0OgnsN
a requirement which is often taken as the definition of stability in the
discretization of initial value problems: Richtymyer and Morton [27],
Ansorge [2]. (Note that there is no need to restrict h to be less than an
appropriate : since n: is certainly bounded ,:amvmsamzﬂ,< of h for h > :
0<nsN) q:m meaning of the powers n: is obvious: they transform the
starting datum co corresponding to t = 0 into the elements u" corresponding

to t = nk.

mmamxx 1 It is useful in what follows to realize that the left-most column

>s contains already all the powers o:, 0 ¢<ncsg N 4:mxmﬁosm to co::a
IlAn-1]| » it is enough to bound =>:-aw:__*oﬂ f_ of the form f_ = f° o....,ou
:mo__m . In other words, in the d=<mmadmmﬁdo= of mﬁmva_dﬁ<. the attention
can be restricted to perturbations of the 0-th equation of the system (1.6),
i.e. perturbations of the initial condition.

In order to see whether (1.10) holds, we resort to Fourier analysis (or
von Neumann analysis, as it is often called in numerical circles). Each

function ¢ € rm possesses a unique expansion

p

o(x) = 1 a_elmm™ (1.11)

ms - m
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with
1
2 2 2
slagl? = lle 1’ = | ot "0 < o
conversely, mmnw complex sequence Amav with m_ma_N < o defines through (1.11)
a function in rv. In this way, one may think of the Fourier coefficients
ﬁmsv as coordinates describing ¢. On letting C, operate on the function
exp(2mimx), we obtain

2mimx 2mi
C, (e ) = ¢ (m) e mmx (1.12a)

with n:Aav = 1-r+r exp(-2mimh), the so-called symbol or amplification factor
of n:. Therefore, if ¢ has Fourier coefficients ﬁmav and y = n:e has Fourier
coefficients Acav. then the operation ¢ - ¢ is represented in Fourier space
as the diagonal matrix transformation

. = . g . 4 . (1.12b)
Un_ n_._A..;v mﬂ_
by nshcv 3
: U_ n:ﬁ_v a,
- ’ |_ o ) L L ) ;
Thus
licpll = sup,, le,(m™] = (sup, fe, (m)])". (1.13)

From these relations, it is easily derived that (1.6) is stable, with
L=1,if 0 <r <1, and is not stable if r>1. (More precisely, if r > 1,

n .
max :n:__ grows mxuosmzﬁ,mddx as h - 0.) We conclude that, if u is smooth
and r ¢ 1,

max [lus,t ) - u" |2 = 0(h).
oma:mq p

Note that, because of the seemingly artificial factor x-d in (1.5b), the
local and global errors are both 0(h). When (1.5b) is written in undivided
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form c=+é = n:c=, the local truncation error is ohsmv. This would not con-

tradict |le. || s =>s|ﬂ__ Iyl » because then =>:-__~cmsw<mm like ™', In
this paper difference schemes are always written in divided form, cf. Stetter

[39]1, para 2.2.2.

Remark 2 So far, the concept of stability has been considered as a means for
proving convergence. However, the idea of stability is important in its own
right: in practice, because of round-off errors, inaccuracies in the data
etc, the computed m: does not satisfy (1.1a) but rather

A, c: = w: + 8 (1.14)

with 8 @ 'small' perturbation. The stability of (1.1) implies, on sub-
tracting (1.1a), (1.18), [[U-Up | s Lls It i.e. that U, is 'close’ to Uy
even if h is small (note that, in initial value problems, a smaller value of

T and therefore

h means that more steps are required to integrate up to t
there is more scope for the growth of perturbations).
Discretizations for which :>r-ﬂ__¢:n1mwmmw exponentially as h - 0 (such
as that in Example B for r > 1) are cm¢<m1mwa_< considered as deprived of
practical applicability. For them, =c:-c=__sm< increase exponentially as
h > 0, even if |[§|]= 0(h%), q > 0. On the other hand, unstable discreti-
zations where the growth of =>:-___¢m only 0(h"9) can be of practical signi-
ficance, as they can cope with perturbations :a:__n o(h%). Such discreti-
zations are sometimes called weakly stable (cf. Richtmyer and Morton [27],
p. 95 and Sanz-Serna and Spijker [31]) and are often found when dealing with
spectral methods [12]. Also, a number of standard finite-difference methods
are weakly stable but not stable in the L? norm, p # 2, Geveci [11]. See
also Section 5.8.

Remark 3 There is another concept of stability that plays an important role
in the numerical treatment of ¢nitial-value problems in ODEs or PDEs. This

refers to the behaviour, for a given, fixed value of h, of the powers nn. n
increasing unboundedly. For clarity, the notion of stability in Definition
1.3 is often called zero stability, as it relates to an h -~ 0 behaviour. We
emphasize that the alternative, fixed-h notion of stability only applies to
jnitial-value problems. In ODEs, Lambert [22] and Stetter [39] use respect-
ively the terms weak and strong stability to refer to fixed-h as distinct
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from zero stability. In PDEs, not so much care has been exercised in dis-
tinguishing between the two notions. The terms contractivity, A-stability,
B-stability etc, used in ODEs, are all fixed-h concepts (Lambert [22], Dekker
and Verwer [8]). In this paper we are only concerned with zero stability.

See Sanz-Serna [29] and Verwer and Sanz-Serna [48] for a study of the relation-

ship between the two concepts of stability.

2. THE FIRST PARADIGM. REFINEMENTS

2.1 The necessity of stability. L-convergence

In Theorem 1.1, stability and consistency appear as sufficient means for
proving convergence. The question arises as to whether these requirements
are also necessary. From a mathematical point of view, it is clear that
stability is by no means necessary for convergence, because the notion of
stability depends on the norms in x:. Yh» whereas the convergence does not
depend at all on the norm in <=. Thus a convergent scheme can be made un-
stable by a suitable change in the norm in <: (cf. Stetter [39] p. 14). The
question remains, however, as to whether, for numerically meaningful, reason-
able choices of norm in <:. convergent discretizations are stable. The ans-
wer is still negative, as we show next.

Example B. We fix r > 1, s0 that (1.6) is {exponentially) unstable and
assume that the initial datum n(x) is given by exp(2mimx), with m a fixed
integer, leading to the solution u(x,t) = exp(-2wimt) x exp(2wimx). On con-
sidering (1.12), we can write

ulx,t,) - u"(x)
- {[exp(-2nimrh)]" - [1-r+r exp(-2nimh)1"} exp(2mimx) (2.1)

so that, in order to bound the global error, one must bound the difference
mmxunwmvu: - [1-r+r mqumvu: with £ = -2mimh. Substitution of the exponential
terms by their Taylor series and use of the binomial expansion lead, after
some cancellations, to the conclusion ‘that, for 0 s nk ¢ T, that difference
possesses a bound B(m)h, with B(m) independent of n and h. Therefore the
discretization is convergent of the first order. (More generally, one-step
consistent discretizations of periodic initial-value constant coefficient
problems always converge, regardless of stability, when the initial datum
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contains only a finite number of wave numbers m, cf. Thomee [45], Theorem
3.1.) The convergence of this example is, nevertheless, of no practical
value, because of the exponential wzwamu¢A¢ﬁw noted in the previous section,
Remark 2. A

In order to rule out examples like the previous one, where the convergence
is merely an academic matter, it is often demanded that the convergence of
cs should persist under perturbations of the right-hand side. There are
several definitions of such a stable convergence which go back, at least, to
Dahlquist's thesis [7]. Among them, we only consider that of L-stability
(L from Lax) stemming from the theory of numerical initial value problems
in PDEs (see Ansorge [3], palencia and Sanz-Serna [24] Sanz-Serna and Palencia
[30]; the use of the term L-convergence in [3] is not always equivalent to
ours).

Definition 2.1 Assume that elements ug m x: m:a:o1sm¢: x: w:a <: =m<mcmm=
chosen. The discretization (1.1) is said to be L-convergent if, for any
family ﬁa:v:m:, 8, € Yy with Tim =a=__u 0, a constant h, exists such that the

problems
>:c: = ﬁ: + 8o h s :o. (2.2)
possess a unique solution and 1im =c=-m:__u c.,
The following characterization holds.

Theorem 2.1 The discretization (1.1) is L-convergent if and only if it is

Jaikhainiiat e

convergent and stable (for fixed choices of u, and norms in x:. <:V.

proof 1f (1.1) is stable, then, for h small, A js invertible and (2.2)
uniquely solvable. Furthermore, from stability and convergence:

o U1l < HloUp 1+ 10U 1 Tlup-Gg i+ b 114U, =AU I

:::uc:__+ L =a:__+ 0.

Assume conversely that (1.1) is L-convergent and hence convergent. If the

stability bound (1.9) does not hold, then there exist :u + 0, e: € x: s
J J
such that (the subscript j is omitted) :e:__u 1, Agdy = Vps

. € Yh,

J J
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= - © = Iw U N
y:..- Il op 11 - If we set § = A", then =a:__+ 0 and :cu-cQ__u 1y, e::+ﬂ
which contradicts the assumption of L-convergence.

On combining this result with the basic Theorem 1.1, we arrive at the
following equivalence result.

Theorem 2.2 Assume that (1.1) is consistent. asmzﬂﬁﬁmr-no:<m1mm:ﬂaﬂm:a
only if it is stable (for given choices of up and norms).

The equivalence between L-convergence and stability is achievable because
both concepts involve the norms in x: and <:. The theorems above are well
known in the literature (see, e.g., Stummel [43], Theorem 6, Section 1.2),

but our terminology is different.

Remark mo1 invertible >:, it is clear that L-convergence holds if
1im :c:-crﬂ_n 0 whenever =a:__+ 0 and ¢, belongs to 5, a subspace of Y,
with the property :

-1 -
Sup :_>3 m:: * 9 d m:. __ar__ s 1} = w:_u:_>: _@::n 9% € <_._. :m:__ s 1}

For instance, iemark 1 in Section 1.4 shows that, in Example B, L-convergence
is equivalent to convergence under null perturbations of the initial datum.
We conclude that (1.6) converges (for a fixed n) whenever n in (1.5a) is
replaced by approximations m:, :m:-:__¢ 0, if and only if (1.6) is stable
(i.e., r is not larger than 1).

2.2 The necessity of consistency. Uniform boundedness. L-consistency

We now consider the question as to whether consistency is necessary for con-
vergence. Again we note that a change in the norm in <: alters the consistency
of (1.1) but not its convergence. And again Example B provides a counter-
example, as follows.

Example B. Assume now that r < 1 and that the initial datum is given by
the step-function n(x) = 0, 0 5 x £ 1/4 or 3/6 s x <1, n(x) =1, 1/4 < x < 3/4.
Then =>:-c:-m:__dm easily computable in explicit form (recall that u(x,t) =
n(x-t)) and seen to behave Tike :-w as h -+ 0, precluding consistency. However,
we shall uxo<m.d= Chapter 3 that the discretization is convergent with order
p = 1/4.

Since, as noted before, >zm: = _z. it is clear that the local error _: can
be bounded in terms of the global error e, uniformly in h if the operators >=
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are uniformly bounded. More precisely:

Definition 2.2 Assume that norms in X, and Y, :m<mcmm=n=omm=.qrmamm-

certization (1.1) is said to be uniformly bounded if positive constants h,
M exist, such that, for each h = hy> v, € Xps

, >:<:__ <M __<:__ . (2.3)
The constant M is called the uniform bound of (1.1).

Theorem 2.3 Assume that elements ug ﬁz xs m:a301am¢= xs msa <: :m<mumm=
chosen. If (1.1) is convergent (resp. convergent of order p) and uniformly
bounded, then (1.1) is consistent (resp. consistent of order p). Further-
more, for h sufficiently small, =~=__M M =m:__. where M is the uniform bound
of (1.1). ,
We emphasize that Definition 2.2 and Theorem 2.3 are closely related to i
the definition of stability and the basic Theorem 1.1 respectively. In fact,
if we associate to (1.1) (when >: is invertible and norms in x: and <: have

been chosen) the discrete problems

?-_m_, = up, (2.4)

it is clear that the stability of (2.4) coincides with the uniform bounded-
ness of (1.1), while the convergence and consistency of (1.1) with respect
to the 'theoretical elements' up, are respectively identical to the consis-
tency and convergence of (2.4) with respect to *s. We take further this
symmetry by defining the concept of L-consistency as follows:

chosen. The discretization (1.1) is said to be L-consistent if, for each
family g € Xy with 1im, lleyll = 0, Tim =>:A=:+m:V-*:__u 0.
The next results are 'symmetric' to Theorems 2.1, 2.2.

Definition 2.3 Assume that elements u, in L and norms in X, Y have been

Theorem 2.4 The discretization (1.1) is L-consistent if and only if it is

it

consistent and uniformly bounded (for given choices of u, and norms).

Theorem 2.5 Assume that (1.1) is convergent; then it is L-consistent if and
only if it is uniformly bounded (for given choices of up and norms).
We can also combine Theorems 1.1 and 2.3 to yield:
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Theorem 2.6 Assume that elements Uy and norms in x: and <: have been chosen.
If (1.1) is stable and uniformly bounded, then it is convergent if and only
if it is consistent. Furthermore, if L, M denote the stability constant and
uniform bound, then, for h small enough,

W lslleglls Lol (2.5)

so that the orders of convergence and consistency coincide.

The situation in Theorem 2.6 is really convenient: oA:vv estimates of the
local truncation error, which are usually easily derived by means of awz;ox
expansions, can be transferred to the global error and this transference is
optimal, in the sense that no estimates o(hP) of the global error exist.
Stummel [44] uses the term bistable as an abbreviation for stable and uni-
formly bounded. Unfortunately one often finds in practice discretizations
which are not bistable, at least for the choices of norms that first come to
mind.

Examples A and B. Neither (1.3) nor (1.6) is uniformly bounded, because
of the factors :-m. i
it is then possible to have convergence without consistency, and in fact we

that feature in >s. According to Theorems 2.3, 2.6,

have already shown that the step-function initial datum provided an example
in that direction. Also note that, after Theorem 2.4, L-consistency does not
hold.

2.3 An example: central differences on a nonuniform grid

In order to summarize the main ideas presented so far, we now consider an
i1luminating example communicated to us by R.D. Grigorieff. Further related
material can be seen in his papers [17], [18].

The problem

A

u(0) = o, u'(0) =g, u"(x) =f(x),0sxzs1,

where f has two bounded derivatives, is discretized by central differences on

a =o::=dﬁwxa mxdam mo =0, x.u.+a = xu + Du+_. >u >0, j=0,1,...,0-1, amxu>uu:.
More o«mmdmmd<_ we introduce the divided difference operator D given by
OV = a5, (Vyq-Y;

5% B34 ), j =0,1,...,J-1 and consider the system:
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co = a,
AN\ADM_._.DQ*LVV AOC..._lcc.ulAv = .mﬁx.uvu j-= __o.-.u.u.;.

Here x:, <: are spaces of real (J+1)-vectors and we choose u, to be the
vector of components :Axuv. A naive approach to the anmalysis of (2.6) begins

by expanding, for j = 1,.005d-1,

d.+a = Am\ﬁ>u+>

; )) Accgqocw-av - flxg).

j+1
This leads to

1. .= (( (2.7)

u+~_ lbuv\wv C_: Axv + wu._.‘_w

B34 J

where the remainder xu+g is oﬁ:mv. uniformly in j. Therefore _u+ﬁ uoﬁrv.
unless the grid happens to be uniform or u is a second-degree polynomial.

One is tempted to conclude that the order of convergence in, say, the maximum
norm cannot be larger than one. However, the situation is quite different,
as we now show.

(i) We first work with the maximum norm in vnar X and Y, which we
denote || - |- From (2.7), Inlly = 0(h), i.e. the order of. consistency is
only 1. We shall prove Jater that the discretization is stable. Therefore,
Theorem 1.1 yields an estimate ==:-c:,_o = 0(h). The norm [[A ][ computed
according to the usual recipe (Isaacson and Keller [20], p.9) behaves like
:-m Thus the discretization is not uniformly bounded, Theorem 2.6 does not

apply and we are not sure as to whether the global error is of order not

higher than 1.
(ii) We now analyze the same discrete solutions U, when the norms in X

and <: are respectively defined as

VIl = [Vpl +  max |oV.|, (2.8)
0sjsd-1 J
IHFl [Fql |F : 3 ( Yol (2.9)
= + max + I A, +D . .
il -1 08 " ogjed-t -V kAt 'S TAR SY
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The identity

Vo= Vg v I by DYy

shows that, for each Vg in X, =<:_,o < IVplly - Therefore convergence with
regard to || - ||4 implies convergence with regard to || - ||, with at least the
same order. Clearly :mz__xa <3 =ﬂ:__o. Also note that stability in this
new situation (which we prove next) nmxﬁmﬁzdx jmplies stability with respect
to the old maximu |
m norm, because =<J__ﬁ <Sivplly st __>=<:__.d 3LVl -

As a result of a:mdmoamz:mﬁ sophisticated choice of norms (2.8), (2.9),
for them, =>:__u =>: || = 1 and the discretization is now stable and uniformly
bounded. (More precisely _:::.a = :m:___.v In order to see this, take V.
in x: and set w: = >r<:. This system of equations can be written in the
form

o<o = Fys

+ D..._v_n+._u J = _o...»glﬂ.

DV;-DV;_y = 3(a ;

j+1
On adding, we find, for j = 0,1,...,d-1,

u g
DV. = L u
iT Oy IFpyy + Vg = Fy v 2 10, By Fiat

so that, according to (2.8), (2.9), |[V Il = INFyll _q-  Now that we know we
are dealing with a bistable discretization, we: have guaranteed that a study

of the local error provides full information on the global error. For the
former, we easily find do = o.za_ = oAzwv. Furthermore, from (2.7):

J o2 2
_.Ama wA>W+>r+a n _A+: = _xmﬁ AA>W+_|>WV\OV:_.. Axwv_ + O:amv
) -1, )
= (76l xma Byyq (U™ (X)) - u (x40 + >g+ac=_Axuv

- 2w ()] + 0(h?) = o(h?),

where we have summed by parts (Richtmyer and Morton [27] p. 136) and taken
into account that |u™ (x.) - u" (x40 = 0(h). Substitution of these
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estimates in (2.9) leads to g umoﬁsmv. i.e. second order of consistency
and hence of convergence =m:=a = 0(h%). This implies that ﬂcﬁxuv-c“_ is
ohsmv. uniformly in j, J = 0,...,J. Note that, in view of (2.8), we have
also proved that the divided differences c:u are second-order approximations

to the theoretical ccu. uniformly in Jj.
The norm (2.9), which is highly useful in the derivation of sharp bounds
of the local truncation error, was first introduced by Spijker in his thesis
[35] (see also [36], [38]1). Multivalue methods for the integration if ini-
tial value problems may also exhibit orders of convergence higher ﬁrmz their
‘naive' order of consistency, see Skeel [33], Skeel and Jackson [34]. As

done in this seciton, these authors renorm <= in order to avoid the discre-

pancy.

2.4 Modified equations

Within the framework of the first paradigm, the original problem whose solu-
tion u is being approximated plays no role in the analysis. This fact,
coupled with the freedom in the choice of U makes it possible to compare c:
with elements uy that are not necessarily 1pestrictions' of u. An example is
given by the method of modified equations (Griffiths and Sanz-Serna [13])
which we now briefly i1lustrate in the context of Example A.

Example A. We still use the maximum norm &: xw m:a <: Aﬁoxz:*n:mﬁmcﬁddﬂ<
was proved in Section 1.4), but now take u, = [v Ax_v,....<:axg-.vuq. where
<s is the soluticn of the modified problem (here f is supposed to have four

bounded derivatives)
Doy = (1) =0, (M= (h2/12)f". (2.10)

A Taylor expansion shows that, with this choice of up = oﬁsav. which,
according to Theorem 1.1, leads to

h _ 4
amxu_< Axuv - cu_ = 0(h’).

Thus the solution <: of (2.10) is 'very close' to the numerical solution Uy

and {2.10) can be used to predict the behaviour of c:. For instance, if

f* > 0, then f + Azw\amvﬁ= > f, so that <: < u and we expect that cQ < :Axuv.
The paper by Griffiths and Sanz-Serna includes a long list of references

to the derivation and practical use of modified equations. The idea of
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comparing the numerical solution c: with a function close to, but different
from, the theoretical solution u goes back to Strang [40] and is highly use-
ful in nonlinear situations (cf. Spijker [37], Sanz-Serna [281).

3. THE SECOND PARADIGM

3.1 Well-posed problems

In the framework of the second paradigm, the original problem whose solution
u is being approximated plays a crucial role. We assume that this original

problem takes the form

(3.1a)

where f represents the data, u is the sought solution and A a linear oumsmmos.
More precisely, we assume that f belongs to a normed space Y, u is sought in
a normed space X and A maps linearly its domain D(A) < X onto its range

R(A) < Y. The operator A may be bounded or unbounded, but we demand that ;

ker(A) = {0}, (3.1b) 3

so that the solution u, if it exists, is unique. Since D(A), R(A) may be
smaller than X, Y respectively, there is no loss of generality in assuming

that X and Y are complete (i.e. Banach) spaces. 'AHﬁ they were not com-
plete, we would replace them by complete spaces XoX, YoV.)

We denote by >-a the inverse operator mapping R(A) onto D(A). When f is
in the range R(A), then u = A"'f is the unique solution of (3.1). We mm<-
that u is a genuine solution of (3.1). A very natural requirement that A
should satisfy is that of boundedness - one should be mwdm to conclude that
small changes in f lead to small changes in u. When A™' is bounded, it can
be uniquely extended to a bounded operator E with domain the closure R{A).
Then, for f € R(A)NR(A), we say that Ef is a generalized solution of (3.1).
This simply means that no u € D(A) exists for which Au = f, but elements
f € R(A), u, € D(A) exist such that u - Ef, f - f and c:.dm the genuine
solution corresponding to the datum f, . If R(A) is dense (i.e. R(A) =Y),
then such generalized solutions exist for all data in Y and we say that the 3

1

problem is well-posed.
The previous discussion can be summarized as follows:
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Definition 3.1 An original problem Au = f is given by a datum f € Y and a
linear operator A:D(A) ¢ X + R(A) < Y, with ker(A) = {0} and X,Y Banach
spaces. If f € R(A), then A" 'f is the genuine solution of the problem. The
problem is said to be well-posed if At is bounded and R(A) dense. In this
case and denoting by E the extension of At to Y, the element m-a«. f ¢ R(A)
is a generalized solution cf the original problem.

Example B. Here we may take as X the Banach space of continuous mappings

ust - %A.,ﬁv € rw with the maximum norm [jul| = mwmq__:ﬁ..avwﬁrw =

amxaﬁ&o _cﬁx.ﬁv_maxum. and Y the Banach space rmw ua:m operator A then maps
each bivariate function u(-,-) into the initial function u(-,0). The domain
of A can be chosen to consist of the functions u of class na in -» < X < o,

0 < t s T which satisfy (1.4a), (1.4c). (Generally speaking, in differential
equation problems, D(A) always consists of functions which are smooth enough
to allow the differentiations implied in the problem.) Clearly if n € rw
and is.of class na then u(x,t) = n(x-t) € D(A) and Au = n. Thus R(A) is the
space of 1-periodic, c'-functions and A™! is given by (A" 'n)(x,t) = n(x-t).
It is obvious that >.d is bounded and therefore possesses a bounded extension
E defined everywhere in Y = rw. This extension is still given by the formula
(En)(x,t) = n(x-t). Therefore, when n is not n_ we still regard u(x,t) =
n(x-t) as a solution to (1.4) in spite of the fact that the derivatives u
u, may not exist.

.ﬂu

3.2 Discretization of an original problem

The second paradigm relates an original problem to a family of discrete prob-
lems by means of restriction operators. If X is a Banach space, H is a set
of positive numbers with inf H = 0 and Ax:. =.__:v:m: is a family of normed
spaces, we say that the operators xrux > xs are (a family of) restriction
operators if: (i) each h is linear, (ii) for each x in X

X = dis: | :x__:. : (3.2)

We note that, if each " is a bounded operator, then the family Assv is in
fact equicontinuous (i.e. sup [Irylly, < ). This follows from the generalized
Banach-Steinhaus theorem, see e.g. Palencia and Sanz-Serna [25], Lemma.
Let us assume that we are given an original problem (3.1) with solution u
(possibly generalized), a set of indices H, normed spaces x: and <:,
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restriction operators 1:“x > x:. m:”< - <: and linear operators >snx: > <:
fulfilling (1.1b). On setting

>:c: = m:m (3.3)
we obtain a family of discrete problems like those considered in the previous
chapters. If we further set U, = r,u, we possess all the necessary elements
to discuss the concepts of convergence, stability, consistency, L-convergence
etc. as defined before. We emphasize that those concepts were defined without
reference to the original problem, i.e. within the first paradigm. However,
we shall show in this chapter that the presence of the original problem and
the restriction operators is very helpful in investigating stability and
convergence.

Lest we miss the obvious, let us observe that the replacement of the fixed,
given datum f we have been considering so far by another datum g € Y leads to
a new set of discrete problems

n u .A
AV, =59, Vp vy, sy, (3.4)

where v is the solution corresponding to g, assumed to exist. This new dis-
cretization is stable (resp. uniformly bounded) if and only if (3.3) is
stable (resp. uniformly bounded). On the other hand, the concepts of con-
sistency and convergence clearly depend on the right-hand side, i.e., (3.3)
and (3.4) need not be simultaneously consistent or convergent.

Example B. The discretization (1.6) which was previously analyzed within
the first paradigm may now be studied within the second. In order to do so
it is enough to consider the original problem discussed in the previous
section, together with the restriction operators

<
"

V(- atg)eeav(Caty)1T, o) € (00T,

2
Spe = [z.0,....,01", c ey

1
—
.

>
v
o
.

Clearly =1:__u =m:__u 1 for each

3.3 Stability implies well-posedness

The next theorem provides a first example of the potentialities of the second
paradigm.
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Theorem 3.1 Assume that the discretization (3.3) is stable (with stability

constant L) and consistent for each f in the range of A. Then A s bounded
and |A71]] sL. |

Proof From (3.2),

-1 . -1 .
IATTFI = Vim [rpATUE] = Yim Lo, |

Convergence implies ddar :-c:__u 0 and therefore

-1 . , -1 .
[AF] = Tim (U (] = Tim [[A7's £l L Yim |5, f]| = L[]

The 'symmetric' of this theorem is also useful:

Theorem 3.2 Assume that (3.3) is uniformly bounded (with uniform bound M)
and consistent for each f in the range of A. Then A is bounded and |A ||s M.

There are two ways in which these results may be employed: (i) one may |
construct stable (resp. uniformly bounded), consistent discretizations as
means for proving well-posedness (resp. boundedness) of a differential equa-
tion problem; (ii) proofs of stability (resp. uniform boundedness) must not
be attempted for discrete norms which are counterparts of norms rendering the
original problem not well-posed (resp. ::coc:amay. An illustration of the
last point is provided by the nonuniform-grid example in Section 2.3. There
the data consist of the real numbers Q.m. and the function f. The maximum of
f = u" cannot be bounded in terms of the maximum of u (small functions can
have very large derivatives). Therefore the operator A is not bounded in the
maximum norm and this entails the lack of uniform boundedness of the dis-
cretization which caused trouble in Section m.m. On the other hand, measure- )
am:ﬁOﬁﬂ:mamﬂm¢=ﬁ:m=oxs_Q_+ smxx_m+ _ wamvam_.noacizmasﬂﬁs.cmm

0
of the norm [u(0)] + max, |u'(x)|, ensures that the values of the norms of

ﬁmm datum and its corresponding sclution are indentical, since u'(x) = u'(0) + ”
% u"(s)ds. Comparison of these norms with (2.8), (2.9) throws 1ight on the

0
1y s

bistability obtained when using the discrete norms
3.4 Extending the convergence. Order of convergence for nonsmooth data

.__uﬂ.

When the original problem is well-posed, it is possible to prove convergence
for right-hand sides f for which consistency has not been checked or even does
not hold (cf. Sections 2.2 - 2.3). Namely:
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Theorem 3.3 Assume that the original problem (3.1) is well-posed and that
the discretizations (3.3) are stable and consistent for each f in a set <o
dense in Y. Then (3.3) is convergent for each f in ¥ (and hence L-convergent

for each f in Y).

proof Given f and Y and ¢ > 0, there exist wz in <o with :ﬁz-ﬁ: < e
|EFy-EFI| < c. Then

-1

-1
[ EF-A T spfIl s I ECE=f) 1+ I EfyAy

Spfull

1A, Usy Ry I (3.5)

When h - 0, the first and third terms in the right-hand side become less than
¢ in view of (3.2), while the second tends to 0 according to Theorem 1.1.
Therefore the discretization converges for f and also L-converges because of
Theorem 2.1.

In the important case of bounded "h» Sp One has, as noted above,
lrpll s lIspll = Ky with K independent of h, and (3.5) leads to

v EF-A s FIl s

This inequality can be used to study the order of convergence for (i.e. the

(K JE|| + LK) || F=Fyyll + [y Efy >= spfull - (3.6)

h

size of the left-hand side as a function of h) provided that we vommmwm
estimates of the global error for ﬁz (i.e., the size of 1sm$ > v and
the degree of approximability of f by elements of <o (i.e., a:m mde oﬁ

=w-¢z__ An example is now given.
Example B. Theorem 3.3 implies that, for r < 1 (stable case), the discre-
tization (1.6) is convergent for every initial datum in rw. even for those

Jeading to generalized solutions. We investigate the order of convergence
corresponding to the step initial datum of Section 2.2. (Recall that the
discretization was shown there to be inconsistent.) As in Section 1.4, we
i a exp(2mimx), -= <m < o, q:m
Fourier coefficients are readily ooaucﬁma m:a seen to behave |b | = oA_a_

work in Fourier space and write n(x) =

Incidentally, we point out that, in order to derive estimates oﬁ the Fourier
coefficients, an explicit knowledge of them is not necessary: it suffices to
possess information on the differentiability of n (see, e.g., Richtmyer and

Morton [271, p. 22). .In the context of Theorem 3.3, we choose <o equal to
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m
_m
i
_.w

M
h wamxcﬁmddsxv
m=-M

0(1/M). This settles

the space of trigonometric polynomials of arbitrary degree M,

M
I b exp(2mimx), then Ingenllé = 2 lbyl
m=-M [m[>M -
the degree of approximability of n by mdmamzﬁm in <

global error for the datum nys we denote by :z. c 1mmumoad<md< the theoretical

and numerical solution at time t = d:. On nsonmmadsa as in (2.1) we find

la(mh)" - b(mh)" |2, (3.7)

If ™

Turning now to the

n_ o n,
lluy - czf_r

b(mh) = 1-r + rexp(-2mimh).
1 (see Section 1.4) and therefore [a"-b"|

with a(mh) = exp(-2nimrh The stability condi-

V
tion r < 1 leads to |b| s

_m-cw _m;-_ +ba" %+ ... snla-b|. It is easy to show that |a(mh)-b(mh)|
o:ms with D independent of m and h. On taking this estimate into (3.7), we
find
n ., 2 Mo 2240 2.4
[luy = Uyll ~ s D I <D2M (Mh'n v,
MM Y

with D independent of h, M, n. Therefore, when 0 < nk ¢ T, k = rh,

max_ [lup - Ul = Bhm>/ 2,
with B independent of h and M.
1 for each My but that for fixed h the m1101 is increased with M. On taking
these estimates into (3.6), we obtain an oAz + :zw\mv bound for the global
error of the step function, where M is arbitrary. Setting M
the bound rendering it oﬁzﬂ\av and we conclude that the sought order of con-

vergence is w.

This shows that -the order of convergence is

h:-wu minimizes

A more systematic approach to the technique above, together with historical
references, can be seen in Ansorge [2], Section 4.5. The order of convergence
for 'nonsmooth' data can also be investigated by means of interpolation theory
- see Thomee [45] p. 186 and a fuller account in Brenner, Thomee and Wahibin
[4].

The 'symmetric' of Theorem 3.3 is as follows.

Theorem 3.4 Assume: (i) the operator A in the original problem (3.1) is
defined everywhere (i.e. D(A) = X) and bounded, (i) the discretizations (3.3)
are uniformly bounded and consistent for each f in a set <o such that the
Then (3.3) is consistent for each

corresponding solutions u are dense in X.
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f in the range of A (and hence L-consistent for each f in the range of A).

3.5 A general Lax equivalence theorem

e

The next result is due to Sanz-Serna and Palencia [303.

Theorem 3.5 Assume that (i) the original problem (3.1) is well-posed. (ii)
the discretization (3.3) converges for each datum f in Y.
tors >: are invertible and >=m:-_ are bounded. (iv) the following condition

holds:

(iii) the opera-

(P) There exists a constant L such that, for each h in H and each 9, in

y, with =o:__m 1, there exists an element f in ¥ such that ||f |l s L and

h
m:ﬁ = g.

Then (3.3) is stable.

proof Let f € Y.
From the convergence assumption, =>:- m:ﬁ: must also be bounded for h < h..

The norms =1smﬁ__m1m bounded as h - 0, since (3.2) applies.

The @mzmwm_ﬁuma Banach-Steinhaus Lemma (Palencia and Sanz-Serna [25]) shows
that there exists a constant K such that, for h <hg, 1A s, Nl s Ko IF
- IA I
gy, € Y, , :@:__M 1 1A 9,1l = 1A, m:w__m KL, whence ||A] d__m KL.
It is clear from the proof that (P) can be relaxed to read:

(P') There exist a constant L and subspaces m: of <: such that
-1 -1
sup{l| A, gp e 9y € Sy llgp Il s 13 = sup LllA, "9y ll: 9y €Yy llgylls 13
and to each g, in S, with =@3__m 1 there corresponds an element f in Y with
Il s Ls spf =9
It is useful to compare the proof of the implication 'convergence = stab-

ility' given here with that in Theorem 2.1. There we argued that convergence
could not imply stability, since the latter could be lost by changing the
norms in <:..,>oooxa¢=@a<. we had to resort to the strengthened concept of
L-convergence and then we were able to supply an elementary proof. Here con-
vergence is assumed for the family of discrete problems obtained when f ranges

in Y and we have employed a deep result of functional analysis. Now the

possibility of altering arbitrarily the norm in <: is not open to us, for (3.2)

and the condition (P) must hold.
with the proof of the fact that the hypotheses of Theorem 3.5 cannot be essen-

A further discussion of this point, together

tially weakened, can be seen in [30]..
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Example B. (cf. section 2.1, Remark). Here the condition (P') is veri-
fied with m: = ms< = Hm:,o.o,...,ouqns € Y} (recall Remark 1, Section 1.4).
Therefore, Theorem 3.5 shows that if (1.6) converges for each n in rw“ then
(1.6) shows that (1.6) is stable, i.e. r s 1. This assertion is precisely
the content of the classical Lax equivalence theorem [23], as applied to

Note that in Section 2.1 we proved that for r > 1

this concrete mmﬂ:mwﬁos.
the scheme is unstable and yet converges whenever the initial datum is a
trigonometric polynomial. These polynomials are dense in rw (see [30] for

further discussion).

3.6 Further results on restriction operators. Discrete convergence

Most of the material in this chapter would still be valid if the assumption
that the restriction operators r, are Jinear were relaxed and became the
following asymptotic Jinearity requirement: for each u, v in X and scalar
,B, [loru + Brpv - srﬁac + gv)||+ 0. Of course an analogous consideration
applies to s,. This asymptotic linearity was first introduced by Stummel
[43] and is useful in the study of perturbations of the domain in partial
differential equations and in other situations (see also Vainikko [461).

Vainikko [46] says that two families of restrictions 1:“x > x:, 1mux > xs
are equivalent if, for each u in X, =1:c-xm=__.wo. It is clear that the
convergence or otherwise of the discrete solutions :: is not altered if rp
is replaced by an equivalent system. The corresponding order od convergence,
however, does change in general. similarly, the consistency or otherwise of
a discretization is not affected by the replacement of nm:v by an equivalent
system.

Stummel has shown that if the operators xs“xo - x: are linear and satisfy
(3.2) for each x in a dense subspace Xo of X, then they can be extended into
linear operators rp:X - X which satisfy (3.2) for each x in X. The extended
system is unique up to equivalences. For a proof see Vainikko r461, p. 11.
The uomw*c*_*n< of this extension is helpful in practice: consider the case
X = rNAc,av. The commonly used operator r u m [u(0), :A:V....,cﬁévuq is only
defined when u is continuous, since general L functions are only defined
almost everywhere [26].

Assume that we have introduced restriction operators 1:nx > xs. m:"< > <:..
stummel [43] says that the sequence ﬁ<:v. where V, belongs to X, converges
discretely toward an element v in X if =x:<-<:__xs > 0. With this terminology
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the convergence of (3.3) defined in Section 1.2 is nothing but the discrete
convergence of the solutions Uy toward u. Furthermore, stummel says that
the bounded operators m:ux: > <: converge discretely toward the bounded
operator B:X - Y if ms<: converges discretely toward Bv whenever <= converges
to v discretely: in symbols, =1:<-<:~_+ 0= :m:m<-m=<:—_¢ 0. It is clear
that the conclusion of Theorem 3.4 can now be expressed by saying that >:
converge discretely toward A. By analogy, the conclusion of Theorem 3.3

mﬁmammw:maﬁmn1mﬁm convergence of >:-, toward E.’

4. REGULAR AMD COMPACT APPROXIMATIONS

4.1 Regular approximation

Reguliar appro” - 7c - ——

The concept of regular approximation was introduced by Grigorieff [14], [15]
and provides a useful way of proving stability. We first need the notion of
discrete compactness (Stummel [431).

Definition 4.1 Let 1:“x -+ x: be restriction operators as in Section 3.2. A
family (indexed by h) of elements V, € X, is called (discretely) 1:-nosumna

if, to each sequence :u. j=0,1,... with h, - 0, there corresponds a sub-

J
sequence :u and an element v € X with' 1im Wy . vi| = 0.

r J J

r r
Note that in Stummel's terminology (Section 3.6) discrete compactness
demands that each sequence A<:uv possesses a discretely convergent subsequence.
We now place ourselves in the framework of the scoond paradigm as in Section

3.2.

Definition 4.2 Assume that A has domain D(A) = X, is bounded and satisfies
(3.1b). The operators >: satisfying (1.1b) are said to provide a regular
approximation of A (with respect to the restrictions vy, msv if the following
conditions hold:

(R1) The discretization (3.3) is L-consistent for each f in R(A).

(R2) If A<=v js a family such that =<:__m constant and A>:<:V is sp-

compact, then A<:v is 1:-noaumnn.

In order to. check (R1) see Theorem 3.4. The following result is funda-

mental.

Theorem 4.1 Assume that A is as in the previous definition and that >: pro-

it

vide a regular approximation of A. Then A is onto (R(A) = Y) and possesses a
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bounded inverse. Furthermore, for each f in Y, the discretization (3.4) is
stable, uniformly bounded and L-convergent.

proof If (1.9) does not hold, then there exist V. 3 = 015 with

At

v, =1, Timg JA V, ||= 0. The condition (R2) dhows then that (V, )
su 3 su :u :g
possesses a subsequence which converges discretely to an element v € X.

(This subsequence is still denoted A<=.V.V The condition (R1) implies that

J
A, V,,, converge discretely to'Av. But >:.<: and (3.1a) and (3.2) (with

m:g«mwdmnw:m 1:V jead to v = 0. This is w: mo:wﬁmainﬂﬂos to ||v}| = 1 which
follows from (3.2). To see that A is onto, note first that, for each f in Y,
the sequence m:m is discretely m:-noavmna. The stability and (R2) imply
that ("'

element u in X. Then Au = f, since (R1) holds. The remaining properties

m:mv possesses a subsequence that converges discretely toward an -

follow from the general results of the previous chapters.

Example. Elliptic Galerkin methods in non-coercive situations. We con-

sider the model boundary value problem
"+ b(x)u=f(x), 0sxsl, u(0) = u(1) =0, : (4.1)

where b is a given real continuous function and f a datum. What follows is
easily extended to more general elliptic problems with any number of inde-
pendent variables. Let rm be the space of real, square integrable functions
on 0 g x ¢ 1 with the usual inner product (-,-). Letus further denote by
:M the space of functions in rN whose Aaﬂmﬁxﬁccﬁiosmdv derivative is also in
L2 and which vanish at x = 0,t. In IM we use the norm =<:d = =<.__rm. With
these definitions, the weak form of (4.1) (see, e.g., Strang and Fix [42],

Ciarlet [5], Fairweather [10]) requires us to find u in IM such that, for each
1

winh_,
0

(u',w') + (bu, w) = (f,w). (4.2)

‘Here f can be an rm function, but (4.2) also makes senseé if (f,+) represents

M. We denote by 4! the space of all

such functionals with the :m:md_acmd norm ||f|l_, = sup A_Aﬁ,zv““ liwlly < 1}.
into the

on introducing the operator >":o + H™" which sends each v in H
linear form w - (u',w') + (bu,w), equation (4.2) reads simply Au = f. We

a continuous, linear functional on H

(o}
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acsume that ker(A) = {0}. (This injectivity, which holds in particular for
positive b, does not hold for arbitrary b: b could be, say, constant and
equal to an eigenvalue of the operator -u". On the other hand, it is clear
that A is bounded.)

The weak form of (4.2) is discretized by means of Galerkin's method. If,
for 0 < h <1, x: is a finite-dimensional subspace of :_, we seek an element
U, such that, for each W in x:

(U, W)+ (BU, W) = (F, W), | (4.3)

To each v in :M

h

there corresponds a unique Galerkin projection LV belong-
ing to x: and defined by the condition that, for any W in x:.

(v'-(rv)', W) = 0. (4.4)

We assume that the family x: satisfies the following condition: a constant

C independent of h m:a an integer m z 2 exist such that, for each v in :a
whose derivatives DJv are in rm. 1<jsm, °

A

v=rvl 5 + bl (verv)® ¢ hd ol .
'l 2 W'l ol (4.5)
This property holds if x: is one of the usual spaces of polynomials of degree
m-1 in a (perhaps nonuniform) grid in 0 1 with diameter h [5], [10],
[421.

Denote by <: the space of (continuous) linear functionals on x: with the

:oxs :ﬂ__<: umcnﬁ_ﬁw.zv_" ;z__x: maw.vxmzﬁ:mamuuis@zrin:ﬁmxmmmmn:
fe :-_ into its restriction to x: and by >: the operator >:“x: - Y,_ such
that >:< = (V',+) + (bV,+). Then (4.3) takes the simple form >:c: w m:m
It is easy to show that "n* Sh satisfy (3.2) and thus we are within the
framework of the second paradigm. It will be shown next that >: provide a

regular approximation to A.

We first observe ﬁ:mﬁ the Tocal truncation error at a datum Av is given by
the Tinear functional zsdo: maps W € x: into

((rgv)* M) + (bryv M) = (s, Av,H)

(v', W') + ::,:f W) - (Av,NW) (4.6)

(b A<-1m<v. W).
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Therefore (4.5) implies consistency if v is smooth. Now (R1) follows from
Theorem 3.4, since the uniform boundedness of >s is easily proved.
Next assume that V, € X, ||V, _“za < constant m:a (A V) is s, -compact.

! m-no:<m1omsw sub-

uommmmmmm an L
-1 exist such that

is deleted here-

On recalling that a bounded mmn:msnm in :
sequence, we conclude that elements v in rm. g in :

v, -<__ + 0, ||A, -5p9 =< + 0, : + 0. (The subscript
g u
after.) msoa these 1mdmﬁ,o:m it is easily proved that, for any w in z_ such
that w" is also in rm.
~(v, w") + (bv, w) = (g, w). (4.7)

This shows first that -v" + bv = b (in the distributional sense) and so
v' = bv - g€ :.a implying v' € rm Then integration by parts in (4.7)
yields v(0) = v(1) = 0 and thus v € H), Av = g. Finally, with W = rpv-Vj,

(4.2) - (4.4) imply

_«=<-<=.%s

"

Aﬁxs<-<:v.. zmv = (v', W) - (v, zmv

AvA<-<:v. z:v + (g - >:<:. z:v.

In the right-most term, the first inner product tends to O because <-<: = z:

tend to 0 in rN. while the second inner product tends to O because

=m:@->:<:__< + 0. We conclude that V, converges discretely toward v and so
h

(R2) holds.

Theorem 4.1 now asserts that, under the hypotheses above, to each f in
_._|a corresponds a unique weak solution u of the problem, that the Galerkin
equations are uniquely solvable for small h and that rpu - cs can be bounded
above and below by (cf. (4.6)) sup *_ﬁvﬁ=-1scv.zv_" WeXx, W]l 1}. In

particular, if DJu is in 12, 15 j sm, then (4.5) implies that llrpu-Upli 4!
0

0(h™). On using (4.5) once more we derive =c-1::__rm o(h™, =A:-w==v.__rmn
oﬂsaudv. These estimates were first obtained by Schatz [32], who employed a
different technique.

Note that if b = 0, then m:> = >:1: and thus the local ﬁxc:nmﬁmo: error is
always 0. This in turns implies that the global error is also 0, i.e.,
U = rpu. Theorem 3.5 shows that the discretization is stable, but this fact

h
can also be easily derived from the relation m:> = >:1=. More generally,
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assume that b is such that (.',.') + (b,.) is a coercive bilinear form in :M

and endow IM with the energy norm (i.e., with the norm induced by this bi-
1inear form). On choosing rpu to be the orthogonal projection associated

with the energy norm rather than (4.4), we conclude again that m:> = >:1: and
cs = rpu- The Galerkin solution coincides with the best approximation rpu to

u in the energy norm, provided that the problem is coercive.

4.2 Compact convergence of operators

In this section we present a technique for proving (R2) in the definition of
regular approximation.

Theorem 4.2 Assume that the operators >:“xs - Y

—_— h

are of the form >: = m:+o:
where (i) Bp:X -~ Yi and there exists a bounded, invertible operator B mapping
¥ onto Y such that m:c: = m:ﬁ is a stable, consistent discretization of Bu=f
whenever T € Y, (i) nznx: > <: and <: € x:u h € H, =<:__m constant implies
that An:<:v is discretely w:-nosnmnﬁ. Then (R2) in Theorem 4.1 holds.

proof ~ Assume that :<:—_m constant and A>:<sv is discretely m:-ooacmnﬁ. Then
Ams<:v = An:<r->z<:v is also discretely compact, since (ii) holds. For an
appropriate subsequence (which we still denote by n<:vv and an appropriate f
in <,__m:ﬁ-m:<:__ -~ 0. The identity

-1y - - -1 _ et -1
1:m f <: = m: Ams<r m:ﬁv m: Amsﬂuwrssm f)

makes it clear that <j converges discretely toward m-‘«.

In the case where, for each h, x: = X, <: =Y, n: = C and o Sh are the
jdentity mapping, the property (i9) is simply the compactness of the operator
C. When X = Xy Yy = Yy sy =y = Id, but Cp varies with h, (ii) coincides
with the notion of collective compactness considered by Anselone [1]. The
om:msmawNmﬂao: to spaces x:, <s that vary with h is due to Stummel.

Example. Quadrature methods in integral egquations (See, e.g., [91). We

——

consider the equation of the second kind

1
(Au)(x) = ulx) + r K(,y)uly)dy = £,

where the datum is continuous, the kernel K is twice continuously different-
jable and we seek continuous solutions. We set X = Y = space of continuous
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functions in 0 ¢ X = 1, with the maximum norm. It is assumed that the

corresponding homogeneous equation only possesses the trivial solution.
If J is an integer, We introduce a grid x. = jh, J = 0,1,...5d, h =1/

J
and look for approximations cu to cﬁxgv by solving (i 0,1,..-59)

i

Up I :xnx*.xuvcu = ﬁﬁxuv. Ap.mv

a system which originates from the replacement of the integral by the trape-
so0idal rule. Throughout the example, summation is in i, i-= 0,1,...,J and
the terms j = 0,J must be nhalved. We set x: = <: and equal to the space of
(J+1)-vectors with the maximum norm and r =Sy and equal to the operator
which takes each function v into the vector with entries <Ax@v. Note that
z<:__n 1. We have defined in this way all the elements that are needed for
the second paradigm. Clearly (4.9) is uniformly bounded. The i-th component

of the local truncation error js given by

1
_Qf..ic::&: (4.9)

1. = Mu :xﬁx¢,xuvcﬁxuv - ao

1

Taylor expansion shows that if u is twice continuously differentiable, |
possesses a bound nA:V:N. on applying Theorem 3.4 we conclude that the
requirement (R1) in the definition of regular approximation holds. In order
to prove (R2) we resort to Theorem 4.2, with mr = _axs and os the matrix with
entries sxAxﬁ.xuv. The hypothesis (i) is M1¢<¢md_< satisfied with B = Idy
and we turn to (ii). Let <: = m<o,....<ou € X, with supy =<:__A w, The
family of functions esﬁxv = Muxhx,xuv<u is relatively compact in X (just
apply Arzela's theorem, [26] Chapter 1). But then the property =1:_— =1
shows that 1sesﬁxv = o:<: is discretely 1s-noaumoa.

We conclude that (4.8) is uniquely solvable for h sufficiently small and
that awxu_cﬁxuv-cu_ can be bounded above and below, uniformly in h, by
max 151 with 1, given in (4.9). The same result is true even if Kis only

continuous; see€ a6l for this and other mm:mﬂwdﬁNmﬁéo:w.

5. INITIAL VALUE PROBLEMS

INLTIAL VA  ————

5.1 One-step discretizations

One-step Cl>- 7= = —

This last chapter is devoted to some considerations on the definitions of
stability and convergence in the important case of initial value problems.
For simplicity we work within the first paradigm. The treatment of Example B
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in Chapter 3 shows the way in which extra results can be gained when employ-
ing the second paradigm.

Let W be a normed space. We assume that the fixed theoretical solution we
try to approximate is a W-valued function u(t) of the real variable t,
0<tsT<wo In systems of s scalar ODEs, W is the space RS or C°. In
evolutionary PDEs, W consists of scalar or vector valued functions
cﬁxﬁ,..._xav of d space variables (cf. Example B where X = rwv. Let k be a
parameter taking values in a set K of positive numbers with inf K = 0 (in
this section k, K replace h and H, so that h can be used for spatial mesh-

sizes). We consider the discretization

0 .
Uo = ny (given) (5.1a)

-1+l -1on
kU =k n_AC » N = OLf...Z!;« N = H._.\_‘_uo Am.:uV

where nx is a linear bounded operator mapping W into jtself and whose norm
depends continuously on k. The space xx js, by definition, the space of
(N+1)-vectors V, = m<o,<a....,<2ua. y" ¢ W with the maximum norm ||V, || =
max, =<=__z. The space Y, is also the space of (N+1)-vectors F, =
(FOF ..., T, F" € W, but now with the L norm 17, 11 = IF°1, Sy IVl -
on setting u, = mcﬁﬁov. :Aﬁav,....cAﬁzvua, t, = nk, we have amﬁﬁzmmém first
paradigm framework. Convergence simply means Tim, max, ::Aﬁ:v-cz__z = 0.
Stability, Jjust as in Section 1.4, is equivalent to the requirement

sup  max :o:__u“ L < =,
K OsnsN ¢ (5.22)

which can also be expressed in the form: a constant L exists such that
n 0
U, = LIy (5.2b)
0

for arbitrary k € K, 0<nksT, U €W Turning now to consistency, the
0-th component of the Jocal truncation error is given by

u(0) - ny» (5.3a)
. : : 0 L.
i.e., ﬁ:mﬁm1sox in the starting value U" =n. The remaining components are
a:+a =k a:+ﬂ, n=0,1,...,N-1, where
100

as+ﬁ = c::iV - oxcﬁa:u. (5.30)

The residual d 4 has a clear interpretation: it represents the difference
between the exact :Aﬂ:+ﬂv and the element nxcaasv which one would have
obtained from the recursion (5.1) if u" had been correct: T :Aﬁsv. This
consideration explains the term 11ocal’ truncation error. Consistency

demands
vim [[u(0) - mlly = 0 (5.4a)

together with
) N
v 5 gl =0 (50

a requirement which is verified in the cmrﬁﬂncawx case
max :a:__n olk). (5.4¢)

Finally, Jjust as in the Remark in Section 2.1, L-convergence is equivalent
to the demand that convergence takes place for arbitrary ny satisfying (5.4a).
Therefore Theorem 2.2 asserts that if (5.4b) holds, then the stability (5.2)
is necessary and sufficient for convergence to take place for arbitrary

choices of ny satisfying (5.4a).

5.2 Implicit schemes

Y —

Often, the recurrence for the computation of y" is not of the form (5.1b),
put rather of the implicit form '

-1 nel _ -t n _ _
k oaxc =k nmrc ,no=0,1,..0,0, (5.5)

with nﬁx. nmx bounded operators mapping W into W and whose norms depend con-
tinuously on k. We assume that for each k, Cyp is invertible, so that (5.5)
‘defines c:+a uniguely. There are two alternative ways of analyzing (5.13),
(5.5):

(i) On defining C = nmpnmx. (5.5) takes the form (5.1b) and can be
treated by the means of the previous section. Stability is identical with
the requirement (5.2) and follows from the condition "max, ==Aa=v-cs—_+o
whenever (5.4a) holds".

(ii) The discretization (5.1a), (5.5) is written in matrix form (1.1), with
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A = k kI . . . . .
=Cox Cik . . .
- G gy . .

lo -

§m*3m3m>ﬂ is easily found:

- -1 1
Al [l
-1 -1
k0 Gy
12 -1
kG G Oy
AN N1 N2 -1
Koo 67 Q7 oy

and computation of >ma according to Lemma 1.1 shows that now stability is

given by (5.2) together with the extra condition
sup [[Cy Il < . (5.6)

In this setting, L-convergence is a strictly stronger requirement than
the demand that convergence takes place for arbitrary u satisfying (5.4a).
H:maﬁmmmoz for this is that now the operators owx , wWhich contribute to
lA Ils do not feature in the first column of >md. the only column which
operates on the initial datum when forming cx = >m ﬁx. Consequently in this
setting convergence for arbitrary consistent UM does not imply stability (it
implies (5.5) though, as we say above).

These considerations illustrate the fact that the same discretization can
be written in several different ways for analytic purposes and that the stab-
ility requirements may vary with the way of writing the discretization. Here,

when working within the alternative (i), stability means insensitivity with
respect to small perturbations mm

-tsn+l _ -1, 5n n
k U =k nxc + ar.
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Sl wnsl _ =14 on n .
K70 UM = KT UT + Cypdys 4 (5.7)

whereas within alternative (ii), the perturbations are

-1, "+l _ -1 ~n n A
KTCuUT =k Gy U+ gy (5.8)

Clearly (5.8) accounts better than (5.7) for the sort of perturbation found
in practice, where nx is not formed.

The uniform invertibility condition (5.6) was first introduced by Strang
[42]. .

5.3 Multistep schemes

For notational simplicity we restrict ourselves to the two-step case

00 1 _ 1 . (5.9a)
U = Jr. U = Jru

-1,n+2 _ -1 n+1 -1 n _ _

k U =k oaxc + k nmxc s no=0,1,...,N-2. (5.9b)

This discretization can be rewritten as a one-step recursion for the compound
vectors U" = Ac:+ﬂ. c:vq € Wx W. Namely

0,1 0
m = Ajrw Jﬁvu

Stnel -1
K™ =T e c

" =kt g (5.100)

n = 0,0,... N2, We endow W x W with the norm [|(Vy,V,) Il ey = max(IV. [1, 1V, D
and consider the space xx (resp. <«v of N-dimensional vectors with components
in W x W with the maximum (resp. L' norm). Finally we set Uy umncaﬁ_v.cﬂﬁcvva.
...,A:Aﬁzv. cﬁnz-avvqua. With these definitions, convergences still means

max =:Aﬂ:v-:=__z + 0 and the stability condition is given by (5.2a). The
formula (5.2b) can clearly be replaced by

0"y < LI s LomaxC 0y ot

Iy
for arbitrary k, 0 < nk < T, cow ca in W. The local truncation error is given

by
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1 0.7 -1 T -1 T.T
Hﬁcﬂﬁﬂuljru CA._UOV - D—Av s :n Q‘_uov u...oA._A Qzlﬂuov ]
where the elements

Qz = chﬁ v - O___A::n:v - ﬁN_A::“SIAV

n+1

possess an interpretation similar to that of the one-step case. Thus, con-
sistency is equivalent to (5.4b) together with

Vim [lutg) - nd[l = Vim ulty) - n i 0 (5.11)

when (5.4b) holds, convergence for arbitrary :m. :P satisfying (5.11) takes

place if and only if the discretization is stable.

5.4 Time-dependent operators

fme-dep= = =

Often the operator C in (5.1b) depends on t and the discretization takes the
form

-1 n+l _ -1 n
k U =k nxﬁdzvc .

It is assumed that ox depends continuously on k and t, 0 <t £T. Now the

inverse >w_ js given by

SR e
>_A = |k QH L e e e e e e
k va.a 1 Ce e e e
-1
k nmoa vmom I e .
e p P I
N, N,2 N,3 R p
where v%,u is the composite operator oxﬁﬁu-ﬂv...oxﬁaﬁvnxﬁﬁw-gv. Lemma 1.1

shows that stability demands the uniform boundedness of these products. As
in alternative (ii) in Section 5.2, not all the products appear in the first
column. For this reason, convergence for arbitrary consistent initial data
does not imply stability. A counterexample can be seen in Ansorge [2] p. 63.

5.5 A perturbation result. The Dahlquist-Henrici theory of linear multistep

methods

———

Let us naw consider discretizations of the form
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co =y given,

(5.12a)

-1n+et _ -1 n n n+1
k U =k nxﬁﬁzvc + waxﬁﬁzvc + mmxﬂwzvc s (5.12b)

n=0,1,...,N-1, where nrﬁav, m@xﬁav, mwrﬁnv are operators in W whose norms
depend continuously on k and t. The following jmportant perturbation result

holds.

Theorem 5.1 Assume that W is a Banach space and that there exists a con-

e

stant M such that, for each k in K and t
By Il M- Then (5.12) is stable if and

with 0 st T, =m;= < M,
only if the discretization given by

(5.12a) and Kk~ U™ = ko (¢ 0" 45 stable, n = 0,1,...,N-1.

Proof see Grigorieff [16] which allows nonlinear, r¢Umn:¢ﬁN-no=ﬁ*=cocm

max. wmx. Earlier versions are due to Kreiss [21] and Strang [40]. A simi-
lar perturbation theorem does not hold for general discretizations (i.e.,
those that do not stem from initial value u1oc,msmv unless the size M of the
perturbation is sufficiently small. (See the discussion in Stetter [39] p.

21.)

As an application, we examine the cm:dncﬁmﬁ-zmzxﬁni theory of linear multi-

step methods (see Henrici [191). In W =
lems

u(0) given, du/dt = A(t)u(t) + f(t

RS we consider initial value prob-

)y, 0stsT,

where A(t) is a matrix depending continuously on t and f is a continuous
vector-valued function. (What follows holds if the right-hand side of the
equation is.nonlinear, r*umozﬁaN-oozﬁﬁscocm in u, but in this paper we deal

only with linear problems.) If a;» B,

i = 0,1,...,r, are fixed real con-

.m
stants with a, = 1, we consider the linear r-step method
co, cat..,c?d given,
AT N (O TR LR
j=0 J j=0 J n+Jj n+J
For the analysis the method is rewritten as a one-step recursion (Section
5.3). On introducing the characteristic polynomials
r j r .
o(z) = 1 a2, olz) = 2 8.2%,
j=0 9 j=0 Y
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it is easy to prove that, if u(t) is smooth, then (5.4b) holds if
o(1) = 0, O.ANV = g(1). - (5.13)

(Conversely, these conditions must be fulfilled if (5.4b) is to hold for
arbitrary, smooth u(t).) Next recall that the stability of the discreti-
zation is independent of the inhomogeneous term f. The perturbation theorem
shows then that our discretization is stable if and only if the discretization

or .
!tz oe™ =0, TR

j=0

r-1 .
given, (5.14)

is stable. The solutions of (5.14) are readily available in closed form in
terms of the roots of p(z) = 0. Thus one easily concludes that stability
holds if and only if o satisfies the wamﬁ condition: p has all its roots
inside the closed unit disk and roots of modulus 1 are simple. The basic
theory shows that, when (5.13) is satisfied, the root condition is necessary
and sufficient for convergence for arbitrary, consistent choices of

@Ot

5.6 Strong stability. The energy method

|\|\||.\|‘||I||.|.|..|I|||\|‘||||I||l|

One of the difficulties in the investigation of the stability condition

(5.2a) for a given discretization stems from the fact that (5.2a) involves
n . ; .

the powers Cy whereas in practice one is only given C, in (5.1b). Unfor-

tunately, in general,

fe A e (5.15)

and therefore information on :nx—_aomm not necessarily yield useful inform-
ation on :om__. (1f W is an inner product space and C» k € K are self-
adjoint or normal operators, then equality holds in (5.15). In the general
case only :nﬂ: m—_ox::.v

kreiss [21] introduced a stability definition whose checking is a given
situation does not demand knowledge of the powers of mx.

pefinition 5.1 A discretization (5.1) of an isiﬁmwd<m~=muxovdma¢mnmddma

strongly stable if there exist positive constants ro. ra, rm. ru such that,
for each k < K., the space W possesses a norm ety for which
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(1) Ly IVl s Wity Ly WV » for each V in W, k = ko

LA

(1) NGl = 4Lk for each k s kg»

Koe

e U s (g 00

A

for arbitrary co in W, k

Theorem 5.2 A strongly stable discretization is stable.

e ——

proof [0l £ Lo NU"H L(1Lgk)" W0, s Lpexe(LyD) (0, s
L, ©xP Aruquw =co__z. Note that here C, might depend on t as in Section
5.4.

Example: The energy method. The convection problem (1.4) is discretized

EXampie. = - S

by the leap-frog scheme

co_ c_ given in rw,
LT x-aﬁcz-xﬁqs+qmdvc=+av. o= 0,1,....N2, (5.16)
where rm. r and 4: are as in Example B, Section 1.1. Recall (Section 5.3)

P
that here C, maps the compound vector Ac=+,. cqu into Ac=+m, c:+avq and

UM T = max( TR T P (V1) € W W, we set
L L
p p
T,2 2 2 =1
=A<1<Nv Iy = =<a—_ V,ll7 v (T, + T WysVy2s
where the angular brackets denote the usual rw inner product. On noting
that
-1 -1
T VYL s Tl 52 IAAAE
we conclude that (i) in Definition 5.1 holds provided that r < 1. Now take
the inner product of (5.16) and T c=+m and rearrange to get
=Ac:+w_::+avq__m - :Ac=+a¢c=v4_ﬂm-s Aﬁqr+qmavcz+a,c=v

-1y,n n+l
-1AA43+4: WhLu .

periodicity implies that the inner products cancel each other and thus
fm2mhh - G M T or ligly = 1. Therefore (5.16) is

strongly stable when r < 1.
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In more general situations the use of the energy method demands such
jngenuity in the construction of an appropriate norm || * ,:A (the so-called
energy) and careful use of the techniques of summation and integration by
parts. An excellent account can be seen in Chapter 6 of Richtmyer and
Morton [27].

5.7 The von Neumann analysis

The von Neumahfl == =—

In Example B, Section 1.4, we vﬁmmm:ﬂma a simple von Neumann analysis. In
this section we comment briefly on the scope of this technique. Assume that
W is the space rm of é-umﬁéoa»n. Om‘<m~:ma functions of a real variable Xx.
Note that this mﬂmom may arise either when dealing with systems of PDEs
having a scalar-valued dependent variables or when discretizing a single
ccalar PDE by means of an s-step discretization. Functions ¢ in W possess @
Fourier series representation (1.11) with a s-dimensional complex vectors.
If C, consists of constant coefficient (i.e. x-w:amum:am:av linear combina-
tions of translations, then formulae (1.12) are still valid, but now 3., ca
are vectors and mxﬂau suitable matrices. Clearly,

eyl = sup |6 (m" 15

where the bars represent the matrix norm derived from the norm used in .

We face again the difficulty encountered in the previous section - in mm:mwm_,
the operations of taking matrix norms and forming powers do not commute. Oon
recalling that 2 matrix norm is always larger than the corresponding spectral
radius, we conclude that, for each eigenvalue yvdVAav, i o= 1,25.0455 of

¢y (m)s

M#oﬂ”,w sup, ,yM¢VAav=— = Am:oa,vaVAav,v:.

so that the von Newmann condition sup, ,y“mVASV# < 140(k), k > 0 is necessary
for stability. The condition is also sufficient 1T s = 1 or, more generally,
if _ms = —m_:. Additional hypotheses that guarantee the sufficiency of the
von Neuma wn condition for stability in rm can be seen in Richtmyer and Morton
[271, Chapter 4, The symbol or amplification matrix ¢ contains full inform-
ation on the discretization and can be used to derive stability conditions in
other nor-ms, S€€, e.g., Thomee [45] and Brenner et al [4]. Finally, the
results «f the von Neumann analysis can be extended to variable coefficients
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situations, see Thomee [457, Richtmyer and Morton [271, Chapter 5.

5.8 weakened stability requirements

We return again to the discretization (5.1), with W mapping W into itself.
In the woudﬁnmawozm we have in mind, W consists of functions of one or more
space variables. Let us assume that Z is 3 subspace of W such that or< is
in Z whenever V is in Z. Furthermore, We suppose that a norm I :N has
been defined for which a positive constant M exists such that, for all vV in
Z, Wiy ¢ MV, (i.e., the natural injection Z > W is continuous). In
the applications, 7 consists of rsmooth' functions and convergence with respect
to |- 1l 2 represents convergence of the function together with some of its
derivatives.

1f the starting element co =y 1ies in Z, then all the jterates " will
also belong to 7. Therefore it js possible to consider the mapping >x in
(1.1) as an operator of the space X, of (N+1)-vectors with componenents in W
into the space <x of (N+1)-vectors with components inZ. In xx. <x we consider
the norms maX, :cz—_z. =wo#_N + Ik =m=,~N respectively. An application of
Lemma 1.1 shows that stability is now expressed by

n
sup  max C = L' m.,
P Densh i r: L(Z,W) Awmv

(where the norm is now that of bounded operators Z - W) or
n . 0 0 .
Butily, s b il 4 0<nk T, U €eZ. (5.17b)

on recalling that ety € ML Hlgs we conclude that if (5.2a) holds then
(5.17) is satisfied with L' < WM. Thus (5.17) is a weaker requirement than
(5.2). This is in agreement with the fact that (5.17) ensures insensitivity
only with respect to cmxﬁcxcmﬁﬁo:m that lie in Z (i.e., that are smooth),
while (5.2) ensures insensitivity with respect to perturbations in W. We
refer to [45] for an extensive collection of results on the present notion of
weakened stability and to [31] for a study of the relation between (5.2) and
(5.17). tarlier references are [21] and [49].

5.9 Fully discrete schemes

Fully discrer= 2 ——

Throughout the present chapter, and for the sake of simplicity, it has been
assumed that the theoretical cﬁazv and numerical " elements have been members
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of the same space W. When practically dealing with PDEs, cAﬂ:v is in W, but
the numerical element " s defined only at grid points (or is sought in an
mucsoc1¢mdm mﬁzaﬁm-a¢amsm*o=w, space) and therefore lies in 2 discrete space
zx that varies with k. Accordingly, nx maps zx into zr and xr, <x consist
of Az+av-<mnaosm whose components belong to zx. The theoretical element

Uy js of the form mco,c_....,c2ua where c: € zx is a suitable 1mu1mmm=«wa*o=
of cAa:v c W. The contents of the chapter can be easily extended to cover
this new, more mm:mwwd situation. The reader is referred to [25] for a

treatment of this case within the second paradigm.
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