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; In (1.3) the contribution of the viscous term at time ! is given by Ulx, 1), while in
i (1.1) the value of the right-hand side at time 1 takes into account the whole history
u,lx,s), 0ss=t Thus the memory integrals in (1.1)-(1.2) can be thought of as
representing viscoelastic forces, like those present in non-Newtonian fluids [15). In this
sense, (1.1} affords a simple model equation that combines the Eulerian derivative
u, + uu, with a viscoelastic effect, just as Burgers equation provides a simple model
for the study of more realistic situations involving Eulerian derivatives and viscous
forces. On the other hand, it is obvious that the analysis of the linear equation (1.2)

: is an important step in the study of {1.1).
The problem given by (1.1) along with the boundary conditions
(1.4) u(0, ) =u(l,nN=0, =0

and the initial condition
(1.5) :CrovuzoC&. o=xs1,

has been recently considered by Lightbourne Aw=w_<:nw=5 (7] and by Christic (numeri-
cally) [3). The method implemented by Christie treats the (weakly singular) integral
term by means of the product integration trapezoidal technique (see, €.8. (8, p. 130D).
Furthermore, this author uses linear finite elements in space and employs a Crank-
Nicolson time-stepping. However, the overall procedure does not achieve second ordert
of convergence in time, due to lack of smoothness of the solution at (=0 (see §2.1

below).
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In the present paper we employ a backward Euler method for the advancement
in time of the solutions of both (1.1) and (1.2). We present a detailed analysis of the
suggested method as applied to the linear problem (1.2)-(1.4)-(1.5). For smooth initial
data, compatible with the boundary conditions, our estimates of the L’-global error
establish an O(A¢) bound, uniformly in 0= t <. For (nonsmooth, incompatible) data
ug(x)e L*(0, 1) we derive an O(At) error bound for ¢ outside each layer 0=(=3,
where the layer-width 6 >0 is arbitrary. Our nonsmooth error estimates are therefore
similar to those obtained by Baker, Bramble and Thomée [1] for parabolic problems.

_ The time-stepping technique employed in this paper was first suggested by Lubich
in a very ingenious paper [10}, which treats ordinary, rather than partial, integral
equations. Unfortunately, the convergence result of [10] cannot be directly applied to
the present situation, as it involves classical Lipschitz constants and we have to deal
with the unbounded operator u —> . In other words, we find here a situation very
similar to that encountered in differential equations, where classical error estimates
for ordinary differential equations (ODEs) are of little use in the study of partial
differential equations (see (17, [18), [19] for a detailed discussion of this point and
for references on ODE stifiness-independent error estimates which avoid the use of
classical Lipschitz constants). As a consequence, we have chosen to forgo the technique
used in the convergence proofs of [10]. In its stead, our proofs resortto a representation
of the discretization error as a complex contour integral (cf. [13],[14)).

A rather important peint to be made is that, as discovered by Riemann and
Liouville (see, e.g., [ 16]), the integral operator ['/? which maps each (locally integrable)
function f(t), r>0, into the function

A= (=s)""fls)ds

has the property that
. i
(1.6) @A) =7 | f(s)ds.
it
Thus v I'/? can be considered to be the square root of the indelinite integral
operator. Other fractional powers of the latter operator may also be defined with the
help of appropriate Riemann- Liouville integrals [11], [16]. It is perhaps useful to note
that fractional powers of the operator D =d/dr may also be defined [11], [16] and
that the application of D'? 10 both sides of (1.2) leads to the equation

DYV u=vVm ug.

In other words the equation (1.2) is intermediate between the classical heat Du = du
and wave D*u = clu,, equations (¢ and d constants).

Our presentation is self-contained and does not employ either notation or results
from the theory of fractional calculus or assume familiarity with Lubich’s work.

The paper is organized as follows. The main results are presented in § 3. The final
section contains a number of concluding remarks. Section 2 can be regarded as
preparatory and is devoted to the analytical and numerical study of the linear ordinary
integro-differential initial-value problem

(1.7 va\u AV, AZ0, f(0)given,

where A denotes a given constant, f=/{1), 1= 0. Here A plays the role of a stiffness
parameter (cf. with the equation y'=—Ay). Note that, if A # 0, then A can be scaled
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out by appropriately choosing the units for ¢ In this regard, A17" is a dimensionless

combination.

2. Preliminaries.
2.1. Analytical results. We shall make use of Laplace transforms. If f, g, - - - are
(Laplace transformable) functions defined for 0<t< X, we shall denote by capital

letters F, G, - - - their respective transforms. We begin by noting that, if f and g are
transformable and related by g = 1'/2(f), then the corresponding transforms satisfy

(2.1) Gip)=(m/p)'*F(p).

This follows trivially from the rule for the transform of a convolution, because (7/p)
is the iransform of 1™, From (2.1) we conclude that the iterated application of the
operator I'? corresponds, in the transformed realm, to multiplication by /p. This
proves (1.6} in the case of transformable f, since multiplication by 1/p is the transform
of the integration operator.

We now turn to the study of the problem (1.7). We transform to arrive at

pF(p)—f(0)==A(w/p)/*F(p),

/2

so that
v
2.2 F(p)= 0).
(2.2) (p) v,\m+>,\m>v
The expansion of the right-hand side of (2.2) in a negative integer power series
of vp leads to the conclusion [4, Thm. 29.2] that / can be vritten in the form
F(N=fOMAVT M,

where M denotes the entire function
My =1—(4/ N7 Pzt cH (=) T3 2+ D)

This shows that the solution f(1) of(1.7)is Clin0=s1<x and real analyticin 0 < <0,
but, apart from the trivial case A =0, is not twice differentiable at 1=0".

For our purposes, an integral representation of f will be more usefui than the
previous series representation, namely, Proposition 2.1.

ProvosiTiON 2.1. The solution f(t) of the initial-value problem (1.7) can be repre-
sented as

(2.3) f()=fOR(N-S(], 0=1<®0,
with '
(2.4) R(1)=(2/3) exp [(AY 7' wt]+ complex conjugate,
(23 w=(-1+3)/2,

||wl = _AMI Y dl
(2.6) si=3-] e A

Proof. For A =0 the result is easily checked to be true. In another case, we cut
the complex p-plane along the negative real axis from —~ to 0. The :mammoqz F(p)

in (2.2) is then a single-valued analytic function except at the poles given by Al
and AV r' Y w*, with w asin (2.5). (Astar denotes complex conjugate.) By the inversion

formula

(2.7 == F(p)e™dp, 1z0,
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where the integral is taken along the imaginary axis. We now choose as a new integration
path the contour obtained by juxtaposing the lower part of the cut from =% to 0 and
the upper part of the cut from 0 to —%0. The residue theorem applied to (2.7), followed
by some rearrangements, gives

[ AYTYe
0 ﬁu+>N=.

(2.8) f(t) =residue contribution— f(0)7” e " dp.
A straightforward computation shows that the residue contribution is given by f(0) R{1),
with R(t) as in (2.4). Finally, on setting in (2.8)

p= n:;:ud_:

.we arrive at (2.3). O
It is useful to note that, from (2.3),
(2.9) If(D] S 4/3+1/3) 0= s/3 o), 120,
which shows thecontinuous dependence of the solution on the datum. (A finer analysis
reveals that the bound can be lowered to | /(D] =[SO

Finally, let us examine the qualitative behaviour of f(t} for A>0. Since R(1)=
(4/3) exp T:B:S:S; cos [(V372)AY m'/7 1], the term f(0)R(1}in (2.3) represents
an exponentially damped osciliation. On the other hand, S(f) is clearly a decreasing
function of 1, with S(0)=1/3. As 1>, the asymptotic behaviour of S(1) can easily
be ascertained by standard means. In fact, for ¢ large, the main contribution to the
integral in (2.8) comes from p<« 1. Then p'+A*m can be replaced by A% Evaluation
of the resulting integral, with the help of Euler’s [ integral, leads to

mSlC\Ntﬂ_ﬂ‘:L:. {00,

As a consequence we have the following.

PrROPOSITION 2.2. For A >0, the solution f(1) of (1.7) possesses the asymptatic
w&_nc_.e:ﬁ::ll_..iov\u?-_a-:-,:. {00,

2.2. The numerical method. Our discrete treatment will paraliel closely the previous
study of the continuous problem (1.7). With each real sequence {¢o, d12" " " by
we associate a generating function. By definition, this is the formal power series
d(z)= e_u+e~N~+. R I A KN where it should be noted that ¢, plays no role.
It is trivial to check that the generating function of the sequence of backw=rd ditferences
10,y =dboy " s Sn = Pnts -} is given by
(2.10) (1—2)®(z) — 2o,
and the generating function of the sequence of sums

3.&..&~+9_.....G=+...+6_...;

is given by
(2.11) (1-2)""'®(2).

We introduce a time-step k>0 and grid-points I, = nk, n=0,1,2," " If the
sequence [T T } consists of u_uv_.ox::u:o:m to a function at the grid
points, then the sequences k{0, dy— o " b~ oot} and k{0, ¢y, &2t

Bry bt T -} consist, respectively, of approximations t0 the derivative
and indefinite integral at the grid points 1, > 0. Recalling (1.6) and (2.11), we guess
that, in the generating function realm, the operator 1"* may be approximated by
multiplication by

(2.12) . JR) (1=
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The approximnate method for computing the solution f(1) of (1.7) is then specified
by considering (2.10)-(2.12) and demanding that the generating function ®(z) of the
sequence of numerical approximation obeys the relation

(2.13) w-_:_|Se?v|NeLnlia£>2|5-:~0€y @, =J{0).

Equating coeflicients of like powers of z, (2.13) leads to the following recursion
for the computation of the numerical approximations:

&QH\AS.
(2.14) :+,\m»:;§us7_n,\ﬂ k¥4,

(1/2)pp1+(3/8)bna .+T:T,A=M\MV ¢ l, nz=l

The idea behind this derivation is due to Lubich [10}, [11]. Fast transform
techniques can be applied to the efficient computation of the convolution sums in the
right-hand sides of (2.14) [6]. A useful discussion of the advantages of Lubich’s
approach, as compared with product integration techniques, can be seen in the introduc-
tion of [12].

Remark 2.1. Our derivation of (2.14) has made explicit use of the relation (1.6).
This is not necessary. Actually, (2.12) can be obtained directly from (2.1), by replacing
pby(l—=: )/ k [13], (14}—an alternative derivation which has the merit of being easily
applicable to arbitrary ( Laplace transformable) convolution kernels.

2.3. Some auxiliary results. From (2.13) we derive the following discrete counter-
part of (2.2):
(2.15) PO — T
‘ D= va -+ Ak ‘
The discrete counterpart of Proposition 2.1 is given by the following.
ProposITION 2.3. The solution {¢.} of the recursion {2.14) can be represented as

(2.16) 6= SO pa—0aks p=1,2, "
with
(2.17) pa=(2/301~ A2 V3 uk] ™" + complex conjugate,
2 ™ dr
. —— +>u\u 1/3 N\u—A -n .
e CRErl N ST

Proof. 1f A =0, the result is readily checked to be true. For A > 0, the complex
z-plane is cut along the real axis from 1 to . Then the generating function (2.15)
represents a single-valued analytic function, except at the poles givenby 1 - A P wk,
1 - A7 Yw*k. By Cauchy’s Theorem

(219 ¢, = (277" S(z)z" "V dz, n=120

where the integral is taken along a small circle surrounding the origin. We now choose
as a new integration path the contour obtained by juxtaposing the lower part of the
cut from x to 1 and the upper part of the cut from 1 to oc. The residue theorem
appplied to (2.19), followed by some rearrangements, yields

© )\ kK VE=D
. (z—-1)+A 7k

1

z "dz

(2.20) &, = residue oo::wg:onlxﬁo;-
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A simple computation shows that the residue contribution is given by f(0)p., with p, .

as in (2.17). The change of variables
z2=1+A2"7"k

in the integral in (2.20) leads to (2.16). It should be emphasized that, as 2 simple
computation reveals, for n =0 the equality in (2.16) is not valid. In this connection
note that &, is not the coefficient of 2’ in the expansion of ®(z) and hence (2.19) does
not hold when n=1. O

As a first consequence of the proposition we note that

(2.21) loa = (5/Ddol, =01,

~which is the discrete counterpart of (2.9). It is interesting that this stability bound is .

uniform both in n and in the stiffness parameter A Z0.

In the derivation of error bounds we shall need the following lemma, which we
take to be well known (cf. [1]).

LEMMA. Let o be an angle <m/2. In the complex z-plane consider the sector
S,={z:arg(2)= a}. Then there exists a constant C = C(a) such that for each positive
integer n and each z in Sa

(2.22) _nxvﬁlauv..:+i-=_mﬁ_u_.
(2.33) _ova:NvlTJru_-;_M cn'.

Now we are in a position to prove the following.
ProrosiTioN 2.4. If {$.} is the solution of (2.14) and f(1) solves (1.7, then there
exists a positive constant C (independent of k, £10), A), such that, Jor each integer n > 0

(2.24) Lf(1,) = dal = CAZ kLSO,
(2.25) _\T.Lls,._m C{k/ )00

Proof. Subtract (2.16) from (2.3) and apply the femma with a = 7/3, noting that
31+ ¢%)"" has a finite integral over 0= <. O

Some comments are in order. The bound (2.24) is similar to those found in the
B-convergence theory in numerical ODEs [5]. The stitiness parameter A enters the
bound only in as far as a larger value of A leads to larger derivatives of the theoretical
solution f(1) (recall that A~¥* provides a dimensionless unit for measuring 1). However
the region of large derivatives becomes narrower with increasing A and (2.25) reveals
that, outside each initial layer 0s 1=, §>0, the error bound can be made totally
independent of the stifiness parameter.

For fixed k and A, the bound in (2.25) decreases like 17" as n-»0. This is not
very sharp, since by Proposition 2.2 the solution f(1,) itseil decays like (M A> 0.
In order to ascertain the behaviour of the error as n—c, for fixed kK and A, we observe
that an asymptotic estimation for ¢, can be obtained in (2.20) by discarding the
exponentially small residue contribution and replacing (= — 1P+ ATk by Almkl A
change of variables reduces the resulting integral to Euler's B integral. This gives (A >0)

bn~—f(OA " w2k B(3/2, 0 =3/, 1 cc.

On expressing the B function interms of I" functions and employing Stirling’s asymptotic
approximation to T, it is possible to write

&;(IA‘:S\N;u_ﬂn_:‘:vJ:~. 1 - 0.
Comparison with Proposition 2.2 leads finally to the conclusion:

(2.26) bo~f(t,), n-.
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Thus the relative error tends to 0 as n increases with k fixed, a rather surprising
behaviour that does not occur in the approximation of the equation dy/dt=—Ay, A >0,
by means of stand~rd A-stable Runge-Kutta or multistep methods. However, note
that, as distinct from (2.25), the relation (2.26) is not uniform in A.

3. Main results. The linear problem given by (1.2)-( 1.4)-(1.5) will be considered
next. We assume that the initial datum u, is in X = L0, 1). Denoting by A the
(unbounded) operator in X given by u > g with boundary conditions (1.4}, we can
rewrite our problem in the abstract form:

(3.1 u, =1"*Au), 1Z0, u(0) = u,e X.

This is similar to (1.7), with A playing the role of —A. The application of the time-
stepping recursion (2.14) in the present circumstances leads to the following formulae,
where U, € X denotes the approximation to vit,):

U,=u(0),
(32) (1=7 K"2AVU, = U, +Ym KA,
n—1 l—\w
:\BC._-_+D\$Q,_L+...+A|: o Ul nzl.

Note that U, is weil defined, since (1 —J7 k*A)"" is bounded operator defined
in the whole of X and a simple induction argument proves that the element in square
brackets belongs to the domain ol A.

Let =An.m=12,--+, be the eigenvalues of A, written in increasing order of

magnitude. and let w,, be the corresponding X-orthogonal eigenfunctions, so that A
possesses the spectral representation

W

3.3 Av ==Y Ao, wa ) We, A E0.

Here ( , | denotes the inner product in X. We also need the spaces Y,, s=0, defined
as follows. An element v in X belongs to Y, if and only if

1/2
5

(34 ol = (£ Ann ) <

Therefore Y, =X and || [, denotes the norm in X. Our main results are as follows.
Theorest 3.1, (Stability.) Assume that U, belongs 10 Y., s=0. If {U.,} denotes

the solution of the recursion (3.1) then, for n=0,1, 2.

(3.5) MU = /DU

Proof. Use the spectral decomposition (3.3) and apply (2.21). 0
TheorEeM 3.2. (Error bounds for nonsmooth initial datum.) Leru(t), {U.} denote

the solutions of (3.1), (3.2), respectively. Then there exisis a constant C (independent of

k and u,) such that forn=1,2, "
(3.6) futt,) = Udlo= C(k/ ) ttollo-

Proof. Use the spectral decomposition {3.3) and apply (2.25). O
Turores 3.3. (Error bounds for smooth initial datum.) With the notation of the
previous theorem, assume that the initial daium g belongs to Y, y. Then there exisis @

R
ot

o en et e T————
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constant C, independent of k and uo, such that forn=0,1,2,- "~
3.7 =:CLIQ._=QM Ck||uollasa-

Proof. Use the spectral decomposition (3.3) and apply (2.24). O
Remark 3.1. Since the eigenvalues and eigenfunctions of the operator u = U« with
boundary conditions (1.4) are given by —~(27m)? and (v3/2) sin [2mwmx], respectively,
it is evident that the expansion of a function in series of eigenfunctions Wm is identical
to its sine-Fourier series. Furthermore if 4o€ Ya/3, then the series L., m¥ g, Wea)
converges and therefore [(ugy W)l = o(m™*?). The Weierstrass M-criterion shows that
the sine-Fourier series for v converges uniformly in x, so that in particular u is
continuous and satisfies the boundary conditions (1.4). Thus, the last thieorem refers
to a situation of compatible initial data. .

Remark 3.2. It is clear that error estimates similar to (3.6) (respectively, (3.7)
can be obtained for the higher norms of the error Ju(t,) = Ualles s z 0, provided that
the initial datum lies in Y, Aqomvan:ﬁ_? Y cvay3)-

4. Concluding remarks. (i) The only property of the operator A used in the proof
of the Theorems 3.1, 3.2 and 3.3 is the existence of the spectral decomposition {3.3}.
Therefore all the results in § 3, with the exception of those under Remark 3.1, are valid
for any operator A in a Hilbert space X for which (3.3) holds. This includes linear
elliptic operators Y, dilay a;u) — agt, a,Z 0, in smooth bounded domains {1 of RY,
d=1,2,3, with constant of smooth variable coefficients d,, do and homogeneous
Dirichlet, homogeneous Neumann or (if € is a parallelepiped) periodic boundary
conditions (X = LX)

(ii) More generally, 2 method similar to that presented in the paper can be
constructed for the equation

4.1) Du = R Au,

with D =d/dt, p asgiven constant 8 >0 and R* the Riemann- Liouville operator with
kernel (1—5)*"". (B=} corresponds of course to the case ireated so far in the paper.)
An analysis parallel to that carried out in the paper holds if 0< B <1, leading to an
O(A1) bound for the X-norm of the global error, uniformly in 0S1<%, for data
ug€ Yo+ and to an oO(Ar) bound outside any initial laver. for data u, in X. in the
derivation of those bounds, use must be made of the lemma with an angle a=
(mB)/(1+B). Since the condition a < /2 is necessary for the result in the lemma to
hold, our analysis cannot be carried out for 8= 1. In fact, for B =1 convergence
bounds that hold uniformly for large t cannot exist. This is easily seen by noting that,
for g =1, differentiation of (4.1) with respect to f leads to u, = Au, a wave equation.

(iti) For numerical purposes the “elliptic” operator A in (3.2) must be replaced
by a finite-dimensional wvv_.ox::u:o: A,, by means of a finite-element, 2 finite-
difference or a spectral technique. The analysis of those fully discrete formulations of
our algorithm can be performed by combining our results with standard error bounds
for elliptic problems (cf. the techniques in [1])-

(iv) The method (3.2) can be readily modified to accommodate the nonlinear
equation (1.1). It is sufficient to add to the left-hand side the contribution of the
nonlinear term at time #,. In principle, the analysis of the resulting nonlirear discretiz-
ation can be carried out employing the techniques of [9].

(v) Camino (2] has given numerical results corresponding 1o the problem {1.7)
integrated according to (2.14) and to the problem :.:-:.3-:3 integrated according
to the procedure in {iv), with piecewise linear finite-elements for the space discretization.
His results are in perfect agreement with the present analysis.

i
i
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