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Summary. We address the question of convergence of fully discrete Runge- 
Kutta  approximations. We prove that, under certain conditions, the order 
in time of the fully discrete scheme equals the conventional order of the 
Runge-Kutta formula being used. However, these conditions, which are 
necessary for the result to hold, are not natural. As a result, in many 
problems the order in time will be strictly smaller than the conventional 
one, a phenomenon called order reduction. This phenomenon is extensively 
discussed, both analytically and numerically. As distinct from earlier contri- 
butions we here treat explicit Runge-Kutta schemes. Although our results 
are valid for both parabolic and hyperbolic problems, the examples we 
present are therefore taken from the hyperbolic field, as it is in this area 
that explicit discretizations are most appealing. 

Subject Classifications: AMS(MOS): 65X02, 65M10, 65M20; CR: G1.7. 

1. Introduction 

In many cases of practical interest evolutionary problems in partial differential 
equations (PDEs) are solved numerically by schemes which can be derived and 
implemented along the ideas of the well-known method of lines (MOL) ap- 
proach. In this technique the numerical treatment of the PDE problem is 
thought of as consisting of two parts, viz. the discretization in space and the 
integration in time. In the space discretization the PDE is converted into a 
time continuous system of ordinary differential equations (ODEs) by finite 
difference or finite element techniques. This ODE system is then integrated in 
time by one of the many available integration schemes, e.g., a Runge-Kutta 
(RK) or a linear multistep scheme. To mention an example, which we discuss 
later in this paper, the classical 4-th order, 4 stage, explicit RK formula is some- 
times used to integrate in time hyperbolic problems arising in fluid dynamics 
[8, 14]. 

In this paper we address the question of convergence of fully discrete R K  
approximations to the PDE solution. We prove, that under certain conditions, 
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the order in time of the fully discrete scheme equals the conventional order of 
the R K  formula being used. However, these conditions, which are necessary for 
the result to hold, are not natural. As a result, in many problems the order in 
time will be strictly smaller than the conventional one, a phenomenon called 
order reduction. 

In the M O L  literature the phenomenon of order reduction has got very 
little attention. In fact, we are only aware of a few papers on this topic. The 
contributions [1] and [12] deal with implicit RK schemes. When applied to 
stiff systems of ODEs,  not necessarily semi-discrete PDEs, these schemes also 
suffer from reduction of the order. This is the central issue of the B-con- 
vergence theory developed in [5]. In fact, the M O L  paper [12] heavily relies 
on results from the B-convergence theory, whereas [1] is completely inde- 
pendent of it and concentrates on discretizations of ODEs in Banach space. As 
distinct from these contributions we here treat explicit RK schemes. Although 
our results are valid for both parabolic and hyperbolic problems, the examples 
we present are therefore taken from the hyperbolic field, as it is in this area 
that explicit discretizations are most appealing. 

The contents of the paper is as follows. In Sect. 2 we collect preliminaries 
on the (linear) PDE problem, the space discretization, and the RK method. In 
Sect. 3 we examine the full local error. Here we present a detailed discussion of 
the order reduction phenomenon and explain that it will be present unless 
certain boundary conditions are fulfilled. It is emphasized, however, that these 
conditions are not natural to the problem but arise as constraints by the use of 
the Runge-Kutta  method. Sect. 4 deals with the behaviour of the full global 
error. Following [1, 2, 12], we here discuss a special technique for transferring 
estimates of the local errors to the global one. This technique shows that the 
decrease in global order, although present, is not as marked as the standard 
convergence analysis would predict. Section 5 is devoted to a numerical illus- 
tration which nicely supports the theory. Then, in Sect. 6, we present a simple 
means for avoiding the reduction by transforming the given problem. Sect. 7 
contains some final remarks and concludes the paper. 

2. Prel iminaries  

2.1. Partial Differential Problem 

We consider linear problems of the form 

ut=A~u+f~(t), xe•, O<t<T<oo,  (2.1 a) 

Aru=fr( t  ) , xr O<_t<_T, (2.1 b) 

u(x, 0) given, xeO, (2.1 c) 

where ~2 is a spatial domain in R,  ~ 2  or ~.3, with boundary F and Aa denotes 
a linear, q-th order differential operator in ~ which differentiates the (possibly 
vector valued) unknown function u with respect to the spatial variables. The 
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linear differential operator A r possesses order < q - 1 ,  acts on the boundary F 
and serves to introduce the boundary conditions (2.1b). Note that the in- 
homogeneous terms fo, f r  and the coefficients of Aa, A r may depend on x. 
This dependence is not however reflected in the notation. 

2.2. Space Discretization 

The discretization in space of the problem (2.1), by means of finite-elements or 
finite-differences, results in a Cauchy problem 

(Jh=Ah Uh+fh(t), O<t<_T, Uh(0 ) given. (2.2) 

Here h is the parameter  of a grid in f2wF and U h= Uh(t ) is an m-dimensional 
real vector consisting of approximations to u at grid points. The time-inde- 
pendent matrix A, originates from Aa, A r and the vector fh(t) arises from the 
inhomogeneous terms of (2.1). 

In what follows, we are interested in the behaviour of (2.2) as h--*0. A 
crucial consideration is that, as the grid is refined, both the dimension m of 
(2.2) and the size of the entries of A h will grow (these entries contain negative 
powers of the grid-spacing). As a result the problem (2.2) becomes increasingly 
stiffer for h ~ 0 .  We assume that, for h - , 0 ,  the entries of A h grow like h -q, with 
q the order in space of (2.1). 

We denote by Uh(t ) the restriction of u(x, t) to the spatial grid (or other 
suitable representation of u in that grid [10]) and by ah(t) the space truncation 
error defined by 

~h(t) = A h Uh(t) + fh(t)  -- (th(t). (2.3) 

We assume that (2.2) is consistent with (2.1) in the sense that, as h--,0, 
max Nah(t)l[ ~ 0 .  Throughout this paper, [[-[L denotes a chosen norm for m- 

O_<t_<T 
dimensional vectors and the corresponding operator norm for m x m matrices. 
The space truncation error will enter the analysis in Sect. 3. 

2.3. The Runge-Kutta Scheme 

In order to numerically advance in time the solution of (2.2), we employ an 
explicit Runge-Kutta method. For our purpose it is convenient to describe 
this O D E  method as it applies to a linear system of ODEs of the form 

= Mw + g(t), (2.4) 

with M a constant matrix. If w" denotes the approximation to w(nr) generated 
by the method with stepsize ~, the step w " ~  w "+ 1 is performed by first comput- 
ing recursively intermediate approximations I71, II2 . . . . .  Y~ through 

i - 1  

Y/=w"+z ~ aij[MY~+g(t,+cjr)], (2.5) 
j = l  
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and then setting 

w "+1 =w"+z  ~ bi[mYi+g(t ,+clz)] .  (2.6) 
/ = 1  

Here a/j, b i, c/, i =  1 . . . . .  s, j =  1 . . . .  , i - 1 ,  are coefficients associated with the 
particular RK method being used and s is the number  of  stages. We denote by 

i - - 1  

p the (classical) order of the method  and assume that b /=  1, ~ a/j=cj, j 
i=1 j=l  

= 1 . . . .  , s. We also set as+ 1, j =  b j, j =  1, ..., s and cs+ 1 = 1. The local accuracy of 
(2.5)-(2.6) will now be investigated in a manner  related to that  c o m m o n  in the 
B-convergence theory [5, 4] and slightly different f rom that based on Butcher 
trees. 

We first consider a perturbed step w" ~ w "+ 1 

i - - 1  

Yi -~vn d-'c Z aij[-MYJ-+-g(tn'k-cjz)] +ri, (2.7) 
j = l  

# , + I  = # " + T  ~, bi[M~+g( t ,+cjz )J+rs+ 1, (2.8) 
i = 1  

where the residuals r/, i = 1 ,  . . . , s + l ,  measure to what  extent the perturbed 
values #"+ 1, w", ~ fail to satisfy the equations (2.5)-(2.6). If we now subtract  
(2.5)-(2.6) from (2.7)-(2.8), we obtain a set of relations satisfied by the differ- 
ences # " - w " ,  ~ " + 1 - w " + 1 ,  Y/ / -~,  i =  1 . . . . .  s. A straightforward recursive elim- 
ination of the intermediate differences ~ -Y~,  i = 1 . . . .  , s, leads to an expression 
for # " + 1  w,+ 1 in terms of the residuals, i.e., 

s + 1  

#,+ 1 _w,+ l = P ( z M ) ( # " - w " ) +  ~ Qi(zM) rl, (2.9) 
i = 1  

where P, QI, i = 1 ,  . . . , s + l ,  are polynomials.  The degree of P is < s  and Q / h a s  
degree < s +  1 - i .  The coefficients of  P, Qi can readily be expressed as functions 
of the coefficients aij, b/, ci of the method, but those expressions play no role 
here. Note  that  P is the usual stability polynomial.  

We next consider the part icular  case of  (2.7), (2.8) given by 

~n+ l=W(tn+ 1) , #n = W(tn) , Yi=w(tn+ciz), i = 1 ,  ..., s, 

i.e., all the values are taken from the theoretical solution w(t). In this case, and 
assuming that w is smooth,  we can write, for i =  1, . . . ,  s ,  s + 1. 

r i 

where again, 
expression is 

i - 1  

=w(t,+ciz)--w(t ,)-- 'c  ~ ai j[-Mw(t .+cjz)+g(t .+cjz)]  
jffil 
i - - 1  

= w ( t , + c i z ) - w ( t , ) - z  ~ aijw(t,+c~z) 
j=l 

= diE z2 #(t,) +. . .  + dip z p w~P~(t.) + Ri, (2. I0) 

d/j are scalar functions of  the coefficients of the method, whose 
not needed here. Note  that r l = 0  , since c1=0 .  In (2.10) the 
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remainder R i is O(z p+ 1) and the constant in the O(z p+ 1) term depends only on 
the RK method and on w tp+l). Substitution of (2.10) in (2.9) leads to the error 
relation, where we have taken into account that r l - -0 ,  

W ( t . +  1) - -  wn+ 1 = P(z  M)  [w(t,) - w"] 
s + l  p s + l  

+ ~ Qi(zM) y'  d i j zJwm(t . )+ ~ Q i ( z M ) R  i. (2.11) 
i = 2  j = 2  i = 2  

In the case where w . = w ( t . )  the difference w ( t . + O - w  "+1 is by definition the 
local error l "+~. We have assumed the method to be of order p, so that 1 "+~ 
=O(zp+ 1). Therefore in the right hand-side of (2.11) all terms involving powers 
z k, k =<p, must cancel and this leaves us finally with an expression 

s + l  

l,+ x = ~ YU zl+j Mt W(J)(t.) + E Qi(zM) Ri, (2.12) 
l,] i = 2  

where, once more, /hi  are scalar functions of the coefficients of the RK method 
and the indices l, j satisfy 1 < l < s - 1, 2 < j < p, p +  1 < l + j. 

Example 2.1. We shall illustrate the foregoing derivation for the classical 4- 
stage, 4-th order scheme with the parameters 

C 1 all 0 

I/2 
= I/2 

c 4 441 a 4 4  1 

b 1 . . . b  4 

0 

1/2 0 

0 1/2 0 

0 0 1 

t/6 1/3 1/3 1/6 

(2.13) 

The stability polynomial P arising first in equation (2.9) is the (4, 0)-Pad6 
approximation to e ~, 

P(z) = 1 + z + 1/2 z 2 + 1/6 z 3 + 1/24 z 2 (2.14) 

and the polynomials Q1, ..., Q5 arising in (2.9) are given by 

, l Ql(z)=g z+g + 1  z~ ' z 

1 (2.15) 1 1 O3(z)=~ z+gz 2, O,(z)=gz, Os(z)=l. 

The expansions of the residuals r i introduced in (2.10) are (rl  0 0 00j 
r 3 = - 1 / 8  - 2 / 4 8  - 3 / 3 8 4 I  ~ z3w'3) ( t " )}+I  R3 

R4 \~4 w~,~(t.)! \ r 4 0 2/48 8 / 3 8 4 ]  

r 5 0 0 ~R 

(2.16) 
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The local error l "§ given by (2.12) is found to be 

1.+1 ( 1 M w t 4 , + - I  MZw<3) 1 ) = ~ 288 + ~  M3 w~2~ z5 

M w ~ ~+57-6 r6 

1 5 
M 3 w (4) z 7 + 46-~ + ~" Qi (zM)gi '  (2.17) 

i=2  

where all derivatives are evaluated at t= t , .  The form of (2.17) will be used 
later in the paper. [] 

3. Behaviour of  the Full  Local  Error 

In this section we examine the behaviour of the full local error, i.e., the local 
error associated with the true PDE solution u h instead of the local error 
associated with the intermediate ODE solution U h (cf. 1-13]). The subsequent 
analysis is carried out under the following hypotheses. 

(H1) The restriction uh( t  ) of the PDE solution possesses p + l  derivatives 
u~i)(t). Furthermore, IlUChJ)(t)ll, j = 0 ,  1 . . . . .  p + l ,  can be bounded uniformly in t 
and h. 

(H2) The space and time grid refinements are carried out subject to a 
restriction 

z <  2h q, (3.1) 

where 2 is a fixed positive constant and q the order in space of (2.1). 

(H3) For grid refinements satisfying (3.1), the expression TIfAhll can be 
bounded independently of z and h. (The bounds can nevertheless depend on 2.) 

The local error (at t,+ 1) of the fully discrete solution as an approximation 
to the PDE solution is defined by 

I~ + 1 = Uh(t n + 1)  - -  ~ U h ( t n ) ,  (3.2) 

where ~luh(t,) represents the result of a RK step for the system (2.2) starting 
from Uh(t,). Our task in this section is to derive bounds for 11/~ +~ II of the form 

c(zk"~'G m a x  I[~h(t)ll ), (3.3) 
O < t < T  

where C denotes a constant independent of t,, z and h and k is a positive 
number. We will see that in order that the bound (3.3) be uniform in h, the 
exponent k must sometimes be taken smaller than p + 1, the value one naively 
expects from the behaviour of the R K  method as applied to ODEs. 

In order to derive an expression for 17, +1, we consider in (2.7)-(2.8) the 
perturbed step k"+ 1 = uh(tn+ l ) ,  ~ n  = uh(tn) ' ~j  = Uh(t n q_ Cj'E), j = 1 . . . . .  S. The re- 
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siduals r i now take the form (cf. (2.3), (2.10)) 

i--1 

r i = u h (t. + c i z) -- u h (t.) - z ~ alj [A h Uh (t. + Cj Z) +fh (t. + Cj Z)] 
j = 1  

i - 1  

= u h (t. + c i z) - u h (t.) -- "c ~ aij [l~l h (t. + cj z) + a h (t. + cj z)] 
j=l  

= di2 z 2 iih(t.) + . . .  + dip z p UthPl(t.) + Ri,  (3.4) 

where di~ are the coefficients found in (2.10) and R i contains not only the 
remainder  in the Tay lo r  expansion of U~hJ)(t. + Cff), but also the te rm r ~ air cth(t . 
+cjz) .  F r o m  these considerat ions and the hypothesis  (H1) it is clear that  the 
norms IIRill satisfy a bound  of the form (3.3) with k = p +  1. On proceeding now 
in a manne r  similar to that  in the previous section, we find 

s + l  

l~, +1 = ~, Ihj zt+J Ath U~hi'(t.) + ~, Qi(zAh) Ri,  (3.5) 
l , j  i=2 

where the summat ion  l , j  extends to 1 <_l<_s-1,  2<=j<=p, p + l < = l + j .  We now 
proceed to bound  l~ +x 

Lemma 3.1. Under the hypotheses above the norms IIQi(zAh)tl, i =  1 . . . .  , s +  1, can 
be bounded independently  o f  z, h. 

Proo f  This follows directly f rom (H3), since [I~JA~I[ = IITahllL []  

After this lemma,  it is clear that  the second term in the right hand side of 
(3.5) can be bounded  in the form (3.3) with k = p +  1. In  est imating the first sum 
at least two different settings may  be considered. 

(S1) If the further assumpt ion  is made  that  the norms  IIA~hU~)(t,)ll are 
bounded uniformly in t, and h, then tll~+lll is bounded  by (3.3) with k = p +  1. 

($2) If no relation is assumed between the powers  of  A h and the derivatives 
of Uh(t), then to bound  a t e rm like zl+JA~u<h i) uniformly in h, one must  write 

Ilqt§ = ~J ll(rah)lu~J~ll <zJllrahll  ~ Ilu~J)II 

and employ  (H 1) and (H 3). The  price to be paid  is that  now the order  in z is j 
rather  than  p + 1, and in general the local error  (3.5) contains terms with j = 2. 
(See in (2.17) the t e rm (1/96) z S A 3 u [  2) that  one gets for the classical R K  4 
scheme). In this way only an O(z 2) bound  is obtained,  regardless of the value of 
the classical order  p. No te  that  this order reduction is not induced by lack o f  
smoothness in u(x , t ) ,  but ra ther  by the presence of powers  of A n in the 
expression for the local error, as these powers  will contain negative powers  of 
h. 

In the above  it was tacitly assumed that  for the l and j considered the 
coefficient p~j of  "rl+jAl ''(j) "~h"h in (3.5) is not equal to zero. Trivially, i f / h i = 0 ,  this 
term does not cause reduction. In the s tandard  schemes of order  p with p 
stages (p=2(1)4)  the coefficient /~p-1,2 associated with the te rm with highest 
order reduct ion cannot  be zero. Schemes can be constructed with zero /h~ 
coefficients. However ,  only at the price of in t roducing addi t ional  stages for a 
given order  p. 
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Between the extreme settings (S1)-($2) one can conceive situations ($3) 
where one knows that I IA~ u~J~ll �9 h ~ =O(1) for a certain 7 < q l. Then (H2) shows 
that ][z z § j A t u~ll behaves like O(z j +t- r/q), which is a more favourable estimate 
than the 0 (~) stemming from (S 2). 

The following example should be helpful in illustrating the relevance of 
distinguishing the three situations (S1)-($3). 

Example 3.1. We consider the simple model hyperbolic problem 

u,= - u x + f ~ ( x ,  t), 0 < x <  1, 0 < t < l ,  (3.6a) 

u(O, t )=fr( t  ), 0 < t <  1, (3.6b) 

u(x,O)=uo(X ), 0<x_<l ,  (3.6c) 

which is assumed to possess a smooth solution. (This requirement implies not 
only that u 0, fo and f r  are smooth, but also that they satisfy certain com- 
patibility conditions whose expressions are of no consequence here.) If m is a 
positive integer, a uniform grid xj=j/m(O<j<=m) is introduced in [0, 1], and 
(3.6) is discretized in space as follows (h=m -1) 

ILT1] L 1 / h - 1 / h  ] [  J + [  f~(x3, t ) (3.7) 

[ - 1 / h  U, - fo(x , ,  t ) + h - l f r ( t )  - 
l / h -  1/h fa(x2, t) 

'r,. 1/h - 1/h U m f~(1, t) 

We work with the usual L2-norm. When the matrix A h acts on a vector v h 
obtained by restricting to the grid a smooth function v(x), 0<x_<l ,  the 
2 nd 3 ra .... m th entries in A h v h approximate values of vx and therefore can be 
bounded independently of h. However the first entry in A hv h will behave like 
h -1 leading to a h-1/2 behaviour of ][A h vhl[, unless v satisfies the homogeneous 
boundary condition v(0)=0. It follows that the term zP+lAhU ~p) is O(zP+l), 
uniformly in h, if u~ p~ is 0 at the boundary, a condition which is of course 
satisfied if the boundary term fr(t) is identically zero, but not in general. To 
sum up, i f f r = 0  then the term zP+aAhu~ p) that features in (3.5) if s=2,  behaves 
like O(z p+I) uniformly in h, but in other case it may behave only like O(z p+1/2) 
(use the arguments in situation ($3) above, with q= 1 and ~ = 1/2). 

In a similar vein Agv  h is bounded if v(0)=0 and v~(0)=0. If in (3 .6) f r=0  
and fo(O,t)=O, then both u and u~ will be zero at the boundary and as a 
consequence the same will be true for all their derivatives with respect to t. In 
this case the terms "rj+lA2'flJ) ~*h'h ' j = p - - l , p ,  which feature in (3.5) if s > 2  are 
O(z J+2) uniformly in h and consequently O(z p§ 1). 

However, in general, IIA~vhll behaves like h -a/2 and this results in a 
reduction to O(z p- 1/2) in the term z p+ 1 a2,,tp-1) and a reduction to O(z p+ 1/2) ~ h  ~h 

in zp+2A2u~ p). The general trend should now be clear: for a method with s 
stages the optimal exponent k = p + l  in (3.3) cannot be obtained unless the 
theoretical solution u(x, t) satisfies s -  1 boundary requirements 

u(O, t)=O, ux(O , t)=O . . . . .  (Os-2/OX s-2) u(O, t)=O 
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that  render  it possible for AthU~hJ)(l<l<s--1, 2 < j < p ,  p + l < l + j )  to remain  
bounded  uniformly in h. These s - 1  boundary  requirements  for u will be 
satisfied if and only if fo ,  f r  do not  violate a set of s - 1  constraints  f r = 0 ,  
fr~(0, t ) = 0  . . . . .  (~?~-3fi?xS-3)fa(O, t )=0 .  We emphasize  tha t  such constraints  are 
induced by the numerical  me thod  and are not related to the compat ibi l i ty  
condit ions that  f r ,  f~, Uo must  satisfy in order  that  u be smooth.  Perhaps it is 
useful to point  out that  for homogeneous  p rob lems  (homogeneous  boundary  
condit ions and no forcing term), the above constraints  are trivially satisfied 
and no order  reduct ion occurs. 

4. Behaviour of the Full Global Error 

We now turn to the full global error defined by 

e~, = uh( t , ) -  U" (4.1) 

where U" denotes the fully discrete solution at t ime t,. For  simplicity we 
assume e ~ = 0 our  aim is to derive bounds  of the form 

]le~ +111 < C(zk+ max H~h(t)[[), (4.2) 
O<i<T 

with C a constant  independent  of t,,  z, h, and k a positive number  that  we 
would like to be p in view of the order  of the R K  method  when applied to an 
ODE.  Our  first result is 

Theorem 4.1. Assume that (H1) - (H3)  hold, that []Zlhu~J)(t,)]] can be bounded 
uniformly in h and t,, for 2 < j < p .  l = p + l - j ,  and that for each h and z, 
[IP(~Ah)It < 1. Then the convergence estimate (4.2) holds with an optimal value k 
~ p .  

Proof For  l < l < s - 1 ,  2 < j < p, p + l < l + j we can write 

ii.cl+Jh~u~J)ll <TP +~ it~Zhll/+J-p -1 liar+ X-Ju~i)ll =O(Tp+~), 

so that  the local error  in (3.5) possesses a bound  (3.3) with k = p + l .  This 
bound and the stability assumpt ion  IIP(vAh)]I < 1 lead, in the s tandard  way, to 
(4.2) with k = p .  [ ]  

Some remarks  are in order:  First, we have required assumpt ions  on 
IIAZhu~J)l I. We saw in the previous section that  these requirements  are not 
natural ly  fulfilled in the applications,  except if the P D E  prob lem is homo-  
geneous. Secondly, the stability condit ion IIP(vAh)[I < 1 is satisfied if the no rm 
under  considerat ion derives f rom an inner product ,  the matr ices  A h a r e  normal  
and 2 in (3.1) has been chosen so that  the eigenvalues of "cA h lie in the stability 
region S of the R K  me thod  S = {z: IP(z)[ < 1} [9]. Fo r  n o n n o r m a l  matrices this 
condit ion on the eigenvalues is necessary but  not  sufficient. An interesting 
sufficient condi t ion involving the stability region S has been given by Spijker, 
[11], Th. 6.1. 
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In the general case where llalhu(hJ)ll are not bounded the analysis in the 
previous section only guarantees a z2-bound for the local error, leading via 
stability to an exponent k = 1 in (4.2). A finer study of the local error, along the 
lines of what we called ($3) may result in rk+t-bounds for the local error, with 
2 < k +  1 < p  + 1 and lead to rk-estimates of the global error. 

An important point we want to make now is that the standard approach of 
transferring the local errors to the global error via stability (first bounding and 
then adding) can be unduly pessimistic [12]. An alternative technique, essen- 
tially used in [1, 2, 12] will now be presented. We consider one of the terms 
#ljzt+JAt u(h j), 1 <--I<s--1, 2 < j < p ,  p + l  < l + j ,  that may suffer from reduction. 
This term contributes to the global error e~, by an amount  

a'h = ktti rl+ j ~ p(~Ah).-i A~ u(hi)(ti_ 1). (4.3) 
i = l  

Assume that the matrix ( I - -P(vAh)) -  ~ zA h can be defined and satisfies a bound 

II(I-- P(vAh)) - ~ ~Ahll <= ~ ,  (4.4) 

with off independent of ~, h. (The feasibility of this condition is discussed later.) 
Then in (4.3) we can write 

a~, =/~lj ~t+i- ,  [(i _ p(zAh) ) -  , ~Ah] (I -- P(~Ah) ) ~ P(~Ah)"-I A~ - 1 u(hJ)(ti_ t) 
i = 1  

= Ptj zl+S-1 [(I - P(zAa)) -1 ~Ah]" [A~ -1 u(J)(tn- 1 )  - -  P(zAh)" A~ -1 u(hJ)(to) 

n - 1  

+ 2 P(zAh)n-iAlh-'(u(J)(tl - 1)--u(J)(ti))] " 
i ~ l  -l 

The following result now follows easily: 

Theorem 4.2. Assume that (H1)-(H3) and (4.4) hold and that as h,~ vary 
[[P(rAh)[t<l. Then the contribution to the global error of  a term t~ljA~ul j), 
1 <-l<_s- 1, 2 < j < p ,  p+  1 <=l+j, possesses a bound of  the form 

Cr  t+j-  1(max [[A~ - 1  U(hJ+ 1)1] + m a x  rlA~ -1 u~J)lp ). (4.5) 
t ,h  t ,h  

Proof  It is enough to write 

" 1)(s)ds <='c ! A~-'U~h J+ maxllA~-'u~J+l) []  fI Ath- ~ (u~J) ( t i-  x)-u(h~)(t,))ll = ,, ,. h �9 

The advantage of the new approach is that we have got rid of one power of 
Ah, i.e., we are now dealing with A~- ~ instead of the A~ we started with. In the 
worst case, where j = 2  and no relation is assumed between A~ -1 and the 
derivatives of Uh, the bound (4.5) is O(~2), as shown by (H3). Recall that in the 
standard approach we only proved an O(r) bound for the global error in the 
worst setting ($2) (cf. Th. 4.1). 



Convergence and Order Reduction of Runge-Kutta Schemes 415 

Before we close this section the feasibility of (4.4) should be discussed. The 
rational function c ~ ( z ) = ( 1 - P ( z ) ) - l z  is finite if P ( z ) + l .  Now, by consistency, 
P ( z ) = l + z + O ( z 2 ) ,  so that for z=0 ,  P ( z )= l .  But nevertheless qS(0) is finite. 
Therefore, ( I - -P(ZAh))-~ZAh exists if zA h has no nonzero eigenvalue on the 
boundary of the stability region, a requirement only marginally more demand- 
ing than the spectral necessary stability condition mentioned above. Further- 
more, slight modifications of sufficient stability conditions guanrantee the ex- 
istence of a uniform bound (4.4). Two instances are given in the next proposi- 
tion. 

Proposition 4.1. Each of  the following two conditions is sufficient for  (4.4) to 
hold: 

(i) The norm I[" [1 is an inner product norm, the matrices A n are normal and as 
z ,h  vary the eigenvalues of  tAn remain in a closed set F contained in {0}w(S 
-OS) ,  where ~S is the boundary of  S. 

(ii) The norm I]'FI is an inner product norm and a positive number p exists 
such that the disk {z: [ z + p l < p }  is contained in {O}w(S- (?S)  and, as z ,h  vary, 

IPZAh+PlU <=p. 

Proof  (i) The rational function d p ( z ) = ( l - P ( z ) ) - l z  is bounded in F. If 
14(z)l__<~ in F, then 

]l (I - P(z  Ah) ) -  1 Z Ahl [ = max {~b(p): peSpec (zAh) } =< ~ ,  

where we have used the spectral theorem and the fact that 4)(ZAh) is normal. 
(ii) This follows from a theorem due to yon Neumann [7] (cf. [2, 6, 

113). [] 

5. Numerical Illustration 

Example 5.1. A simple experiment will be presented first which clearly shows 
the order reduction phenomenon. We consider the simple semidiscretization of 
Example 3.1 together with the classical fourth order RK-scheme (2.13). The 
mesh-ratio parameter  2 is taken to be 1, a choice that guarantees that 
IlP(zAh)]] <1 and that (4.4) holds. (Use Th. 6.1 in [11] and Proposition 4.1, (ii)). 
Furthermore, we take Uo(X ) = 1 +x ,  f r ( t )=  1/(1 +t),  f ~ ( t ) = ( t - x ) / ( 1  +t)  2 so as to 
have the simple solution u = ( l + x ) / ( l + t ) .  Since this is linear in space, eh ------- 0, 
i.e., there is no error introduced by the space discretization. 

The time derivatives of u are not zero at the boundary;  and then the 
analysis in Example 3.1 shows that the term zs(1/96)A~ u[ 2) behaves only like 
z 2"5 uniformly in h, leading to a decrease in local order of 2.5 units. The other 
terms of the local error involve higher powers of z or lower powers of A h and 
therefore suffer from reductions which harm less than that of the ~5 ~3,,~2~ Zah ~h 
term. The conventional bound for the global error would show a O(r 1'5) 
behaviour of the global error, uniformly in h. However, the use of Theorem 4.2, 
reveals that the global error possesses a better, O(z25), bound. Moreover the 
exponent 2.5 cannot be increased because at t 1 the local and global errors 
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coincide and we know that  the local  is not  bet ter  than  0(22"5). Table  1 shows 
the U - e r r o r s  at  t = 1. 

Table 1 

z-1 h-1 

10 20 40 80 

10 0.3110 - 4  
20 0.1210 - 5  0.491o - 5 
40 0.62io- 7 0.201o- 6 0.831o - 6  
80 0.351o - 8 0.101o - 7 0.341o - 7  0.141o- 6 

F r o m  the table  we c o m p u t e d  the observed  order  of convergence obta ined.  
The  no ta t ion  (1/10, 1/10)2.66(1/20, 1/20) denotes  that  an o rde r  of  2.66 was 
observed  when refining the gr id  f rom z = 1/10, h = 1/10 to z = 1/20, h = 1/20, i.e., 
2.66=1og10 ~/ loglo 2, where ~ denotes  the ra t io  of the er ror  at (1/10.1/10) to the 
error  at (1/20, 1/20). The  rows of Table  2 d i sp lay  the observed  o rde r  in the 
simultaneous ref inement  of z and  h, where the  effect of the reduct ion  is clearly 
seen. 

Table 2 

(1/10, 1/10) 2.66 (1/20, 1/20) 2.56 (l/40, 1/40) 
(1/20, 1/10) 2.58 (1/40, 1/20) 2.55 (1/80, 1/40) 
(1/40, 1/10) 2.63 (1/80, 1/20) 

2.56 (1/80, 1/80) 

The  rows of Table  3 p rov ide  the order  observed  when in Table  1, the 
a t ten t ion  is focused in successively having z with h fixed a long the row. 

Table 3 

(1/10, 1/10) 4.69 (1/20, 1/10) 4.27 (1/40, 1/10) 
(1/20, 1/20) 4.61 (1/40, 1/20) 4.32 (1/80, 1/20) 
(1/40, 1/40) 4.60 (1/80, 1/40) 

4.14 (1/80, 1/10) 

Thus,  on a fixed spat ia l  gr id there is no order reduction visible. Of  course,  
this is the behav iour  one should  expect  as one is now solving a f i x e d  system of 
ODEs.  Wi th  our  four th  o rde r  method ,  the o rde r  a sympto t i ca l ly  behaves  l ike 
Cz  4 on each fixed grid. The issue at  hand  is that  C depends  on the choice of 
mesh and increases with decreas ing h. This is very clear ly borne  out  in the last  
row of Tab le  1. 

6. Avoiding Order Reduction 

In this sect ion we suggest a s imple  means  for avo id ing  the o rde r  reduct ion.  
Al though  the pr inc ip le  is qui te  general ,  we prefer  to descr ibe  it in the context  
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of a concrete situation. We consider again the model  p rob lem (3.6) and the 
classical R K  method,  but now the simple discretization (3.7) is replaced by the 
4-th order  scheme 

(1/6) [~)j_ 1 + 4~)j+ t)j+ 1] =(l/(2h))[Uj-1 - Uj+ 1] 

+(1/6)[ fo(xj_l , t )+4fa(xj ,  t)+f~(xj+l,t)] , j = l ( 1 ) m - 1 ,  (6.1) 

with 

(1/6)[/3,,_ 1 + 2 U,,] =(l/(2h))[U m_ 1 -  tim] +(1/6)[f~(xm_l, t)+2f~(x,,, t)] (6.2) 

near  the boundary  x = l .  No te  that  (6.1)-(6.2) is the result of the Product  
Approx ima t ion  Galerkin  technique based on piecewise linear test functions 
[3]. 

F r o m  an analysis similar to that  presented before an order  reduction is to 
be feared, unless fe ,  f r  satisfy the two constraints  f r - 0 ,  fe(0, t ) - O  necessary 
for Ah, A~ to act  boundedly  on the t ime derivatives of  u h. Now if w(x, t) is a 
known function, then v = u + w satisfies the t ransformed p rob lem 

v,= -Vx+g~(x,  t), v(O, t)=gr(t), (6.3) 
where 

g~=fo+w,+wx ,  gr=fr+w(O, ") (6.4) 

are known functions. The idea is to choose w such the appl icat ion of the 
numerical  me thod  to the p rob lem (6.3) does not  cause reduct ion (i.e., g r = 0 ,  
go(0, t )=0) ,  and then solve numerical ly  for v and retrieve u f rom u = v - w .  The 
finding of w is not difficult here. One  may  for instance choose w(x, t) to be of  
the form w(x, t)=~(t)+xfl(t) and then the condit ions on g ~ , g r  readily de- 
termine e(t) and fl(t). 

The left half  of Table  4 gives the LZ-errors for u when the integrat ion is 
per formed on (3.6) with fa, fr ,  Uo chosen so that  the solution is u(x,t) 
=cos (10 t )  e x p ( - 1 0 x ) .  The  right half  of the table corresponds  to errors in u 
when the numerical  integrat ion is per formed on the t ransformed p rob lem (6.3). 
The results are in complete  agreement  with the theory. 

Table 4 

z =h Error order Error order 

1/10 0.461o - 2  0,491o - 2 
1/20 0.521o-3 3.14 0.211o-4 3.88 
1/40 0.761o-4 2.77 0.211o-4 3.88 
1/80 0.131o-4 2.54 0.141o-5 3.91 

7. Concluding Rem arks  

The at tent ion here has been restricted to linear problems.  Order  reduct ion also 
takes place for nonl inear  p rob lems  and the mechan i sm involved there is 
essentially the one we have discussed. The extensions of the analysis to the 
nonl inear  case is possible but becomes ra ther  technical and offers no new 
insight. 
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F o r  impl i c i t  R K  schemes  the  m a i n  ideas  of  o u r  analys is  a re  still val id.  
H o w e v e r ,  t he  in te res t  there  is in s i tua t ions  where  ~ and  h are  no t  re la ted  a n d  

the re fo re  o u r  hypo thes i s  (H2)  and  (H3)  s h o u l d  be forsaken.  The  deta i ls  of  the  
analysis  b e c o m e  t h e n  qu i te  di f ferent  [1, 12]. T h e  t e c h n i q u e  for a v o i d i n g  the  

o r d e r  r e d u c t i o n  o u t l i n e d  in Sect.  6, can  also be  used  wi th  impl ic i t  schemes.  In  
fact we h a v e  e m p l o y e d  it w i th  success  to r e t r i eve  the  3rd and  4 th  o rde r  of  

c o n v e r g e n c e  of  the d i a g o n a l l y  impl ic i t  R K  schemes  d i scussed  in [12].  

I t  is fair to say tha t  in p rac t i ca l  p r o b l e m s  the  n e g a t i v e  effects caused  by 
o rde r  r e d u c t i o n  are  l ike ly  to be  less i m p o r t a n t  t h a n  t hose  s t e m m i n g  f r o m  o t h e r  

sources ,  such  as e r ro rs  in space ,  ins tabi l i t ies  at b o u n d a r i e s ,  cu rved  bounda r i e s ,  
etc. H o w e v e r ,  the  u n d e r s t a n d i n g  of  this p h e n o m e n o n  is essent ia l  in s i tua t ions  
whe re  one  is i n t e re s t ed  in h ighe r  o r d e r  me thods .  
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