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1. INTRODUCTION

Consider an evolutionary differential equatiern (ordinary or partial)

u' = A(u), where a prime represents differentiztion with respect to the time

t. In the ODE case, and for each fixed t, u(t) is a d-dimensional vector

and A a vector valued function of u. In the PDE case, for each fixed t, u{t)

is a scalar or vector valued function of the 'space variables' X, y, ... and

A an operator involving differentiation w.r. to the space variabies.
Numerical methods gensrate approximations Un to the true value u(tn),

tn = nk, which depend on the time-step parame;er k. Usually the first

stage in the analysis of & numerical methoé consists of the investigation of

¢}

(L]
O

its convergence: does Un t to u{t ) as k tends tc C, n tends to =, nk = ¢

n n

constant? I+ is in this analysis that the concepts of Lax-stability,

I

Dahlguist-stability, etc... are of the outmost importance (see [11] for a
survey).
Ahssume that the convergence of a nurmerica: method has been established; it

is still possible that for & given chcice of ¥, or even for any such a choice,

the qualitative behzviour of the numerical sezuence UO’ Ul’ erey Ur’ ... be
4

completely different from thzt of the theoretical seguence u(to), u(tl), eeos
u(tn), o This discrepznzy which refers tc n tending to «, k fixed cannot
be ruled out by the convergence requirenent, as this involves a different
limit process-(namely Kk ternding to 0J.

In linear, constant cosfficient problems it is often possible to derive

ciosed expressions for Ur' ~nese can be used to derive ‘stability’
3

conditions on k (or on k anc the space grid-sizes in the PDE case) which
guarantee that Un pessesses the right qualitztive behaviour as n increases.

N In nonlinear problems it is customary to linearize the discrete equations,
freeze the resulting coefficients and then derznd that k satisfies all the
'stability' conditions of the resulting linear, constant coefficiert problems.
It has been known for a long time that this arproach may fail: in 1959,
Prillips [10] showed an exazmpL€ where Un grew with n in spite of the fact

that no growth was predicted {fror the linearizations. This behaviour is’




often referred to as nonlinear instability.

The fact that analyses based on linearization cannot accurately predict
the qualitative behaviour of Un for fixed k should not be surprising: there

is a host of nonlinear phenomena (chaos, bifurcations, limit cycles cee)

which cannot possibly be mimicked by a linear model.

The nonlinear instability phenomenon may be considered from a number of
different pointsof view. A thorough survey of the literature is out of o;f
scope here, but at least the following ideas should be briefly mentioned: (i)
The role of spatial discretizations which conserve positive definite
quantities in order to prevent blow ups (Arakawa fip. (ii) The 1link
between such discretizations and Galerkin methods (see the survey [8] by
Morton). (iii) The study of time integrators which behave dissipatively in
dissipative nonlinear situations {contractivity, B-statility, Dahlquist,
Butcher, Spijker; see the recent book by Dekker ané Verwer [5]). (iv)Fourier
analysis; role of aliasing errors. (v) The important and widely quoted
paper by Fornberg [6]. (vi) The connection with stzbility ideas in fluid
mechznics investigated by Newell and his co-worrers [4].

Recently there has bzen a growing interest in studying the fixed k
behaviour from the point of view of the theory of dynamical systems[2]}, [7],
[14]. In this paper we try tc convey to numerical anzlysts the {lavour of

the powerful dynamic arproach. To this end an examrple will be presented

whichk illustrates several important features. Trhe trestrment of this simple
case (the pendulum equation with central differences) is based on our
earlier articles [12], [13], [16] anc on the thesis (18 The reader is
referred to these references for applications to PLis and for several

exter.sions of the results discussed here.

2. THE PENDULUM EQUATION

We consider the well-known ODE system
u' = -sin v, v' = u, (2.1)

describing the evolution in time of the angle v and angular velocity u of a
mathematical pendulum. The phase-plane of (2.1) is displayed in many
textbooks. It consists of (i) the stable equilibria v = Zmr, u =/O,

m integer (the pendulur remains at its lowest position), (ii) the unstable
equilibria v = (2m+l)s, u = 0, m integer (the pendulum stays at its hig?est»_

position), (iii) libration orbits (the pendulum oscillates around a stable




equilibriur), (iv) rotation orbits (v increases or decreases

monotonically) and (v) separatrices between the libration and rotation orbits.

We also recall that in any libration domain of the (u,v)-plane (i.e. near

(84

a stoble eguilibrium) it is possible to change the dependent variables from

(u,v) into the so-called action/angle variables (I,¢) [3, chap. 10} . (The

abstract angle ¢ is not to be confused with the physical angle v.) Among -
the properties of (I,¢) we need the following three: (i) u = ul{l,g), ‘ '

v = v(I,¢) are 2=-periodic with respect to ¢, i.e. ¢ behaves like a genuine

angle. (ii) I takes the value O at the stable equilibrium and increases
away from it. (iii) In the new variables (2.1) tares the simple form
I' =0, ¢' = w(I), (2.2)

where © is 2 knownfunction of I. It is possible to give explicit, closed
expressions of the transforrmation I(u,v), ¢(u,v) ané of the function (1) in
terms of elliptic integrals, but they are not required here.

The main advantage of the new variables is that now (2.2) is readily

integrated to yield
1(t) = 1(0), o{t) = w(I(0N)t + ¢(0). (2.3)

In particular it is clear that I(u,v) = constant provides the equations of
the orbits ir. the (u,v) variables.

If at is a given, fixed time increment, it is convenient to introduce the
pt-flow of (2.1)/{2.2). By definition this is the mapping which sends the
) = (ulat), vl

,V
: -0
the initial

generic point (uo,vo) of the prase plane into the pcint (u
where (u(t),vit)) is the solution of (2.1) wnrich setisfies
conditions ui{C} = U v(0) = Vo It follows trivially from (2.3) that in

action/angle variables, the t-flow is given by the transformation (Io,¢o) -

(_1_0.30). with

= = ; t. .
-0 Io' L2 A “(Io) & (2.4)

wnen (1,¢) are interpretec as the radius and the angle respectively in &
system of polar coordinates, (2.4) is easily described: each point rotates
around the origin by an angle w(Io)Lt which depends on the radius Io. In
other words, tne flow leaves jpvariant each circle with centre at £he origin.
Within a circle the transforration is a rotation,but the overall effect is
not that of 2 rigid rotation, as the angle being rczated veries with the

particular circle. Transformztions of this kind are called twist mappings!2].




It is useful to realize that if w(Io) At/2 is a rational number p/q, then.

q applications of the twist (2.4) send the point back to its initial
position after having completed p revolutions around the origin. On the
otﬁer hand, irrational values imply that the corresponding points never
return to their initial positions in the repeated iteration of the twist. In
fact in this case the iterates fill densely the corresponding invariant

circle and even possess a property of ergodicity: the number of iterants

on any arc of the circle is proportional to the size of the arc [3].

3. LEAP FROG DISCRETIZATIONS

The system (2.1) is discretized by reans of the leap frog (explicit midpoint:

technique to yield, n = 1,2,

|U 1 = U 1” 2k sin V_,

n+ n- n (5.1}

Vn+1 = vn-l* 2k Un'

Equivalently, (5.1) can be rewritten in the form

U2n = U2n—2— 2k sin v2n-l' (5.2

V2n = v2n—2+ 2k U2n—1’ (5.2b;
- - in V Y

U2n+l = U2n-1 2k sin \2n' (5.2¢3

v2n+l = v2n—1+ 2k Uzn’ {5.25,

n=1,2, ... , where we have simply displayed two consecutive steps of (5.1)
(unrolled the loop in computer science jargon). Now (£.2) presents two
rerzrkable features:

(i) Formulae (5.2a)/(5.2d), which compute U a* an even numbered grid point<
and V at an odd nurbered grid poinz, are uncoupled fror formulae (5.2b)¥{(5.2c5
which compute ©dd numbered Us and even numbered Vs. we refer to (5.2a)/(5.22!
as the even/odd iteration and to (5.2b)}/(5.2c) as the odd’/even iteration.
This splitting is a result of the sirmple structure of (2.1) and would not
carry over to more complex systems.

(ii) If U V., are regarded as approximations to p(2nk},

7
2n’ \Zn+l' U2n+1' 2n
s(2nk), r(2nk), q{2nk) respectively, where p, s, r, g are functions of t

'

which satisfy

p' = -sin s, (5.3

q' =r, | I P



rl

-sin q, _ (5.3c)

s' P, (5.34)

then (5.2) provides a consistent discretization of the system (5.3). The
fact that leap frog peoints originating from a d-dimensional system (d = 2 in
(2.1)) can also be regarded as consistent approximations of a 2d-dimensional
system (given here by (5.3)) is universal and plays a major role in
understanding leap frog discretizations. See [12) for a thorough discussion.

The system (5.3) also splits: (5.3a)/(5.3d) are not coupled to (5.3b¥(5.34.
The situation is then as follows. The values U2n’ V2n+1 originating from
the even/odd iteration approximate the velocity p and position s of the
pendulum (5.3a)/(5.3d), which we call the even/odd pendulum. The values
U2n+1' V2n of the odd/even iteration approximate the velocity r and positién
g of a different pendulum (5.3b)/(5.3¢), the odd/even pendulum. We emphasize
that there is no coupling between both pendulums.

A final property of the leap frog rerursion is given next.

(iii) The transformations Teo: (U2n—2'v2n—l) - (U2n,V2n*1), Toe: (UZn-l'

v ) preserve the areaz in the {u,v)-plane, i.e.whenever

on-2) 7 Wons1'Vas
D is a plane domain, D, Toe(D), Teo(D) pcssess the same area. As in (ii),

this is a general property of leap frog diecretizations [12].

4. LINEARIZATIONS

Linearization of the eguations of the ever/odd iteration near the equilibriuz

U=V =0 results in a recursion

= - ] =V
. U2n UZn-2 2k \Zn-l’ V2n+1 \Zn-l+ 2k Ugn'

whose solutions can be written in cleseé form in terms of the corresponding
eigenvalues/vectors. It can be shown tnat if kK > 1 then the solutions
grow with n. For Kk < 1 the successive U, V values remain on an ellipse of
eccentricity (2k/(1+k))% and major axis along the bisectrix of the first
quadrant. Note that as k tends to O the orbits tend to be circles in the
(u,v)-plane, thus mimicking 2 property of the linearized pendulum system
u' =-v, v' = u. On the other hand values of k just below 1 will fesﬁlt in
very elongated ellipses.

For the linearization of the odd’/even iterastion the same results hold,

except that now the major axis is directed along the bisectrix of the second



and fourth quadrants.

5. THE TWIST THEOREM

We lLi.ve just seen that, provided that k <1, the linearized theory predicts
that the even/odd points will remain on an ellipse in the (u,v)-plane. The
numerical experiments in the next section show that the real behaviour 1s far
more complicated. A rigorous Egﬂliﬂiif analysis will now be presented. N
Recall that the even/odé transformation Teo is an area preserving mapping
which approximates consistently, i.e. up to O(kz), the 2k-flow of the even/
odd pendulum. This flow is in turn a twist mapping when written in action/
angle variables. The behaviour of area preserving perturbations of twist
mappings is well understood. The main result is the so-called twist

theorem due to Mcser, see e.g. [9, p.51).
THEOREM. Assume that in (2.4) m(IO) is any smooth function withnonvanishing
derivative and defined for O < a < Io < b. Let ¢ denote a positive number.

Ther, there exists &, depending on w, a b andé ¢ but not on st such that

any smooth area preserving mapping

= = I 8.
Io=10 e ) e =6, glive), a1 <b, (5.1)

where [, g are 2r-periodic in ¢ that is close to (2.4) in the sense that
IT(I_se ) - I 1+ jg(I ,¢ ) - (I )} st} < & st, (5.2)

possesses an invariant curve contained in a < Io < b with parametric

equations
= = ) .3
I c + z(g), ¢ g+ y(gl, (5.3}

where ¢ is a constant and z and y are smooth Zr-periodic functions of g anc
satisfy Jz] + |y| < €. (Here |.| denotes & suitable norm, see [9].)
Furthermore, on the invariant curve (£.3) the transiormation (5.1) is simply
given by £ + E+a , where o/2r is 'very irrational' (agein see [2] for a
precise definition). in fact each value o in the range of w(Io) at, with

o/2% very irrational originates such an invariant curve.

In our context t = 2k, {(2.4) is the 2k-flow of the even/odd pendulum
and (5.1) the transformation T_ . The condition (5.2) is satisfiéd for k
small enough because, by consistency, the right hand-side is O(P ). The
theorem predicts that, for k small (how srall depends on the distance to the
equilibrium), T,, Possesses invariant curves which are close to t?é"§%§it§—0f



the pendulum system. On these invariants curves the transformation just. 3
acts as a rotation of irrational angle. There are also initial data which
do not lie on an inveriant curve. For these, the behaviour of the succesive
points U2n' V2n_1, n=1,2, ... is very involved. In any case, for ksmall
those points must be surrounded by an invariant curve and therefore cannot

scape away from the eguilibrium U =V = O, thus rigorously guaranteeing o
stability. | T
It is not necessary to mention that the results above also hold for the

odd/even iteration.
The multidimensional analogue of the Moser twist mapping is given by the
KAM (Kolmogorov-Arnold—Moser) theorem, For applications of this theorem to

the analysis of numerical methods sece [16].

6. NUMERICAL EXPERIMENTS

The leap frog iteration (5.1) was implemented on a computer with Uo = 0, VO
a parameter and Ul’ V1 taren from the application of Euler's rule. Some
results will now be discussed.

in figure 1, k = .1 and each plotted point has coordinates U2n+]' v2n' S0
that the odd/even iteration is displayed. There are three initial
conditions and for each 2,500 points were cormputed. For Vo =1, 2 we find
that the points place themselves on curves similar to the true pendulum
orbits. We are thus facing the invariant curves predictec by the twist

theorem. However for Vo = 3.14 it is quite clear that the ﬁoints do not 1lie

.
3

on a curve, but rather fill a region of finite width. Note that all three
plots are elicngated along the second and fourtn quadrants as predicted by ths
linearized analysis of section 4. (A similar remark applies in subsequent
experiments.)

In figure 2, k has been increased up to .€25, while still displaying the -
odd/even iteration. There are two invariant curves corresponding to V0 =
1, 1.5. The value Vo = 2, which lead before to an invariant cﬁfVe,
originates now a remarkable phenomenon. The orbit consists of six suborbits
so that after six iterations the computed point returns to its original
suborbit. Thus, if only every sixth iterant were plotted or in’q;her words
the power Tie were considered rather than Toe' then only one suborbit would
be seen. In fact the suborbits are twist theorem invariant curves of Tg

e
around a fixed point of Tie (or equivalently a 6-periodic point of Toe)‘”"
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Figure 1. k= .1, VO =1., 2., 3.14.

Figure 2. k = .625, Voz 1., 1.5 (libration-like orbits), 2. (six

suborbits), 2.1 (scattered points with eventual escape).
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Figure 3. k= .3, Vo = 3.1. Spuricus switch from libration to
rotation near saddles.
Such a periodic point of Toe cannot give rise to a twist invariant curve of
Toe’ since these curves only originate from peints which rotate by a very
irrational angle and, of course a 6-periodic point rotates by 2p /6 radians.
Also displaeyed in figure 2 is the initial condition V_ = 2.1. At first, -
to VO = 2., bhut

Mm O

the points are scattered outside the islands correszondin
eventually they escape from the plotied area. This behaviour is now possitls
because for the large value of k being usec, the point VO = 2.1, UO =0 is
not surrounded by any invariant curve.

Another instance of escape is given in figure 3, where k= .3 and Vo = 3.1.

There are 4,000 computed points. These first describe the expected libratioz

orbit around V = O, but later they switch to a rotation orbit and still later

they settle in a libration orbit around V = 14 . Thne switches occur near ths
unstable equilibria (saddles) V =¥, V = 13x. Ushiki [14] has anazlyzed in
detail this sort of behaviour and the reader is réferred to his paper for
further details. We just point out that such switches near saddles take

place in an essentially un predictable way and that they are net caused by
round off errors. e e
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Figure 4. k = .9, Vo = 1. One numerical run mimics two pendulurs.

Top: odd/even points. Centre: even/odd points. Bottoz:

even/even pcints on a Lissajous-like curve. L




The final experiment, in figure 4, has k= .9, near the maximum allowéd—5§~.
the linear condition, and Vo = 1. We first display the odd/even iteration
which shows a familiar libration orbit with the elongation predicted by the
linear theory. The even/odd iteration showed next is more interesting.
(Note the change in scale of the plot.) Here we find a escape to a rotation

orbit. When 2370 points have been represented, the orbit approaches a - -

saddle, where it switches to a rotation in the opposite direptiho
Comparison of the even/odd and odd/even pecints clearly illuétrates that
the leap frog points describe the motion of Iwo uncoupled pendulums (5.3).
There is no reasonable way of accounting for the behaviour of (Un,Vn) when
these are regarded, as they would normally be, as approximations to (u(tn),
v(tn)), with u, v satisfying the single pendulum system (2.1). This is so
even if we separate the behaviour of the odd (U2n+1’v2n+1) and even (U2n'v2n)
points, a separation which has been suggested as a means for understanding
the behaviour of leap frog schemes. The bottom part of figure 4 represents
the even points (U2n'v2n)' It is obvious that the dynamics displayed is
unaccountable in terms of the pendulurm system (2.1). Perhaps it is not
without interest to point out that the plot has the appearance cf a }i§§§ig3§
curve. This is no surprise if we think once more of two pendulums with

different frequencies.

7. CONCLUSIONS
In general, the investigation of the convergence of a numerical method
provides little or no information on the gualitative behaviour cf the sequence

U Ul' ceey Un’ . It is 2 (methodologically unfortunate) coincidence that

i: some simple, linear cases the sarme relations that must be imposed to
achieve convergence guafantee the right qualitative behaviour. An instance
is given by the familiar explicit scheme for the heat eguation: the condition
r < % gives convergence and at the same time rules out the growth in time of
the solution on a given gridand ensures the validity of the discrete maximux
principle. (A more detailed discussion of this point has been provided by
J.M. Sanz-Sernz in a set of unpublished notes, available on request.)

In nonlinear situations the behaviour of UO' Ul' ...,Un,f.. ' y?en n is
large, may be extraordinarily involved, as illustrated by the example
considered in this paper. There is no hope of fully accounting for the

phenomena involved by means of analyses based on linearization.




GEIREE

¥

Fortunately, for a given, finite length of time O <t < T, the use.of_M”

high accuracy methods, together with small mesh-sizes guarantees that Un is
close to u(tn), thus ruling out pathological behaviours. 0f course, a
largzr value of T will reguire smaller mesh-sizes.

We feel that case studies like the one presented in this paper together

with
will

the concept of stability in nonlinear situations, a definition, in our

estimates of the time needed for the pathologies to show up (see [16]) ~~

play an essential role in the construction of a (Lax-like) definition of

opinion, missing at the moment. Steps in that direction have been taken

within our research group anc will be reported elsewhere.
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