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Summary. The celebrated CFL condition for discretizations of hyperbolic 
PDEs is shown to be equivalent to some results of Jeltsch and Nevanlinna 
concerning regions of stability of k-step, m-stage linear methods for the 
integration of ODEs. We characterize the methods for the numerical inte- 
gration of the model equation ut=u x which are weakly stable when the 
mesh-ratio takes the maximum value allowed by the CFL condition. We 
provide new equivalence theorems between stability and convergence, 
which improve on the classical results. 
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1. Introduction 

When discretizing hyperbolic problems by means of explicit algorithms, the 
famous Courant-Friedrichs-Lewy (CFL) condition [-2] concerning the do- 
mains of dependence imposes upper bounds on the mesh-ratio At/Ax which 
must necessarily be satisfied if the discretizations are to be convergent. The 
essentially geometric way in which those bounds are derived is in sharp 
contrast with the algebraic flavour usually found in other stability theories in 
Numerical Analysis. In this paper it is shown that, in spite of such a contrast, 
the CFL condition is in fact deeply related to some known "algebraic" stabili- 
ty conditions. More precisely, this relation is as follows. Assume first that we 
take for granted the CFL principle, i.e. that for convergent methods the 
numerical domain of dependence contains the theoretical domain of depen- 
dence. Then this principle can be used to provide a new proof of the following 
results of Jeltsch and Nevanlinna [-4, 5]: 

(A) If the disk {#O1;:]/~+rl<r} is contained in the region of absolute 
stability of a consistent, explicit linear k-step, m-stage method for the numerical 
integration of ODEs, then r < m. 
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(B) If the interval {i y: y~[-r,r]} is contained in the closure of the region 
of absolute stability of a consistent, explicit linear k-step, m-stage method for 
the numerical integration of ODEs, then r <m. 

Conversely, and at least in the case of the model equation u t= u~, (A) and 
(B) can be applied to derive algebraically the upper bounds on A t/Ax provided 
by the CFL principle. 

The contents of the paper is as follows. Section 2 is devoted to the 
presentation of some results on weak stability which are required later in the 
paper. The CFL principle is recalled in Sect. 3. Section 4 contains the new 
proofs of the Theorems (A) and (B) above. In Sect. 5 we show how (A) and (B) 
lead to the CFL bounds. We also present some new proofs of the fact that 
convergent schemes are stable. These proofs work with very mild definitions of 
convergence and thus improve on the classical Lax-Richtmyer equivalence 
theorem. The final Section provides a characterization of the schemes for 
which the CFL condition is sufficient for weak stability. 

It should be mentioned that Theorem 4.1 of [13] can also be interpreted as 
a relationship between a CFL condition and the disk result (A). 

2. Weak Stability 

We consider constant coefficient, pure initial value problems in - ~  < x <  ~ ,  
0 < t < T * <  ~ .  We denote by z, h the step-sizes in time and space respectively 
and assume that as z, h vary the ratio r = z h  M remains constant (M a positive 
integer). The translation operator T h is defined by the relation (ThU)(X)= 
u(x--h). We are concerned with explicit, k-step finite difference schemes of 
the form 

k - 1  

Un+k= 2 J az~T ~ U,+l, k<n+k<=T*/z, (2.1) 
l=Oj- m 

where U,, n=0 ,1  . . . .  [T/h] are complex functions of the real variable x, 
- o o  < x  < oo and the coefficients a~ depend only on the ratio r. What follows 
can easily be extended to the cases of several space variables and vector valued 
U, (the coefficients a~j are then matrices). It is also possible (but not so easy) to 
let the coefficients a~ depend on z, h individually, rather than through the 
combination r alone. For simplicity, none of these extensions is considered 
here. We have intentionally failed to mention the PDE that (2.1) is meant to 
approximate, as that information plays no role in stability considerations, these 
depending on the difference scheme alone. 

It is useful to reformulate (2.1) as a one-step recursion 

(2.2) 
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/ Z 1,j 

C(h)-~ .'.. 

0 

... O, O0 (2.3) 

where I stands for the identity operator.  
Let HS= Hs(F,) denote the usual Sobolev space s > 0, H ~  L 2 and let us use 

the notat ion (HS) k for the product  of k copies of H s. 

Definition 1. The scheme (2.1) is said to be weakly stable (with index s>O) if 
there exist positive constants K, h o such that for 0 < h __< ho, (n + k)r_-< T* 

bl C(h) n II ~ K h-~, (2.4) 

where II" II denotes the operator  norm on (L2) k. 

Definition2. The scheme (2.1) is said to be (HS, L2)-stable (s>O) if there exist 
positive constants K, h o such that for 0 < h < ho, (n + k) z < T* 

II C(h)"ll * ~ K, (2.5) 

where I1" I1" denotes the norm in the space of bounded operators ~((Hs)k,(L2)k). 
Upon introducing the Fourier  transform with dual variable (or frequency 

variable) 4, formulae (2.2)-(2.5) become respectively [14]: 

bn+ ,(~)/  12(h ~') \b , (~)  / 

e0 00 J' ... aoj e~l~ 
J 0 

C(0) = . . . . .  , (2.7) 

. . .  1 

sup l (2(0)"1 < g h-  s, (2.8) 
0 

sup {I d(0)"l (1 +10 h-  112 ) s/z} < K. (2.9) 
0 

In (2.8), (2.9), I d(0)"l represents the spectral norm of the k x k matrix C(0)" 
and the supremum is taken over all real 0 (or over 101__<~ as d(0) is 2re- 
periodic). 

Definition3. The scheme (2.1) is said to be 0-stable if there exists a positive 
constant K such that for all n 

I 6:(0)" I _-< K. (2.10) 

Remark. The term O-stable is borrowed from the field of numerical ODEs. 
Note  that setting 0 = 0  in C(O) means that we are dealing with the frequency ~ 
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=0, i.e. with constant (x-independent) U,. For constant functions (2.1) reduces 
to a linear, ordinary difference equation with characteristic polynomial 

eo (~) = ~k _ (y~ ak_ ,, i) ~k-1 -... _ (y, %). 
J J 

The matrix C(0) is the companion matrix of Po(Q and therefore the zeros of 
Po(~) are the eigcnvalues of C(0). Thus (2.10) is equivalent to the requirement 
that Po(~) has all its zeros in the closed unit disk and the zeros with modulus 
one are simple [-I, p. 173]. 

Theorem 1. The scheme (2.1) is weakly stable if and only if for each real 0 all the 
eigenvalues of C(O) are in the closed unit disk. Furthermore, if (2.1) is weakly 
stable then the index s can be chosen to be k - 1 .  

Proof The "only" part is clear, since an eigenvalue in I(l> I would mean an 
exponential growth of the powers of C(0). The rest of the theorem is direct 
application of an algebraic lemma ([14], Lemma 3.3). 

Remark 1. The requirement that 12(0) has no eigenvalue in [(I > 1 is the celeb- 
rated yon Neumann condition. This demands that the eigenvalues are bounded 
by 1 + K z, but in the present circumstances C(O) does not depend on z, h (since 
the coefficients at# do not) and therefore K can be chosen to be zero. The 
equivalence between weak stability and the yon Neumann condition was 
proved by Kreiss in his celebrated paper [6]. His proof, which applies to the 
a~=a~j(z,h) case, is more involved than that of our Theorem t, restricted to 
the situation at~ = atj(r). 

Remark2. Again we note that the eigenvalues of C(0) are the zeros of its 
characteristic polynomial 

Po(() = (k _ ( 2  ak-  1, j el J~ (k 1 - - . . .  _ ( Z  aoj eiJ~ 
J J 

Theorem2. The scheme (2.1) is (HS, L2)-stable if and only if it is O-stable and 
weakly stable with index s. 

Proof We first deal with the "only if" part. If (2.9) holds for (n+k)z<T*,  
h<h o then for 10l<n and h_<_min(ho,TZ) 

112(0)"1 < K(1 + (rt h-  1)2)~/2 < K 2 S/2 7z s h-s 

so that (2.8) holds. It is quite clear that (2.9) implies (2.10). 
We now turn to the "if" part. The bound (2.8) ensures, according to 

Theorem 1, that for each 0 the eigenvalues of C(O) are in the closed unit disk. 
By continuity, (2.10) implies that there exists e > 0  such that for 101 <_-~, 12(0) has 
no multiple eigenvalue on the unit circle I(1= 1. A well-known result (see e.g. 
[3] Chapter 11) shows then that the resolvent (C(O)-(I ) -1  is regular in I~l > 1 
(including ( =  oe) and does not possess multiple poles on I(I->-1. Then, for each 
fixed 0, 101-<~ 

f ( ( ,  O) = (I ~l -- 1) [(12(0) - ( I ) -  ~l 
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is bounded as ~ varies in [ff[>l (including ~ = ~ ) .  Furthermore f(~,O) is 
continuous except at the simple poles of the resolvent, where f(ff, 0) equals the 
modulus of the corresponding residue. Hence f(~,O) is bounded for [01<e, 
Iff l>l .  

It follows from the Kreiss matrix theorem [6, 9] that there exists a constant 
R such that for all n and ]01_<_e 

10(0)"l<e. (2.11) 

For 101__>~, (2.8) shows that, for h<h  o, ( n + k ) z < T *  

I 0(0)"1 _-< K ~-s(101 h-1)s. (2.12) 

Now (2.11)-(2.12) lead easily to (2.9) and the proof is complete. 

Remark. Thomee [14] deals with one-step methods which are consistent with a 
well-posed initial value constant coefficient problem. For those methods C(0) 
= l e R  (or (~(0)=I in the vector-valued case) and therefore the 0-stability 
requirement is trivially satisfied. Thus in his context there is no difference 
between weak stability and (Hs, LE)-stability and in fact [14] takes our Defini- 
tion 2 as definition of weak stability. We believe that our use of the term weak 
stability is in agreement with the standard terminology, see e.g. [1, 9]. 

3. The CFL Principle 

This brief Section is, as the previous one, of an ancillary character and reviews 
the CFL principle as applied to the model problem 

ut=Ux, 0 < t < T * < o %  - o o  < x <  oo, 
(3.1) 

u(x,O)=uo(X), - o o  < x < o o .  

The principle is embodied in the following result (9  denotes the class of 
indefinitely differentiable functions with compact support). 

Theorem3. Assume that a scheme of the form (2.1) with r=z /h  constant, is 
applied to the integration of  (3.1) in such a way that Uo=u o and the missing 
starting levels U 1 . . . . .  Uk-1 are computed by means of a one-step method of the 
form (2.1) employing the same values of z and h. Assume that the method is 
convergent in either of the two following senses: 

(i) For each Uoe~ 

lim sup Ilg,-u(' ,n~)llL2=O. (3.2) 
" c ~ O  O<-n'c<-. T * 

(ii) For each Uoe~ and each real x, one has as n--* o% r ~O, nz f ixed 

lim U,(x) = u(x, n z). 

Then 

z/h<=m. (3.3) 
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Proof The value U,(x) only depends on the restriction of u o to the interval J 
= [ x - a , x  +a], a=mhn, whereas u(x, nz)=Uo(X +nz ). If z/h>m then x +nzq~J 
and it is possible to choose U o ~  such that Uo=_0 in a neighbourhood of J and 
Uo-=l in a neighbourhood of x+nz.  Then, in the neighbourhood of x, 
u(., nz)= 1, U,(" ) - 0  and convergence cannot take place. 

Remark. The derivation of the restriction (3.3) on the mesh-ratio r is peculiar in 
that it stems from a convergence requirement via a geometric argument, while 
conditions on r are usually reached by an algebraic study of the difference 
scheme on its own, without reference to the PDE being approximated. 

4. Disk Like Theorems 

To solve initial value problems, we consider "linear" explicit methods [5, 14] 
which satisfy the following property. When applied to the linear equation y' 
= 2 y  with a constant step z the method yields a numerical solution which 
satisfies a recurrence relation of the form 

k - 1  

Y,+k = E ~ blJzJ2JY,+l ' n=0 ,1 ,2  .... (4.1) 
t = o  j = 0  

where bzj are real numbers depending only on the method. The integers k and 
m are called the number of steps and the number of stages, respectively. Most 
practical methods, including linear multistep and Runge-Kutta schemes, are of 
the form (4.1) ([5, 14]). The unknown function y can take values in IE, I1S d or 
even in a functional space X and 2 must be interpreted accordingly as a 
complex number, a complex d •  matrix or a linear operator on X. The 
characteristic polynomial associated with (4.1) is, by definition, 

k - 1  

~(~, P) = ( * -  E ~ b,j #J (' (4.2) 
~=0 j = o  

and the stability region S of the method is the set of complex numbers # for 
which the roots ~t of r  are in the closed unit disk, those roots with 
modulus unity being simple. It is convenient to introduce the enlarged stability 
region S* of the method, the set of those/~ for which the roots (t of qi((, #)= 0 
are in the closed unit disk. Clearly S* is closed and therefore contains the 
closure S of S. The example m=0,  k=2,  b10=2, boo = - 1  has S = S = 0  and S* 
= C ,  so that S* may be much larger than S. However for the methods used in 
practice one often has S* = S  (cf. Remark 2 after Theorem 5 below). The 
method is said to be 0-stable if 0~S. 

Hereafter we assume that the methods considered are consistent, i.e. that 
the algebraic function ~(p) defined by (4.2) has a branch ~1(#) which is analytic 
in the neighbourhood of/~ = 0 and satisfies 

r (/~)- exp(#)= 0(/~2), p --, O. 
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If r>0 ,  t i e r  we consider in the complex #-plane the "ellipse" E(fl, r) with 
parametric equation 

#(O)=rfl(cosO-1)+irsinO, -~z<O<_rc. 

When fl=0, E(fl, r) degenerates in the interval { iy :ye[ -r , r]} .  When fl+0, 
E(fl, r) is an ellipse with centre at the point - fl r of the complex plane and axes 
parallel to the coordinate axes. The horizontal and vertical semi-axes have 
lengths [fir[, r respectively. Therefore E(1, r) is a circle. 

Our aim in this paragraph is to ascertain whether it is possible for a 
method to have E(fl, r)cS*. To this end we follow an indirect approach. We 
consider the PDE (3.1) and discretize it in space as follows 

Ut(x,t)=(Zh) -1 [(/3+ 1) Th--ZflI+( fl -- 1) T h- 1] U(x,t). (4.3) 

Here the translations refer to the space variable x. The case f l=0  corresponds 
to central differences and the case fl= 1 to backward differences. Now (4.3) can 
be viewed as an abstract Cauchy problem Ut=h- IAU which can in turn be 
discretized in time by means of (4.1) with step-size z = r h  to yield 

k--1 

Un+k~--- 2 btjrJA ~ U,+z, (4.4) 
1=0 j=0  

with 

2A=( f l+  1) Th-- 2flI +(fl--  1) T h- ~. 

Clearly (4.4) is a consistent method of the form (2.1) for the numerical integra- 
tion of (3.1). (For instance, when (4.1) is chosen to be Euler's rule and r=/~, the 
method (4.4) is the Lax-Wendroff scheme). 

The cornerstone of this paper is the following simple result. 

Theorem 4. The ellipse E(fl, r) is contained in the enlarged stability region S* of 
the ODE method (4.1)/f and only if the PDE method (4.4) is weakly stable. 

Proof. According to Theorem 1 and to the remarks which follow it, weak 
stability is equivalent to the requirement that for -~_< 0 N ~ the roots of 

k-1 
~k= ~. ~ bljrjAj(t, 

z = 0  j=o 

with 

A = (1/2) [(fl + 1)ei~ - 1)e -'~ 

= fl(cos 0 - 1) + i sin 0, 

belong to the closed unit disk, so that the result follows trivially from the 
definition of S*. 

Remark. The maximum principle on Riemann surfaces shows that E(fl, r)c S* if 
and only if S* contains E(fl, r) together with its "interior" (i.e. the bounded 
component of tE\E(fl, r)). 
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A first consequence of Theorem 4 is the following generalization of the 
results (A) and (B) of the introduction, first obtained by Jeltsch and Nevan- 
linna. 

Theorem5. Assume that (4.1) is consistent and O-stable and that the ellipse 
E(fl, r), fl > 0 is contained in the enlarged stability region S*. Then r < m. 

Proof The 0-stability of (4.1) (in the sense of the definition given in this 
Section) clearly forces the 0-stability of the PDE scheme (4.4) in the sense of 
Sect. 2. Theorem 4 guarantees that (4.4) is also weakly stable and therefore 
(Theorem 2) (HS, L2)-stable. Standard results (see e.g. [14]) show that the 
approximations generated by (4.4) converge in the L2-norm towards the 
theoretical solution, whenever the initial datum u o is in H s and the starting 
values U o . . . . .  Uk_ 1 are all equal to u 0. According to Theorem 3 (the CFL 
principle) r < m. 

Remark 1. As noted before, the cases /3=1,0 correspond respectively to the 
results (A), (B) quoted in the introduction. The case of a general fl, not 
considered in the original work of Jeltsch and Nevanlinna can also be proved 
by means of the methods in their paper [-5]. One would have to apply 
Theorem 2.5 of [-5], with Q given by k = 2, m = 1 

b,o=2f l / ( l  +/3), boo=(1- f i ) / ( l  +fi), 

b l l = 2 / ( l  + fl), b01=0. 

Remark 2. Our result is slightly stronger than those stated in [5] in that we do 
not assume ~(~,#) to be irreducible and we use the larger set S* rather than S 
or S. However the proofs in [5] would also work under these less demanding 
hypotheses. Also note that ~(~,#) is invariably irreducible for practical meth- 
ods and that, in the irreducible case, E(fl, r ) c S *  if and only if E(fi, r )cS .  In 
fact, suppose that q)(~,#) is irreducible and that there exists a point #oeE(fl, r) 
c S *  such that #0~S. Then #r  if #eE(/3,r) and # is near #0. For those values 
of #, q~(~,#) has a multiple root and this contradicts the hypothesis of irreduci- 
bility. 

Remark3. It should be pointed out that the technique in [5], related to the 
powerful order-star concept [15], is capable of characterizing the methods for 
which the equality r = m  can be attained (cf. Sect. 6). 

Remark4. Theorem 4 is also valid for negative ft. However no consistent, 
explicit method can have E(/3, r ) cS*  i f /3<0.  This is a simple consequence of 
the remark after Theorem 4, since consistency implies that for # positive and 
small #r 

5. Algebraic Proofs of CFL Bounds 

So far, a geometric argument has led us to the CFL principle (Theorem 3) and 
then the bound (3.3), given by that principle, has been used in the proof of 
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Theorem 5 concerning regions of stability. In this section we show that the 
s tatement  in Theorem 5 implies that  in Theorem 3, so that  these two theorems 
can be regarded as equivalent. Since we know that  the validity of  Theorem 5 
can be proved by the algebraic method of Jeltsch and Nevanlinna,  we conclude 
that  it is possible to establish the CFL bound (3.3) by purely algebraic tech- 
niques. 

In this Section, and for simplicity, we restrict our  at tention to one-step 
methods  (k=  1) and set U0=u  o. We assume that  Theorem 5 has been proved ~t 
la Jel tsch-Nevanlinna and we wish to show that  z/h <= m for a consistent method 
of the form (4.4) which converges in one of the sense (i)-(ii) considered in 
Theorem 3. After Theorem 4, it is enough to prove  that  "convergen t"  methods 
are weakly stable. 

We first consider convergence in the sense of (i). We have not  been able to 
show that  this convergence implies weak stability. The usual Lax-Rich tmyer  
equivalence theorem [9], as generalized in [11], does not cater for the present 
si tuation since ~ with the H ~ topology is not  a Banach space, and the 
completeness hypothesis is essential in this sort  of Theorem [7, 8]. Our  best 
result for this type of convergence is as follows. 

Theorem 6. Assume that k = 1 and that for the approximations given by the PDE 
method (4.4), with U0=uo,  the limit (3.2) holds for each uosH~= 0 Hs" Then 

SEN 

(4.4) is (L 2, L2)-stable (i.e. Lax-stable). 

Proof The space H ~ is a Frechet  space, when endowed simultaneously with all 
the H~-norms. Thus H ~ is a barelled space [10]. According to an extension of 
the Lax equivalence theorem due to Schultz [12], the family of powers C(h) n, 
0 _< n z _< T*, 0 < h <__ h 0 is an equicontinuous family of linear opera tors  from H ~~ 
into L 2. Therefore [10] there exists a nonnegat ive s such that  in the L*~ s,L2) - 
no rm (2.5) holds. Thus (4.4) is (H ~,Lz)-stable and, by Theorem 2, weakly stable. 
Theorem 1 shows finally that  s can be chosen to be zero. 

Remark. If the convergence is demanded  not  only when U o is taken to be u o, 
but  also when U o tends to u 0 as z ~ 0  then a method  is stable if it is convergent  
for the trivial initial da tum u o - 0  ([1, 7, 11]). 

We now turn to the convergence in the pointwise sense (ii). 

Theorem7.  Assume that k = l  and that, when Uo=u  0, the method (4.4) is con- 
vergent in the pointwise sense of (ii), Theorem 3. Then (4.4) is (L 2, L2)-stable. 

Proof We take in (ii), n z =  T* and x = 0 .  For  each nonnegat ive integer n and 
function qS, we define 0n(~b) to be the value at x = 0  of the numerical  solution 
generated by n steps of (4.4) with z = T*/n and U o = ~b. More  precisely 

~b,(~) = [C"(h) qS] (0), n z = r * ,  z/h=r. 

By hypothesis 

lim O,(q~) = ~b(T*), ~ b ~ .  
n ~ c ~  
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We next introduce the space ~ of bounded real functions with bounded 
derivatives of all orders and endow ~ with the family of norms 

1]4)Hs = i supl4r s=0,1 ,2  . . . . .  
j =  0 x~R 

Take p e n  such that p(T*)= 1 and that p(x)= 1 for x in the numerical domain 
of dependence of the point x--0, t =  T*. Then for 4)~N the product p4) is in 
and 

lim 0,(4))= lim 0,(P 4 )) = p(T*) 4)(T*)= 4) (T*) 

i.e. pointwise convergence holds also for all initial datum in .~. Thus {0,} is a 
pointwise convergent family of linear functionals on the barelled space ~. 
Clearly each 0,  is continuous and therefore [10] {0,} is an equicontinuous 
family. Hence an integer s and a constant K can be found, so that for all 4)e~, 
n 6 l N  

10.(4))1 _-<K II 4) IIs. 

The particular choice 4)0(x)= exp(i0 h-x x) leads to 

s 
[0n(4)0)JNK ~, [Oh-l[ t. (5.1) 

~=o 

Now we have the equality of functions of x 

C"(h) 4)0 = C(0) ~ 4)0. (5.2) 

(Note that both sides of (5.2) have the same Fourier transform.) ((5.2) is the 
"naive" definition of amplification factor often found in elementary books.) 
Evaluation of (5.2) at the point x = 0  leads to 0,(4)o)= d(0)"- 1. Upon substitut- 
ing this last equality into (5.1) we conclude that the scheme is (H s, L2)-stable. 

Remark. It is clear that the idea behind this proof possesses a wide range of 
applicability, not limited to hyperbolic cases. 

6. Schemes With Optimal Stability Properties 

For a method of the form (4.4), the CFL condition is necessary for weak 
stability. The techniques used in [5] to prove Theorem 5.1, employed in 
combination with our Theorem 4, lead easily to the following result, which 
characterizes the methods for which the CFL condition is also sufficient for 
weak stability. 

Theorem& Let the method (4.4) be consistent and assume that the method (4.1) 
used to perform the time-stepping is irreducible. Then (4.4) is weakly stable at 
r =m if and only if (4.4) is given by 

f l , 1  
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OY 

�9 ( ~ , # ) :  ~ -  ( lq- /z /m) ~ , / 3 : 1 .  

As  an  e x a m p l e  of  the app l i ca t i on  of  the T h e o r e m  suppose  tha t  ut=u~ is 
d i scre t ized  by fo rward  d i f ferences /3  = 1. T h e n  e i ther  the t ime- s t epp ing  is car r ied  

by means  of  Eu le r ' s  rule  o r  the  fully d iscre te  scheme  c a n n o t  e m p l o y  the  
m a x i m u m  z a l l owed  by the C F L  condi t ion .  ( N o t e  tha t  one  s tep o f  length  z of  
the m e t h o d  (1 +#/m)" is t a n t a m o u n t  to m consecu t ive  steps of  Eu le r ' s  rule  wi th  

step vim.) 
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