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It is shown that, in general leap-frog schemes, any particular unstable solution behaves as 
an attractor of other solutions. For a leap-frog discretization of U, + UU, = 0, a particular kind 
of unstable solution is constructed which generically attracts any other solution. Estimates of 
the overflow time are presented and related to the notions of stability threshold and restricted 
stability. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

In his important paper [3], Fornberg studied the nonlinear instabilities of 
Crank-Nicolson and leap-frog discretizations of U, + UU, = 0. His work consists of 
the explicit construction of a particular initial perturbation of the trivial solution 
that quickly leads to machine overflow. In a linear problem the most general 
solution can be obtained by superposition of particular solutions or modes. It 
follows that as the time increases any solution will be (generically) dominated by 
the fastest growing mode. However, in nonlinear situations (as those considered in 
this paper) the absence of a superposition principle renders the significance of par- 
ticular rapidly growing solutions not so clear. One of our aims in the present paper 
is to show that, in the leap-frog case, particular perturbations play a more impor- 
tant role than one may at first suspect. Namely they determine the long time 
behaviour of the scheme in a way to be made precise later. The underlying 
mechanism is the “incompressible” character of leap-frog discretizations, which is 
crucial in gaining insight into this sort of schemes. To render the article self-con- 
tained we have included a brief section on this mechanism which has been discussed 
in [9] (see also [12] and [13]). 
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Our analysis also illustrates the so-called “restricted stability” generally associated 
with discretizations of nonlinear PDEs, i.e., as the mesh is refined, the scheme 
becomes more vulnerable to (nonlinear) instabilities. In this regard our findings 
throw light into the theoreticaz aspects of stability in nonlinear discretizations of 
PDEs [4]. (General theories on discretization methods have tended to be either 
ODE biased or linearly oriented.) Moreover, the behavioural study of leap-frog 
schemes carried out in this series of papers [9, 12, 133 might be of some practical 
significance in that a better understanding of the possible pathologies may lead to 
more effective ways of suppressing them. 

Some very useful references on nonlinear instabilities are Cl, 2, 51. A more com- 
plete discussion of the literature can be seen in [ 151. 

2. LEAP-FROG DISCRETIZATIONS 

The leap-frog discretization of the d-dimensional system of differential equations 

dU/dt = F(U) (2.1) 

is given by 

U “+‘=U”-‘+2kF(U”), n = 1, 2, 3 )...) (2.2) 

where k denotes the time-step. In the applications we are interested in, (2.1) is the 
result of discretizing in space a time-dependent PDE, but this fact plays no role at 
this stage. It is well known that, for fixed k, the sequence U”, U’, U’,..., may possess 
a qualitative behaviour completely different from the behaviour of the solutions of 
(2.1). 

The recursion (2.2) can be rewritten in the form 

U2n= U2+- + 2kF(U2”- ‘), (2.3a) 

U 2n+’ = UZn-’ + 2kF(U2”), (2.3b) 

n = 1, 2,..., where we have simply displayed two consecutive steps. With the notation 
U2” = P”, U2”+’ = Q”, (2.3) becomes 

P”=P”-‘+2kF(Q”-‘), (2.4a) 

Q” = Q”-’ + 2kF(P”), (2.4b) 

a recursion that can be regarded as a consistent one-step discretization, with step- 
length 2k, of the system 

dpldt = F(Q), (2Sa) 

dQ/dt = F(P). (2.5b) 
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It was shown in [9] that the 2d-dimensional system (2.5) (the so-called augmented 
system associated with (2.1)) provides, for each fixed k, a good description of the 
behaviour of the sequence of 2d-vectors (PO, QO), (P’, Q’), (P’, Q’),..., i.e., of the 
sequence (UO, U’), (U*, U3), (U”, Us) ,.... 

The augmented system (2.5) is always (i.e., regardless of the particular F) 
“divergence free” [9] and therefore its solutions (P(t), Q(t)), when plotted in the 
2ddimensional (P, Q)-space, behave like streamlines of an incompressible, steady 
flow: they must become closer to each other in regions were the flow accelerates. In 
other words, a solution (P(t), Q(t)) of (2.5) along which dP/dt, dQ/dt increase must 
attract neighbouring solutions. 

Similarly the mapping which takes (UZn-*, U*“-‘) into (U*“, U*“+‘) preserves 
the volume in 2d-space [9] and by the same reasons as before it can be concluded 
that if we are able to exhibit explicitely a particular solution of (2.2) possessing a 
violent growth, then neighbouring starting vectors will originate a sequence which, 
as n increases, becomes closer and closer to the known unstable solution. 

3. FORNBERG'S RESULTS 

We consider the l-periodic initial value problem 

ut+uu,=o, -a3<x<<,t>O, (3.la) 

4% 0) = uo(x), (3.lb) 

24(x + 1, t) = u(x, t), -m<x<co, t>o, (3.lc) 

where uo(x) is a l-periodic datum. The problem (3.1) is discretized in space by 
introducing a grid xi = jr, j = 0, l,..., d - 1, h = l/d, d an integer, and approximating 
u(xj, t) by vi(t), j = 0, l,..., d - 1, where vi(t) are the solutions of the following 
initial value problem 

dU,ldt+ Uj(Uj+1-Uj-,)/(2h)=O, j=O, l,..., d- 1, (3.2a) 

uj(o) = uO(Xjh j=O, l,..., d- 1. (3.2b) 

In (3.2a) we take Ud z U,, CL1 = iJd- i to account for the periodicity. It should be 
mentioned that Fornberg treats the more general space discretization 

O"j(uj* 1 -Uj-,)/(2h)+(1-8)(U~+,-UiZ-1)/(4h) 

with 8 a parameter. In this paper, for the time being, we restrict our attention to the 
case 1’3 = 1, leading to (3.2a). Other values of 8 are briefly considered in the final sec- 
tion. 

The system (3.2a) can be rewritten in the compact form (2.1) by setting U = 
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(Uo, Ul,.-, Ud- l)T and defining F(U) to be the vector-valued function whose j-th 
component, j = 0, l,..., d- 1, is given by 

Fj(U) = -Uj( Uj+ 1 - uj- I)/(%)* 

It is important to note that F is homogeneous of degree 2, i.e., 

FW) = PDF, (3.3) 

for each real number p and d-dimensional vector V. The system (3.2a) is now dis- 
cretized in time, with a constant step-length k, by means of the leap-frog technique. 
This results in the fully discrete scheme (2.2) or 

u”‘=ui”-‘-nu~(u~+,-ujn_l), 
J 

O<j<d- 1, n= 1, 2 ,..., (3.4) 

where I denotes the mesh-ratio k/h. The scheme (2.2) or (3.4) is complemented by 
the initial conditions 

q = uO(xj), O<j<d-1, 

with Euler’s rule 

U’ = U” + kF(U’) 

providing the missing starting level. 
Fornberg considers in [3] the case u. G 0, leading of course of the trivial solution 

u z 0 (and also to U; = 0) and studies the effect on UT of small perturbations 

q? = aj 

of the identically zero initial conditions. Note that iJ; - 0 corresponds to a neutrally 
stable equilibrium in a linearized analysis. Fornberg’s main point consists of the 
observation that if V is an eigenvector of F with eigenvalue y, i.e., 

F(V) = YV, (3.5) 

then it is possible to use separation of variables in the partial difference system 
(3.4). Namely (3.4) will possess solutions of the form UJ’ = a, Vi, provided that the 
a, satisfy 

%I+1 -anp,=2kyai, n = 1, 2,.... (3.6) 

(This follows easily from (3.3), (3.5).) The recurrence (3.6) is the leap-frog dis- 
cretization of the ODE 

da/dt = ya2, t>O (3.7) 

whose solutions a(t) = l/((l/a(O)) - yt) blow up at the finite time t,,, = (a(O)y)-‘, 
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provided that a(O)? > 0. (A recurrence similar to (3.6) has been analyzed in detail in 
[14]. For further results on (3.6) see [lS].) From these considerations, Fomberg 
concluded that if an eigenvector V could be found with nonzero eigenvalue y, then 
the initial perturbation e = a,V would induce extremely large perturbations by the 
time (aor)-‘. Here a,, must be chosen to have the sign of y. (In [9] one of the 
present authors proved that the overflow will also be reached if a, and y possess dif- 
ferent signs, via the dynamics of the augmented system. However, the blow up time 
is in this case significantly larger.) 

Next Fornberg observed that when d is a multiple of 3 the vector V with com- 
ponents V, = 0, V,,., 1 = E, Vjj+ z = -&, j = 0, l,..., [d/3] (square brackets denote 
integer part) is an eigenvector with corresponding eigenvalue &/(2h). Thus, the 
initial perturbation . . . . E, 0, E, --E ,..., with positive E, leads to blow-up by the time 
2h/&. Note that this time decreases as the size E of the perturbation increases and 
that for a given value of E tends to zero with the mesh-size h. This phenomenon is 
linked to the idea of stability thresholds, to be discussed later. 

4. THE BUTTERFLY CONFIGURATION 

It is easy to check that if 1 is an integer, then the vector V with components 
r/r=&, v,+1= -6, Vi= 0, j # 1, I+ 1 is also an eigenvector associated with the 
eigenvalue &/(2h). Vectors of this form will be called butterfly configurations, by 
reasons that will become clear immediately. The following points should be 
emphasized: 

(i) Butterfly configurations, while analogous to Fornberg’s pattern, were not 
considered in [ 31. 

(ii) While Fomberg’s pattern is unique (up to the size of E), there is a but- 
terfly configuration for each choice of 1, 0 < I< d - 1. 

(iii) The existence of a butterfly configuration does not require that d be a 
multiple of 3. 

It is convenient to express vectors V = (V,, V, ,..., V,- i)= (or the grid functions 
represented by them) by means of discrete Fourier series. Restricting for simplicity 
our attention to the case where d is odd, d = 2M + 1, we consider representations of 
the form 

(4.1) 

where, as it is well known, the 2M+ 1 coefficients u(w) can be uniquely determined 
by the requirement that for x = xi, j = 0, l,..., d- 1, (4.1) takes the prescribed value 
Vi. If V has real entries, then ]a( -o)l = Ia(o o = 0, l,..., M, which implies that, if 
(4.1) is represented as a histogram displaying lu(o)l against the frequency o, then 
the result is symmetric with respect to the line o = 0. 
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When V is a butterfly configuration the corresponding histogram takes the form 
shown in Fig. la, thus explaining our terminology. In this figure, d= 99, h = &, but 
other values of d lead to the same overall appearance. Note that the choice of the 
integer 1 which governs the location of the two nonzero entries in I/ does not affect 
the histogram: a change in I induces a change in the phases of a(o), 
w = 0, f 1, * 2 )...) without altering the corresponding amplitudes. In the numerical 
experiments reported later we have chosen to present the corresponding histograms 
(power spectra) rather than physical space graphs. This has the advantage of giving 
the same appearance to all the butterfly configurations regardless of the particular 
value of 1. However, it should be mentioned that the attractions to be described 
later would of course be apparent also in physical space. 

To illustrate the growth of the solution U;, induced by a perturbation o at time 
t = 0, in the case where Q is a butterfly configuration, we conducted an experiment 
with d = 99, 1= 1, E = 0.1. After 24 time-steps of (3.4) the resulting vector ti5 has a 
maximum norm of 1014. The corresponding histogram is displayed in Fig. lb and is 
identical to that in Fig. la, because, when U” is an eigenvector, U” is simply a 
scalar multiple of U” and our plotting routine adjusts automatically the vertical 
scale. 

TIME - 0.000 

TIME= .253 .-__- __~- ----_ 
b 

FIG. 1. Evolution of a butterfly initial perturbation. 
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Next, we show that, at least qualitatively, the growth in a butterfly configuration 
is the quickest possible among solutions of (3.4). We introduce the L, and L2 
norms for vectors V = (I’,,, I/, ,..., V,- I)T of grid values 

IIVII m =m?x I vjlv 

If U”, IZ = 0, 1,2,..., is a solution of (3.4) we define the energies E, = JIU”)12. On 
multiplying (3.4) by U; + i + U; - i and adding, we easily obtain 

d-l 

IE:+,-E;-, 1 <Ml c IU,“l Iui”+l-u,-ll (u;+‘+ u;-‘1 
j=O 

d-l 

~~NIIU”+‘II, + llUn--llloo) c ly wy+,l+ w-,I) 

<n(llu n+l (I 02 +I(U - I) )2L0 n 1 2 
m n* 

In the last step we have employed the Cauchy-Schwartz inequality and noted 
that the vectors (V;, U; ,..., U;- 1, U;;)T and (U;_ 1, U;; ,..., Vi-,)= have both L2 
norm E,. On invoking the relation ((V(I, <h-‘/2 IIVl12, which links the L, and L2 
norms, we finally arrive at the difference inequality 

G,, Q-1 + 2J.h - 1’2 E:( En + I+ E, _ 1 ), 

or 

E n+lGEn-l + 21h - ‘12E2 n (4.2) 

for the growth in energy of the solutions of (3.4). 
For a butterfly configuration, UT = 0 if j # I, 1 + 1 and U;, i = -U; c 0. Therefore 

E, = (2h)“‘U; or U; = (2h)-‘12E,. Substitution in (3.4) leads to 

E n+l =E,-1 + 2 -l/21/, - 1/2E2 
II* (4.3) 

Thus the recursion (4.3) governing the energy growth for butterfly configurations 
is identical, except for a constant factor 2 3, to the recursion (4.2) which sets an 
upper bound on the growth of any solution of (3.4). Therefore the discussion in Sec- 
tion 2 suggests that butterfly configurations may act as attractors of solutions of 
(3.4), i.e., for large values of n, U” is likely to be close to a butterfly even if U” is 
not. 

Note that (4.3) can be viewed as the leap-frog discretization of the ODE 

dE/dt = (2h) - 3’2E2, 
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with solutions 
E(t) = l/@(O)-i - (2h)~-3’*t), 

which become infinite at t,,, = (~/z)~‘*/E(O) if E(0) > 0. Of importance here is the 
fact that the growths involved are essentially more violent that the exponential 
gowths which can be found in linear problems. 

For (4.2) a similar analysis is possible and leads to t,,, = /z3/*/E(0). On the other 
hand for Fornberg’s pattern one would find t,,, = 23’23 -‘/*h/E(O), showing an O(h) 
dependence on h rather than the O(h3/*) behaviours found for the general and but- 
terfly solutions. 

In a linear problem, the Lax stability requirement [S, 6, 7, 11, lo] 

(JU” - V”II 6 c pJo - VOIJ, O<nk<T<m,k<k,, (4.4) 

where U”, V” are two solutions of the difference scheme and C is independent of 
U”, V” and the mesh sizes, guarantees the convergence of consistent discretizations 
for 0 < t < T, and is even necessary for such convergence when this is asked for all 
initial data in a Banach space. It is clear that in the present nonlinear scheme (4.4) 
cannot be valid. (Set V” z 0 and U” originating from a butterfly configuration, fix 
E(0) and let h + 0. Then the left-hand side blows up.) 

In order that (4.4) holds for V”=O, one should only allow perturbations for 
which ([U’ll = o(h3/*), so that the corresponding blow up time occurs for t,,, > T. 
This sort of behaviour, where there is a threshold on the size of the allowable per- 
turbations which decreases with h and k was called by Stetter restricted stability 
and is compatible with convergence for smooth solutions. A long discussion on this 
point, along with a list of relevant references are given in [4]. 

5. NUMERICAL EXPERIMENTS 

The scheme was run on a computer for a large choice of values of h and initial 
perturbations aj, j = 0, l,..., d - 1, while keeping A = 1. This represents no restriction 
of the generality since, with h and 6 varying, 1 can be scaled out by a chage in the 
units for U. Hundreds of experiments were conducted and only a small represen- 
tative selection can be reported here. Three alternative techniques were used to 
generate the vector of perturbations u. They will be discussed successively. 

(i) Localized Perturbations 

Here aj = 0 except for j = 0, l,..., r with r a small integer. Examples include 

(A) a,=a,=a,=.s>O; aj=O ifj>2. 
(B) aj=s>O, if O<j<8; aj=O ifj>8. 
(C) aO=a2=s>0, a1= -.s; aj=O ifj>2. 
(D) a,=a,=s>O, a*= -E; aj=O ifj>2. 
(E) a,=.s>O, ai=O, a*= -E; aj=O ifj>2. 
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TABLE I 

Localized Perturbations 

u ll~ll m 114 2 
Location of 

overflow 

Butterfly 0.1 0.0142 29 
A 0.1 0.0174 172 
B 0.1 0.0302 264 
C 0.1 0.0174 27 
D 0.1 0.0174 27 

The initial configuration (E) is an eiegnvector with zero eigenvalue and behaved in 
a stable manner. The initial perturbations (A)-(D) lead to machine overflow. (The 
computer employed can represent number up to 10499. Since the L, norm of the 
solution was computed at each step and this involves squaring the entries, overflow 
means that a value of UJ’ was found which exceeded the square root of 10499.) The 

TIYE - O.MO' 

b 
TIME - .253 

FIG. 2. Evolution of a localized (D) initial perturbation. 
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TIME = 0.000 

a 

b 

FIG. 3. Evolution of a localized (B) initial perturbation. 

Table I provides the value of n for which the overflow took place when E = 0.1, 
h = l/99; the corresponding butterfly run has also been included for comparison. In 
all the runs, regardless of the initial choice of G, we observed that, in the time-steps 
preceding the blow up, U” was very close to a butterfly configuration. This is 
illustrated in Fig. 2, which corresponds to the initial perturbation (D) with E = 0.1, 
h = $. The plot (a) depicts the initial condition (n = 0), while (b) corresponds to 

TABLE II 

Random Perturbations 

(F IId 03 IMl* 
Location of 

overflow 

Butterfly 0.1 0.0142 29 
Seed 444 0.2444 0.1372 60 
Seed 4500 0.2488 0.1331 55 
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FIG. 4. Evolution of a random initial perturbation. 

n = 25, when lJU”l~2 2: 10 ‘O” Figure 3 refers to the perturbation (B), with E = 0.1, . 
h = $, n = 0, n = 260, I(U26011 N 1031. 

(ii) Random Perturbations 

Now oj, j = 0, l,..., d - 1, were formed by d consecutive calls to the random num- 
ber generator of the computer, starting with an arbitrarily chosen “seed.” The num- 
bers returned by the random number subroutine have a uniform distribution in 
[ - 1, l] and are subsequently scaled to an interval C-q, ~1. For h = &, 25 seeds 
were tried with different choices of the scaling parameter q. We found that the 
occurrence or otherwise of a blow-up before a given time was dependent on q but 
fairly independent of the choice of seed. Table II corresponds to q = 0.25 and two 
different seeds. 

Again it was observed that the initial perturbation invariably evolved into a but- 
terfly configuration. In Fig. 4, q = 0.05. The random aspect at n = 0 has given rise to 
a butterfly configuration by n = 55, lJU5511 z 1018. 
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FIG. 5. Evolution of a single frequency initial perturbation. 

(iii) Systematic Perturbations 

These corresponds to initial perturbations with a single frequency 

Oj = A sin ~TT/JX~ + B cos ~IT/AX~. 

In Fig. 5 we have followed the evolution of the case A = B = 0.04, with initial Lz 
norm 0.05656 and overflow at n = 50. (Compare this value with n = 29 for the but- 
terfly configuration with the much smaller norm 0.0142.) The plot (b) corresponds 
to n = 47 with I(U4711 N 107*. The choice of frequency p is not crucial. Table III has 
also h = & and six different frequencies. The attraction towards a butterfly con- 
figuration was detected in all the experiments in this group. 

Experiments were also satisfactorily conducted which tested the h3/* threshold 
behaviour and our estimates of the blow-up time. The interested reader is once 
more directed to the thesis [15]. 
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TABLE III 

One Frequency Perturbation 
Location of Overflow 

P A=B=l A=l,B=O A=O,B=l 

8 12 13 13 
25 11 12 12 
33 12 12 12 
44 12 14 13 
60 11 12 12 
12 11 12 12 

6. CONCLUDING REMARKS 

For a leap-frog discretization of U, + UU, = 0, a particular initial perturbation, the 
butterfly configuration, has been constructed which quickly leads to machine over- 
flow. The blow-up time has been estimated. Due to the incompressible character of 
leap-frog schemes, these particular perturbations must attract neighbouring 
solutions. In fact, it has been shown experimentally that butterfly configurations 
attract any other solution generically (i.e., except for some trivial counterexamples). 

In general nonlinear discretizations, it is by no means true that the fastest 
growing solution attracks the remaining solutions. One of our purposes in this 
paper has been to show that that is, however, the case for leap-frog schemes, due to 
the incompressibility-conservation of volume property. While in the present article 
we have chosen the scheme (3.4) as a case study, it is clear that the underlying 
mechanism is present in all leap-frog schemes. Our choice of (3.4) as test dis- 
cretization was not of course dictated by its practical value (which is very small: 
bad stability properties and lack of convergence in the presence of shocks) but 
rather by its amenability to the analysis. 

In [ 151 other values of the parameter 0 which governs the space discretization of 
(3.la) have been considered, 0 < 8 < 1. For all of these, including 8 = f for which the 
semidiscrete scheme conserves the L2 norm, the basic phenomenon studied in this 
paper was found to apply, namely, as t increases, generic solutions are attracted 
towards well-identified patterns in Fourier space associated with violent growths. 
The shape of the power spectrum of the attractor and the blow-up time depend on 
8, as one may expect. Not surprisingly the blow-up time is largest for 8 = +. It was 
not always possible to describe analytically the attracting pattern and this 
precluded an investigation of the energy growth similar to that given here for 8 = 1. 
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