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In a previous paper, we showed that several standard definitions of stability of
nonlinear discretizations are so strong that they classify as unstable a number of
useful discretizations. Then a weaker definition was introduced which, however,
was powerful enough to imply, together with consistency, the existence and
convergence of the discrete solutions. In this paper we prove that, for smooth
discretizations, stability in the new sense is equivalent to stability of its
linearization around the theoretical solution. This fact does not imply that
schemes with stable linearizations are automatically useful, due to the appearance
of so-called stability thresholds. The abstract ideas introduced are applied to a
concrete finite-element example, with a view to assessing the advantages of the
new approach.

1. Introduction

Tuis is the third and final paper in a series devoted to discussing the basic
concepts of stability and convergence in numerical analysis. The paper is,
however, essentially self-contained. Part I (Sanz-Serna 1985) surveyed the linear
case and Part II (Lopez-Marcos & Sanz-Serna 1985) reviewed a number of
stability definitions intended to operate in nonlinear situations. Our study of the
existing definitions led to the introduction of a new stability concept. The aim of
the present paper is twofold. First we show that for smooth nonlinear discretiza-
tions, stability in the new sense is equivalent to the stability of the (linear)
discretization obtained by linearization around the theoretical solution. As
discussed later, this neat theoretical result by no means implies that nonlinear
schemes with stable linearizations are automatically useful. This is due to the
presence of the so-called stability thresholds (cf. Part II). Secondly we apply our
abstract results to the study of a finite-element method: the so-called product
approximation technique (Christie ef al. 1981). In this respect our motivation
stems from two sources: (i) We wanted to show that nonlinear Galerkin
techniques can be advantageously cast in the simple general framework con-
sidered in this series of papers. (ii) We wanted to draw some attention to the fact
that, even though (in convergence proofs) the Galerkin literature almost
invariably bypasses the notions of stability, it is still possible to introduce a
concept of stability in such a way that convergence follows from stability and
consistency, and that stability ensures insensitivity to round-off errors and other
perturbations.
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The organization of the article is as follows. The second section presents the
basic notations and definitions. The main results are stated in the third and fourth
sections and proved in the fifth. The latter section also discusses the relation
between our results and other available theories. Section 6 contains the
application to the product approximation technique, and Section 7 is devoted to
conclusions.

2. Preliminaries

2.1 Consistency, Stability, and Convergence

We begin by presenting, rather tersely, the definitions of consistency, stability,
and convergence required later. These concepts have been discussed at length in
Parts I and II and the reader is referred to these previous papers for a more
critical and detailed treatment.

We consider a fixed given problem concerning a (not necessarily linear)
differential or integral equation. Let u denote a solution of this problem.
(Well-behaved nonlinear problems may of course possess more than one
solution.) We denote by U, a numerical approximation to u. The subscript &
reflects that U, depends on a (small) parameter # such as a mesh-size, element
diameter, etc. We always assume that s takes values in a set H of positive
numbers with inf H = 0. The approximation U, is reached by solving a discretized
problem

®,(Uy) =0, @.1)

where, for each 4 in H, the mapping @, is fixed with domain D, c X, and taking
values in Y,,. Here X, and Y, are vector spaces, either both real or both complex,
with

dim X, =dim Y, <, (2.2)

As h ranges in H, the family of discrete problems (2.1) is referred to as a
discretization.

We further assume that, for each & in H, we have chosen a norm ||¢||x, in X}, a
norm ||*||y, in Y,, and an element u, in the interior of D, which is a suitable
‘discrete’ representation of u in X,. The notions of stability, consistency, and
convergence of the discretization (2.1) depend on the specific choices of norms
and u,,. For simplicity, the subscripts will often be omitted in the notation of the
norm, and norms in different spaces will be denoted by ||¢]|.

If U, is a solution of (2.1), then the element e, = u;, — U, € X,, is, by definition,
the global error in U,. We say that the discretization (2.1) is convergent if there
exists ko> 0 such that, for each & in H with & <h,, (2.1) possesses a solution U,
and

lim flu, — Uy | = lim fles]| = 0.

If, furthermore, ||e,|| = O(h”) as h— 0, then the convergence is said to be of
order p.
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The local (discretization) error in u, is defined to be the element [, =
@, (u,) € Y,,. The discretization (2.1) is said to be consistent (resp. consistent of
order p) if, as h— 0, we have ||l,||— 0 (resp. ||l4|| = O(h?)).

For simplicity in the presentation, we assume in this paper that no rounding
errors are present, even though they are one of the main motivations behind the
notion of stability (see Part II, remark 2.8).

The following definition was motivated and introduced in Part II of the present
series of articles and extends an earlier definition due to H. B. Keller (1975).

DEeriNITION 2.1  Suppose that, for each 4 in H, the value R, lies in the range
(0, ]. The discretization (2.1) is said to be stable, restricted to the thresholds R,,
if there exist positive constants s, and S (the stability constant) such that, for 4 in
H with h < h,, the open ball B(u,, R,) is contained in the domain D,, and such
that, for any V), and W, in that ball,

Vi = Wall < S | Pn(Vi) — Pu(W)Il - (2.3)

Keller’s definition is recovered if the thresholds R, are independent of A. In the
sequel, ‘a discretization is stable’ always means that it is stable in the sense of the
Definition 2.1 for a suitable choice of thresholds R,. Examples of the use of the
new stability concept in practical settings were given in Part II.

The following result, also given in Part II, is crucial and uses a deep lemma due
to Stetter (1973).

THEOREM 2.1 Assume that (2.1) is consistent and stable with thresholds R,,. If @,
is continuous in B(u,, R,) and ||I,|| = 0(R,), as h— 0, then:
(i) For h small enough, the discrete equations (2.1) possess a solution in
B(uy, R).
(ii) That solution is unique in the ball.
(iii)) As h— 0, the solutions converge. The order of convergence is not smaller
than the order of consistency.

In practice, the thresholds are often of the form R, = Rh™, where R and m are
independent of h, with R >0 and m = 0. Then the condition ||/, || = o(R,,) reduces
to m <p, with p the order of consistency. (It is still possible to prove convergence
if m =p, see Part II.)

2.2 Semistability

It is technically advisable to introduce the notion of semistability, even though,
as we will show later, this concept possesses little or no practical significance.

DerINiTION 2.2 Suppose that, for each 4 in H, the value R, lies in (0, «]. Then
the discretization (2.1) is said to be semistable, restricted to the thresholds R,,, if
there exist positive constants /, and S (the semistability constant) such that, for A
in H with h < h,, the ball B(u;, R,) is contained in the domain D, and, for any
W, in that ball,

lun = Will < S || Dp(un) — Pu(W,)]] . (2.4)
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It is evident that semistability is a weaker requirement than stability: in (2.4),
W, can only be compared with the discrete representation u,, of u, while in (2.3) it
may be compared with any element Vj, in B(u,, R,). In fact, the notion of
semistability (together with consistency) is too weak to imply the existence of
discrete solutions Uj, (cf. conclusion (i) in Theorem 2.1). Therefore Theorem 2.1
must be weakened as follows.

THEOREM 2.2 Assume that (2.1) is consistent and semistable with thresholds R,
If, for h small enough, (2.1) possesses a solution U, with ||u, — U,|| <R,, then
these solutions converge as h— 0. The order of convergence is not smaller than the
order of consistency.

The proof of this result is trivial (see the remarks after Definition N1 in Part II)
and its application is not very appealing: the existence of U, and the a priori
bound |lu, — Uy|| <R, must be established before the theorem is applied.

3. Main results

In practice, the mapping @, in (2.1) is smooth, so that the (Fréchet) derivative
(i.e.—roughly—the Jacobian matrix) @,(u,) of @, at u, exists. Furthermore, if
the discretization (2.1) is successful, a solution U, of (2.1), close to u,, exists.
Thus

0= @,(Uy) = Dy(uy) + @4(us)(Uy, — uy)

and one is led to consider the linearized discretizations
En(Up) = () — @p(up)uy, + 94(un) U, =0. (3.1

This new discretization is stable if and only if the following condition holds (cf.
Part II):

ConprtioN (L) There exist positive constants h, and L such that, for 4 in H with
h <h,, the inverse ®;(u,)”" exists and ||P;(u,) || < L.

Our aim is to study the relation between the stability of (2.1) and that of its
linearization (3.1). The main motivation for this sort of research is that the
stability or otherwise of linear discretizations is expected to be more easily
investigated than that of their nonlinear counterparts.

Our first result is the following.

Tueorem 3.1 (Equivalence between nonlinear semistability and linearized
stability.) Assume that, for h in H with h sufficiently small, the mapping ®, in
(2.1) is (Fréchet) differentiable at u,. Then, the two conditions below are
equivalent:

(i) (2.1) is semistable.

(ii) Condition (L) holds, i.e. the linearization (3.1) of (2.1) is stable.

Proof. See Section 5.

From this theorem we conclude that, in practice, the checking of whether
condition (L) holds is insufficient to show the stability of (2.1) and thence allow
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the application of the powerful convergence Theorem 2.1. The next result
presents conditions which, together with (L), lead to the stability of (2.1).

THEOREM 3.2 (A sufficient condition for nonlinear stability.) Assume that, for
each h in H with h sufficiently small, the mapping @, in (2.1) is differentiable at
each point vy, in an open ball B(u,, R,). Suppose that condition (L) holds and that

(C) there exists a constant Q, with 0<Q <1, such that, for h in H with h
sufficiently small, and for each v,, in B(u,, R,), we have

| Pr(vn) = Prlu)ll < Q/L. (3.2)
Then (2.1) is stable with thresholds R, and stability constant L/(1 — Q).
Proof. See Section 5.

Case where @y, is Lipschitz continuous. It is of importance to study in some detail
the case where @, is differentiable in a ball B(i,, R,,) and the differential satisfies
a Lipschitz condition at u,:

| @ (vr) — Ph(un)ll < Cy ||y, — upl|  for vy, € B(uy, Ry). (3.3)

(See Lopez-Marcos (1985) for an analogous treatment of the Hoélder-continuous
case.) Assume that (L) holds and choose S, with § > L. Then, if 4 is sufficiently
small and ||v;, — || < min {R,,, (L™' =S C; '}, we can write

| @h(va) = Phlun)ll < Cu(L™" =S C = [(S — L)/S]/L,

so that (3.2) holds with Q = (S — L)/S. We conclude that, under these hypoth-
eses, (2.1) is stable with stability constant S and thresholds

min {R,, (L' =S~ HC;'}. (3.4)

Therefore, if we can choose, independently of 4, the radius R, of the balls
B(ux, Ry) where @, is differentiable, and the Lipschitz constants Cj,, then (2.1) is
stable with h-independent thresholds, i.e. stable in the sense of Keller (1975) (see
Part II).

ExamrLEs For the Euler method for the scalar ODEu'=f(u), a typical
component of @,(V,) takes the form (V"*' — V")/h — f(V™), so that the nonzero
elements of a typical row of ®;(V,,) are h~' and —h~' —f'(V"). (Here V, is the
vector of components V° V' ...). Therefore, in any discrete L norm,
||®,(Vs)|| grows unboundedly as h— 0. However, when subtracting to form
@,(V,,) — Pi(up,), the unruly terms ™" cancel: the nonzero entries of ®,(V;,) —
D, (uy,) are of the form f'(V") — f'(u"), and (3.3) holds with C, independent of h,
provided that f is smooth. Thus, in the study of Euler’s rule, there is no need for
h-dependent thresholds. The present argument applies to any standard ODE
method: for these methods, there is no need for h-dependent thresholds. In other
words, the notion of stability in the sense of Keller is sufficient to study numerical
methods for ODEs.

The situation with nonlinear PDEs is quite different. Take as an example the
case of a one-step explicit discretization of a scalar evolutionary problem u, = Lu.
We have now to deal with expressions (V**'— V")/h —f,,(V"), where fi,,
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which contains negative powers of Ax, approximates the operator L. These
expressions contribute to @,(V,) — ®@,(u,,) with terms f,, (V") — fo,(#"), which in
general grow as Ax— 0. As a result, C,T» as A is decreased, and the thresholds
in (3.4) will shrink correspondingly.

A further cause for the shrinking of the thresholds in PDE:s is that the radius R,
of the balls B(u,, R,) where @, is defined and differentiable with a Lipschitz
continuous derivative may approach 0 as h—0. For nonlinear cases like
U, = u,, + f(u), the radius R, is likely to be h-independent in the L* norm (i.e.
the discretization is defined and possesses a Lipschitz-continuous derivative in a
uniform tube around the theoretical solution). However, to study convergence,
one often uses weaker norms (the L? norm say) and then, as measured in the
weaker norm, the radius tends to 0 with 4. An example of this situation has been
given in Part II, in the remarks after formula (8.12).

Case of @, continuously differentiable. Note that (3.2) certainly holds if ®;(e) is
continuous at u,. This fact, combined with the Theorem 3.1, yields trivially the
following neat result.

Tueorem 3.3  (Equivalence between linearized and nonlinear stability.) Assume
that, for h in H with h sufficiently small, the mapping ®, is continuously
differentiable at w,. Then the following conditions are equivalent
(1) (2.1) is stable.
(i) (2.1) is semistable.
(ili) Condition (L) holds, i.e. the linearization (3.1) of (2.1) is stable.

In practice, the smoothness requirements of @, are almost invariably satisfied.
The equivalence between (i) and (ii) shows then that, for smooth discretizations,
there is no need to introduce the concept of semistability. The equivalence
between (i) and (iii) implies that, when investigating stability, nonlinear dis-
cretizations may be replaced by their linearizations. However it should be
emphasized that linearized stability implies stability of the nonlinear discretization
restricted to suitable thresholds. The size of these thresholds must be known in
order to apply the main convergence Theorem 2.1. Also, in practical computa-
tions, the thresholds of a linearly stable nonlinear scheme may be so small that,
for all practical purposes, the discretization behaves in an unstable manner; cf.
Richtmyer & Morton (1967: pp. 124-130) and Vadillo & Sanz-Serna (1985).

4. Linearization and convergence

Theorems 3.2 (linearized stability of smooth discretizations implies stability)
and 2.1 (stability and consistency imply convergence) can be combined and,
together, provide a powerful means for the study of nonlinear discretizations.
Essentially, if the discretization is smooth, consistent, and possesses a stable
linearization, then discrete solutions exist and their global error can be bounded
in terms of the local error (namely ||e,|| <S ||/,||), provided that the order of
consistency is high enough to satisfy the condition ||/,|| = o(R,).

In some applications, the bound ||e,|| < ||/;|| may be too pessimistic and it is
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possible for the order of convergence to be actually higher than that of
consistency. This phenomenon was discussed in detail in Part I and its avoidance
is a matter of choosing carefully the norm in Y,, i.e. the norm employed to
measure local errors. If this choice has been appropriate, one often can derive a
bound ||/,|| <K ||ex|| which shows that the order of convergence cannot exceed
that of consistency.

It is possible to use information on @,(u,) in the derivation of bounds of the
form ||/,]| < K ||e||. A result in that direction is given in the next theorem.

THEOREM 4.1 Assume that the hypotheses of the Theorem 3.2 hold. Suppose also
that a constant M exists such that || ®@(u,)|| <M for h small. Then, if v,,w, €
B(u,, R,), we have

| @n(vh) — oWl S M(1+ Q) |lv, — wall - (4.1)
In particular, if U, is a solution of (2.1) with ||U, —u,|| <Ry, then ||l ]| <
M(1+ Q) llel|-

Proof. See Section 5.

5. Proofs and remarks

5.1 Proof of Theorem 3.1

Suppose first that (2.1) is semistable as in the Definition 2.2. If x, is in
B(0, R,), with & sufficiently small, we can define
8 (xn) = Pu(uy, + x1) — Py (un) — Prlun)xs,
so that ||g,(x,)|| = o(||xx]|) as x,—0. Choose 6 > 0. If A is sufficiently small, then
a positive number R} (8)<R, can be found so that ||x,||<R7(8) implies
llgn(en)ll <[8/S(S + 8)] |Ixll. Then
| @h(un)xnll = | Pu(un + x1) — Pr(un) — 8 (xn)l
= || D (un + xn) — Pu(un)ll — llgnCxn)ll
=87 lxall = llgnCea)ll
=87 1= 8/(S+8)] llxull = (S + )" lxall 5
whence it is clear that @,(u,)”" exists and its norm is bounded by S + . Since
this holds for arbitrary positive , one even has [|®;(u,) "Il <.
Assume now that condition (L) holds. As before, if & is small enough and v, is
in Dy, then
| Dy, (vs) — Pr(un)ll = || Pr(un) (U — un) + 8n(Vs — i)l
= || @h(un)(Wn — un)ll = 118n (Vi — un)l
= L7 vy — gl — l1gn (v — wn)ll - (5-1)
Now, given & >0, there exists a constant R;(8) such that, if ||v, — u,|| < Rx(6),

then g,(v, — u,) is defined and has norm less than 6/L(L + 6) ||v, — u||. This
easily leads to semistability with constant L + & and thresholds R;(9).
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5.2 Proof of Theorem 3.2

Take h sufficiently small and fix v, and w, in B(u,, R,). The mapping
t+>A,(t), defined for 0<t<1 by

An(t) = (1 = 0)vy, + tw, — Dy(wy) [ B ((1 = ), + tw,) — By (v)],
is differentiable, with
An(t) = (W = vp) — Pp(wy) " (1 = DYy, + tw, ) (W, — vy,)
= ‘P;,(uh)—l[@;,(uh) - d);,l((]. - t)vh + tWh)](Wh - 'Uh).
Upon using (3.2) and (L), we conclude that
IAKDI <O lIw, — vl (0st<1),
and the mean-value theorem yields then the estimate
144(1) = A, (O < Q [[w, — vall - (5.2)
On the other hand,
144 (1) = An(O)| = |(wh — v) = Ph(un) " [ Pu(wr) — D, (vi)]ll
= ||wi = vl = L || Pu(wn) — Pu(vn)ll - (5.3)
On combining (5.2) and (5.3) the proof is complete.

5.3 Proof of Theorem 4.1
For h small, fix v, in B(u,, R,) and define, for x, in B(u,, R;),
By(xn) = x4 — Pp(up) " [ Pu(xs) — Dp(ui)].

The bound ||B(x,)|| < Q follows easily from the conditions (L) and (C), and then
the mean-value theorem leads to ||B,(v,) — B,(wy)|| <||v, — wy]|| for any w, in
B(u,, R,). Hence, by definition of B, we have

| Phtn) " [Pu (W) — Pu(v)]ll < (1 + Q) llvy — wil|
and (4.1) follows without difficulty.

5.4 Remarks, and Comparison with Alternative Theories

It is useful to note in the proof of Theorem 3.1 that nonlinear semistability with
constant S leads to stability of the linearization with the same constant:
| @;(us) 7| <S. However, linearized stability with constant L only leads to
semistability with constant S =L + 6, where J is arbitrary but positive. The
choice of 6 influences the size of the thresholds. The same conclusion was
reached in (3.4) for the case of Lipschitz-continuous @,(¢).

The proof of the Theorem 3.1 makes it clear why linearized stability implies
semistability rather than stability. For, if &, is differentiable at u,, then the

expression
D (V1) = Pu(Wn) — Pr(un)(vp — wy) (5.4)
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is generally not o(||v, —wyll) as v,,w,—>u,, and therefore the pair (u,, v,) in
(5.1) cannot be replaced by a more general pair (v,, w,). In the case where (5.4)
is in fact o(||lu, —wyl|), one says that ®,(u,) is a strong Fréchet derivative
(Ortega & Rheinbold (1970), p. 71) and linearized stability implies stability.
More details can be seen in Lopez-Marcos (1985: Thm 2.1.13).

The proofs of Theorems 3.2 and 4.1 are similar to but simpler than that of
Theorem (14) in §3 of Vainikko (1976). Vainikko’s result shows that (nonlinear)
consistency and linearized stability, with ||®}(u,)|| bounded, imply (nonlinear)
convergence with an order that equals that of consistency. His result is a
particular case of our Theorems 2.1, 3.2, and 4.1 combined. However it is
important to emphasize that Vainikko does not define the concept of stability in
nonlinear situations. Furthermore it is not difficult to see that Vainikko’s theorem
is only applicable to settings that, in our terminology, originate h-independent
thresholds.

Spijker (1974) has developed a theory of nonlinear discretizations which allows
h-dependent thresholds. Spijker’s Theorem 2 is similar to our Theorem 3.2.
However, his definition of nonlinear stability demands the solvability of the
discrete equations, while, in our treatment, that solvability is a consequence of the
main Theorem 2.1 and need not be proved a priori. Furthermore, Spijker’s
thresholds are what we called in Part II ‘right thresholds’ and therefore suffer
from the drawbacks outlined in Part II, §6, (F). Finally some of the technical
conditions used by Spijker (notably his Condition 1) are rather strong and do not
allow much freedom in the choice of norms.

In the specific field of initial-value problems, a number of nonlinear conver-
gence theorems have been surveyed by Ansorge (1978). The most general result
in Ansorge’s book is due to von Dein, who shows that nonlinear convergence
follows from nonlinear consistency and a suitable form of linearized stability
which allows A-dependent thresholds. Von Dein’s result can be recovered from
our theory without much difficulty; cf. Lopez-Marcos (1985: Ch. 3). It is perhaps
useful to note that von Dein’s proof is unduly complicated due to the fact that the
condition |lu, — U,|| <R, is proved ‘a priori’ by an induction argument, which
may be omitted by invoking our Theorem 2.1, as discussed in Part II, §6, (C).

6. An application

6.1 Theoretical Problem and Numerical Method
We consider the model nonlinear problem
—u"+f(x,u)=0 (O=sx<1), (6.1a)
u(0)=u(1) =0, (6.1b)

where ' =d/dx and f is a real-valued function. Let u denote a weak solution of
(6.1); i.e. assume that u belongs to Hy = H(0, 1) and that for each v in H}

(', v")y + (f(s, u), v) =0. (6.2)
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Here (e, *) denotes the standard inner product in L*=1%0, 1). We only need
the following very weak hypotheses
(H1) There exists a constant 6 such that f and f, are defined and continuous in
the band
Qs ={(x,v):0sx<1, u(x)—d<v=<u(x)+d}

(H2) u is an isolated solution, i.e. if z is in H} and is such that, for any v in Hg,
<Z,) UI) + <fll(.’ u)z’ v> =O)

then z =0.
In order to solve (6.1) numerically, we introduce partitions 7:0=1x,<x; <
- <Xxym=1and set I;=[x;_,x] and h;=x;—x;_; for j=1,..., N(1). We

consider a family of partitions {7, : h € H}, where h = max; h; is the diameter of
the partition 7, and H denotes a subset of (0, 1] with inf H =0. Note that this
family is not assumed to be quasi-uniform. Further, if k is an integer =1, we
denote by M,(h) the space of real continuous functions on [0, 1] which in each
subinterval J; of the partition 7, coincide with a polynomial of degree <k. The
subspace My(h) = M, (h) consists of the functions which satisfy (6.1b). Finally, we
denote by Q, the Lagrange interpolation operator which maps each function g in
C[0,1] into Q,g, the unique element in M,(h) which interpolates g in k +1
uniformly distributed points in each I (Lobatto points can also be employed, see
Sanz-Serna & Abia 1984.) The so-called product approximation technique
approximates u by an element U, € M}(h) such that

<U;n U>+<th(.» Uh)’ U>=O (63)

for each v in M%(h). On the advantages and disadvantages of this alternative to
the standard Galerkin approximation, see Christie et al. (1981), Douglas &
Dupont (1975), Abia & Sanz-Serna (1984), and Fletcher (1983).

Hereafter, we write f(U,) instead of f(, U,), f.(U,) instead of £, (¢, Uy), etc.

6.2 Choice of X,,, Y,, Norms, and u,,. Consistency

We set X, = M(h), with the norm ||v,||; = (v}, v;)2 For the role of Y, we
take the space dual to X, with the dual norm. Let @, : X),— Y}, be the mapping
which associates with v, € X, the linear form @,(v,) defined by

D, (v)e = (Vs ¢') + (Quf(vh), *)- (6.4)

Here a dot represents the element in X, on which &,(v,) acts. With these
notations it is obvious that the equations (6.3), which define the product
approximation U,, take the standard form (2.1).

As representation u, of u in X, we take the Galerkin projection p,u, i.e. the
element characterized by the relation (u' — (p,u)’, w') =0 for w in Xj,.

In order to show the consistency of the discretization, the following lemma is
required

Lemma (i) There exists a constant C, independent of k, such that, for each g in
C[0, 1], the bound ||Qxv||.=< C ||v|| holds.
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(i) If g e C[0, 1], then ||(/ — Q,)g]|l-— 0 as A— 0.
(iii) If v and v, are in C[0, 1] for & in H and |lv, —v|[.—0 as h—0, then
[1Qyvy, — v||.— 0 as h— 0.

Proof. (i) and (ii) are well known from approximation theory. (iii) follows from
(1)—(ii) and the decomposition

Ohvh —U= Qh(vh - U) + (I - Q,,)v.

To study the consistency, we first note that, from (6.3)-(6.4) and the definition
of Galerkin projection, we have the following expression for the local error
Dy(pru) € Y,

Dy(puu)s = ((Put)’, *') + (Quf(Duut), *)
=((pu) —u', ") + (Quf (Pau) — f(u), *)
= (Quf(putt) = f(u), *). (6.5)

Therefore a straightforward application of the Cauchy-Schwartz and Poincaré
inequalities yields

1D (Put) ||y, < 7" | Quf (Pu1t) = f ()] 2. (6.6)

Now, as h— 0, we have p,u— u in H' (due to the approximation properties of
X},), so that, a fortiori, p,u— u in L™. Thus p,u lies, for i small, in the set £
where the hypothesis (H1) holds. This in turn implies that f(p,u)— f(u) in L".
By the lemma, Q,f(p,u)— f(u) in L™ and then (6.6) shows that || D, (p,u)|| =
o(1).

6.3 Stability

With a view to applying Theorem 3.2, we note again that, for 4 small enough,
lu—puul|l; <6 (with 6 as in HI), so that, if v, is in B(p,u, 8), then
|lu — v, |l <28. By Sobolev’s inequality, ||u —v,||.<8 and thus f,(v,) is well-
defined. Clearly @, is then differentiable at v, and the corresponding Fréchet
derivative is the mapping which sends w, € X, into the linear form

Pr(Un)wie = (W, o) + (Qu[fu(vi)wa], *).

An argument very similar to that employed in the consistency proof shows that,
to each u >0, there corresponds 8, < such that, for each h sufficiently small
and each v, in B(p,u, 6,),

| Pr(vn) = Phlun)ll < p.

Thus the condition (C) in Theorem 3.2 is certainly satisfied. It is then enough to
prove linearized stability to conclude nonlinear stability with k-independent
thresholds. In other words, we need only prove that there exist 4, >0 and S >0
such that, for 4 in H with h <h,, and for v, in X,,, we have

lvlly < S | Pr(pru)vall - (6.7)
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If this is not true, then we can choose sequences (h,) in H and (v,) with
lim, h, =0, v,, € X}, |luxlli=1, and

tim (|94, (P, 4}, | =0. 6.8)

For simplicity, we write v, for v, , p, for p,,, etc.
Now Hj can be compactly injected in C[0, 1], so that we can assume that (v,)
converges in C[0, 1] to a function z with z(0) = z(1) = 0. We claim that

—z"+f,(u)z =0, 6.9)

where the derivative z” must be understood in the distributional sense; i.e. we
claim that, if w is C* with (compact) support in (0, 1), then

—(z, w") + (fu(u)z, w) =0. (6.10)

This follows from the observation that the right hand-side of (6.10) can be
rewritten as

(v, = 2, W) + ()2 = Q£ (Put)Va], W) + (QLf(Putt)v,], w — pow)

+ <¢r,1(pnu)vn’ pﬂw>)

a sum where each term can be easily shown to vanish in the limit #— . (The
arguments are similar to those used to prove consistency.)

Equation (6.9) implies that z € C* and a fortiori z € Hy. On invoking the
hypothesis (H2), we conclude that z=0 or equivalently ||v,|l.— 0. This fact,
together with (6.8) and with the identity ‘

1= “vn”% = <¢)r,1(pnv)vn, Un> - <Qn[fu(pnu)vn]’ Un>

lead to the contradiction 1=0. Thus (6.7) must hold, and the discretization is
stable with k-independent thresholds.

It should be pointed out that it is not difficult to show that ||®,(p,u)|| can be
bounded independently of / (see Lopez-Marcos 1985) so that the Theorem 4.1 is
also applicable.

The technique used here to prove linearized stability follows to some extent
ideas of Grigorieff (1973a,b). (Compare also with Part I, Section 4.1.)

6.4 Existence and Convergence of the Product Approximation

A straightforward application of Theorems 2.1, 3.2, and 4.1 shows that, under
the very mild hypotheses (H1) and (H2), there exist positive constants s, R, «,
and S such that, for & in H with k < h,, there exists a product approximation U,
unique in B(p,u, R) and satisfying

a | Pu(pu) | < ||Putt — Uplly < B l| Pu(prta)| , (6.11)

li};ﬂ [lPnte = Upll1 = 0. (6.12)
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Note that (6.12) implies, via the triangle inequality, that U,~ u in H} and, a
fortiori in L. After (6.11), a finer study of the rate of convergence can be carried
out by analysing || @,(p,u)||. In this connection, the bound (6.6) is useful. In fact,
it is not difficult to show (Lopez-Marcos 1985) that, if f e C**!(;) and the
partitions are quasiuniform, then ||Q,f(p,u) — f(u)||.2= O(h**") and therefore

1Pyun — Uplli = O(hkﬂ), lPuter, — Uplle = O(hkﬂ)y
lu — Unll, = O(h*), lu = Unllz= O(h**).

7. Conclusions

In Section 6 we have applied the abstract ideas developed in Sections 2-5 to
the study of the product approximation technique. This technique had been
analyzed previously (Sanz-Serna & Abia, 1984). Actually, we choose the product
approximation method as test application in order to be able to compare the new
approach suggested here with more standard Galerkin analyses like that of
Sanz-Serna & Abia (1984).

It would be unfair to say that the present treatment is much easier than that
given by Sanz-Serna & Abia. However:

(i) The present treatment is systematic: we now possess a list of hypotheses to
work through and know distinctly the role that each hypothesis plays in the
overall picture. In contrast, the analysis in Sanz-Serna & Abia 1984 is highly ad
hoc and definitely demanded a nontrivial amount of ingenuity.

(i) The present treatment operates under much weaker hypotheses than that
of Sanz-Serna and Abia, which among other superfluous requirements necessit-
ated that f and f, were defined and continuous in —® <y < and also needed the
monotonicity assumption f, =m > —n’. The last assumption forces the global
uniqueness of weak solutions and rules out a number of important nonlinearities
f(x, u) which effectively give rise to several isolated solutions. (Our treatment
copes without difficulty with the case of nonunique isolated solutions, due to the
presence of thresholds, see Part 11, §6, (G).)

(iii) The present technique yields not only a convergence proof but also a
stability result. We now know that small round-off errors or small perturbations
in f will not change substantially the numerical solution. The study of stability
properties has been somewhat neglected in the Galerkin-method literature, where
convergence has traditionally been proved directly, rather than through the
‘stability plus consistency’ approach, standard in the finite-difference literature. In
this connection, we feel that the stability notion considered here is appropriate
for the investigation of stability and convergence of most nonlinear discretiza-
tions, both in the finite-element and finite-difference fields. As shown in Part I, a
stronger definition would classify as unstable a number of useful discretizations,
while a weaker concept would probably not be powerful enough to yield
meaningful existence and convergence results. The crucial idea here is that of
stability threshold: for smooth discretizations, nonlinear stability with suitable
thresholds is equivalent to stability of the linearization.
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Finally we would like to point out that the stability of a nonlinear discretization
(2.1) can be investigated not only through the stability of its linearization (3.1)
but also through the stability of other discretizations A,(U,) =0 such that A,

approximates @, near u,. Results in that direction can be seen in Lépez-Marcos
(1985).
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