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The paper considers split-step spectral schemes for the numerical integration of nonlinear 
Dirac systems in [ 1 + 1 ]-dimensions. Proofs of stability and convergence are given along with 
numerical experiments which clearly show the superiority of the suggested methods over 
standard and split-step finite-difference algorithms. 0 1989 Academic Press, Inc. 

1. INTRoDUC~~N 

It is well known that nonlinear modifications of the (linear) time-dependent 
Schriidinger equation play an important role in the mathematical modelling of 
many phenomena. Often, the success of such modifications stems from the fact that 
the nonlinearity can oppose the dispersive behaviour of the linear terms, thus 
making it possible for solitary waves to exist [28]. The importance of the applica- 
tions of the nonlinear Schrodinger equations has resulted in a rather large number 
of papers being devoted to their numerical solution (see, e.g., [ 14, 20, 271 and their 
references). The Dirac system, which, to some extent provides the relativistic 
counterpart of the Schrodinger equation, can also be subjected to useful nonlinear 
modifications. In the (1 + 1 )-dimensional case, nonlinear Dirac systems can be 
written in the form 

u, = Au, + lj-(lul12- lu212)Bu, (1.1) 

where u = U(X, t) is the spinorial unknown, represented as a 2-dimensional complex 
vector u = [ui, u21T, i is the imaginary unit, f(s) is a real valued function of a real 
variable s and A, B denote the matrices 

A=[-; -;I, B=[-; ;I. 

Systems of the form (1.1) may give rise to solitary waue~ and in the physics 
literature have been suggested as models of extended particles (see [ 11 and 
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references therein). From the numerical point of view, Alvarez et al. [2] showed the 
convergence of a Crank-Nicolson scheme applied to the particular case 

f(s) = m - 2As, m, I real constants. (1.2) 

Their analysis explicitly uses the form of the nonlinearity (1.2) and cannot be 
readily extended to the case of a generalf. However, it is now well known that, in 
the numerical integration of l-dimensional waves, split-step spectral methods are 
likely to be more advantageous than finite-difference or finite-element methods (see, 
e.g., [24, 271). Split-step spectral methods for wave computations were introduced 
by Hardin and Tappert [S] and Tappert [25]. 

The aim of the present paper is first to analyze and then to assess split-step 
spectral methods for Dirac systems. In this connection, we would like to mention 
that not many examples of analyses of split-step spectral methods are available in 
the literature (cf. the final remarks in [ 131). Our analytical technique for the Dirac 
equations can be extended to cover discretizations of other nonlinear wave 
equations, such as nonlinear modifications of the Schrodinger and Klein-Gordon 
equations. 

The organization of the paper is as follows. Section 2 describes a simple, first 
order in time, spectral-splitting scheme, whose analysis is presented in detail in 
Section 3. Section 4 deals with the second order time-splitting technique due to 
Strang [22]. The final section reports numerical tests of the split-step spectral 
schemes and comparisons with some standard and split-step finite-difference alter- 
native schemes. 

2. SIMPLE SPLITTING 

We consider the periodic problem given by (1.1) and 

u(x + 1, t) = U(X, t), --og<x< +co, O<t<T<oo, (2.1) 

4% 0) = q(x), --oo<x< +co, (2.2) 

with q a known l-periodic function. For simplicity, we sometimes use the abbrevia- 
tion 

g(z) = if(lzll’- IZ212u3Z~ (2.3) 

if z = [z,, z21T E C2. A simple split-step scheme can be described as follows: 

Time Discretization 
If k > 0 is the time step, we set N = [T/k] (square brackets denote integer part) 

and denote by u”( .), 0 <n < N, the function u( ., t,), with u the solution of (l.l), 
(2.1)-(2.2), and t,, the time level t, = nk. When a space-continuous approximation 
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an to un, n =o, 1, . ..) N- 1, has been computed, an intermediate approximation 
@!* n + ’ is obtained as the solution at t = t, + i of the problem 

u,(x, t) =g(G, t)), -co<x< +co, t,-ct<t,+,, (2.4a) 

4x9 cl) = @!“(xh --co<x< +oo, (2.4b) 

where there is no evolution due to the linear term in (1.1). The approximation 
4%” + ’ corresponding to the advanced time level t, + 1 is then reached as the solution 
at time t = t,, 1 of the problem 

w, = AW,, -m<x< +a, tn<tGt,+l, (2.5a) 

w(x + 1, 2) = w(x, t), --oo<x< +co, t”<t<t,+l, (2.5b) 

w(x, t,) = 42!;“(X), --co<x< +a, (2.5~) 

where there is no evolution due to the nonlinear term in (1.1). 
If v(x, t) = [v,(x, t)T, 0,(x, t)T]T satisfies (2.4a), then, taking into account (2.3), 

we can write, for v = 1, 2, 

(Wt) b,(x, t)l* = 2 Re{ C(Wt) u,k t)l 4k t>> 
=2 Re{(-1)’ Vllul(x, t)l*- b2(x, t)l*) IW, tN’> =O, 

so that 12),(x, t)l is independent of t. Therefore, recalling (2.3) once more, the ODE 
(2.4a) can be rewritten as 

0, = if(bI(X, t,)12 - I~*(& Gz)12)m --oo<x< +a, t,<t<t,+,, (2.4a’) 

whence the initial value problem (2.4) can readily be integrated in closed form to 
yield 

42’“*+‘(x) = exp{if(l%!;(x)l* - I%;(x)l*)kB} S!‘“(x), --oo<x< +co, (2.6) 

where %T, f&!!‘; are the components of %‘“. We shall denote by A$ the nonlinear 
operator defined by J$?!Y”(x) = 9”,+‘(x) with &!;+I the function given in (2.6). 

Turning now to the problem (2.5) the method of separation of variables shows 
that 

W+‘(X)= c exp{2nipkA}[Q;+‘],^ e2nipx, 
PEH 

(2.7) 

where the symbol [4Y”,“],” refers to the pth Fourier coefficient of the l-periodic 
function ai+ ‘. We denote by LS’~ the linear operator defined by L&O&!;’ 1 = a’“+ ‘, 
with %“+I given in (2.7). 

Space Discretization 

If J is a positive integer number, we set h = l/(25) and consider the mesh-points 
xi = jh, 0 < j< 25. We denote by Cp 2(2J+ ‘) the subspace of all vectors V = 
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c q, Jq, -.., GyJl’ in @*(*‘+i) with V,, = I’,,. If U” = [Ui’, UT=, . . . . U”,‘]‘E 
C;(*-‘+ ‘) is a vector containing approximations UJ’ to %‘“(xj), j=O, 1, . . . . 25, we 
obtain approximations UzT ’ to %!i’ ‘(xi) by setting 

U~~‘=exp{if()U;,1*- IUin,1*)kB} Uy, O< jG2J. Q-8) 

We introduce the operator Nk defined through U;+ ’ = NkUn, where U;+i is the 
vector in @EC*‘+ ‘) with components U;T i given in (2.8). Note that Nk is a discrete 
version of A$ and that, after (2.6~(2.8) there is no local truncation error involved 
in the substitution of A$ by N,, i.e., if 177 = a”(~~), j= 0, 1, . . . . 2J, then 
[NkU”lj = UiT ’ = %i’ ‘(xi) = Nk%!!“(xj), j = 0, 1, . . . . 2J. 

Once U;+ ’ has been formed, we use (2.7) to compute approximations UT+ ’ to 
f#?+ ‘(x1), according to the formula 

u;+L ,P~‘~exp{2nipkA}[U;+1]~ e2nipjh, 0 <j< 25, (2.9) 

where the double prime in the summation means that the terms corresponding to 
p = f J are halved and [Ui+ ‘I,^ is the pth discrete Fourier coefficient of the 
vector U;+‘, i.e., 

[U”,“]; = (l/(25)) C” U;f le-*nipjh, -J<p<J. (2.10) 
OGjG2J 

We introduce the operator L,, the space-discrete version of & given by 
U n+’ = LkU;. In practice, the computations for LkU:, i.e., the summations in 
(2.9)-(2.10), are, of course, best performed by FFT techniques. 

To sum up, the numerical method consists of a recursion 

U ‘+’ = L,NkU”, n=O, 1, . . . . N- 1, (2.11) 

with Lk, N, the linear and nonlinear operators defined in (2.9)-(2.10) and (2.8), 
respectively. The initial vector U” for (2.11) is chosen as approximation q to the 
vector 

rq = c&o)=, 4(x,)=, . ..? 4hmT~ (2.12) 

where q is the initial function in (2.2). Here and later, r denotes restriction to the 
spatial grid. 

3. STABILITY AND CONVERGENCE ANALYSIS 

To investigate the stability and convergence of the scheme (2.11) we employ a 
general analytical framework, introduced by Lopez-Marcos and Sanz-Serna [ 15, 
l&12]. The use of this framework makes it possible to avoid the need for a priori 
estimates for nonlinear problems [6]. To facilitate the readibility of the subsequent 
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analysis, we first present a very brief summary of the general definitions and main 
result of [l&12]. This is followed by a study of the stability, consistency, and 
convergence of (2.11). 

Discretization Framework 

Consider a fixed, given problem concerning a differential or integral equation. 
Let u be a solution of this problem. We denote by Uh the numerical approximation 
to u. The subscript h shows that Uh depends on a small parameter h, such as a 
mesh-size. We assume that h takes values in a set H of positive numbers with 
inf H = 0. The numerical approximation Uh is obtained, for each lixed h in H, by 
solving a discrete problem 

@hWh) = 0, (3.1) 

where Qh is a mapping with domain D, c X, and values in Y,. Here X, and Y, are 
normed spaces, both real or both complex, with the same finite dimension. 

To investigate how close U, is to u, we choose, for each h in H, an element u,, 
in D,. This element is a suitable discrete representation of u. Typically, in a dif- 
ference method, nh will be a set of nodal values of u. The global discretization error 
is defined to be the vector e,, = u,, -U, and the local discretization error is given by 
1, = @,,(u~). We say that the discretization (3.1) is convergent if there exists h, > 0, 
such that for h in H, h < ho, (3.1) has a solution Uh and, as h + 0, lim llnh - Uhll = 0. 
The convergence is of order p, if 1111~ - U,II = O(P). The discretization (3.1) is con- 
sistent (respectively consistent of order p) if as h + 0, II@h(uh)ll = o(1) (resp. O(hP)). 

Assume that for each h in H, R, is a value with 0 < R, < + co. We say that (3.1) 
is stable restricted to the thresholds R,, if there exist two positive constants ho and 
S such that for any h in H, h < h,, the open ball B(u,, Rh) is contained in the 
domain Dh and for any Vh, W,, in that ball 

llVh - Whll < s Il@h(v,) - @h(w,)ll, (3.2) 

It should be emphasized that the stability bound (3.2) need to be proved not 
for arbitrary V, and W,,, but only for vectors Vh and W,, “near” the theoretical 
solution, near in the sense that IIV,, - 11~11 < Rh, IIV, - u,,II < R,. Thus, this notion 
of stability is weaker than others used [ 123. However, stability and consistency still 
imply convergence, namely: 

THEOREM 3.1. Assume that (3.1) is consistent and stable with thresholds Rh, IfQh 
is continuous in B(uh, Rh) and lllhI[ = o(Rh) as h 4 0, then: 

(i) For h small enough, the discrete equations (3.1) possess a unique solution 
in B(U,, Rh). 

(ii) As h +O the solutions in (i) converge with an order of convergence not 
smaller than the order of consistency. 
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We write the scheme (2.11) within the previous abstract framework as follows: 

(i) First of all, since only one discretization parameter is allowed in the 
abstract framework, a relation between k and h needs to be imposed. At this stage, 
we only assume that k = a(h), where c is an increasing, continuous function with 
o(O) = 0. Hereafter the subindex h, used so far in the formalism, will often be 
omitted; for instance, we shall write X, Y, u rather than X,, Y,,, uh. 

(ii) We take X= Y = (@i(2-‘+‘))N+ ‘. In CiCZJ+ ‘) we use the discrete L2 and 
Lao-norms 

llzll= h 
[ 

C" lzj12 
O<jCZJ 1 

112 
3 

llzllco=o~j~x2J lzjl, . . 

where Z = [Z,‘, Zy, . . . . Z&lT~ @i(*‘+ ‘) and 1. I denotes the standard Euclidean 
norm in C2. In X we use a maximum norm 

IIVII,=max{IIV”lI:O~n~N}, v= [v”y, . . . . vNTj%r, 

and in Y we employ an L’-norm 

IIFII y= llF”Il +k 1 IIF”ll, F = [F’=, FIT, . . . . FNTITe Y. 
l<n<N 

The relevance of this choice of norms is made clear by the fact that for linear initial 
value problems, L” -L’ stability is equivalent to the familiar Lax stability 
[17, 151. 

(iii) On defining the mapping Q, given by @(V)=F with 

F n+l=k-l(V”+l-LkNkVn), OQnGN-1, 

F”=Vo-q, 
(3.3) 

the recursion (2.11) with initial vector q adopts the abstract from (3.1). Each of the 
N + 1 components of @ corresponds to the computation of a time level. 

(iv) Finally the representation of the theoretical solution u is given by the 
obvious grid-restriction choice 

u = [ru”‘, ru”, . . . . ru”‘]? 

Stability 

We need some preliminary results. 

PROPOSITION 3.2. The operator Lk defined after (2.9~(2.10) is L2-isometric in 
@2(2J+ 1) 

P * 
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Proof This follows from the Parseval theorem, since exp(2QkA) is an 
isometry in @*. 1 

PROPOSITION 3.3. Assume that the function f in (1.1) is continuously dtfferen- 
tiable. If D is a bounded subset of @*, then there exists a positive constant 
L = L(D, f) such that for x = [x,, x2] ‘, y = [y,, y2] ’ in D and for k > 0, 

lev~ikf(lxl12- Ix212)~~x-exp~ikf(Iy,12- IY~I*P~YI <Cl +kL) lx-rl. 

Proof We can write 

lew~ikf(lx~l*- lx212)B)x-exp{ikf(Iy,12- IY~I*PI YI 

G ICev{ikf(IxI12- IxA*)B) -w{ikf(IyI12- IY~I*)B)I~ 

+ lev{ikf(lyI12- IY~I*P)(x-Y)I. 

The second term in the right-hand side equals Ix - yJ. It is easy to see that the first 
can be bounded by kL,v lx- yl, where L, is a Lipschitz constant for 
f(lx,(*--(x21*) in D and v=sup{~x~:x~D}. m 

THEOREM 3.4. Assume that the function f is continuously differentiable and that u 
is a classical solution of the problem (1.1 ), (2.1), (2.2). Then to each R > 0, there 
corresponds a positive constant S, which only depends on R, T, f, and 
M=max(lu(x,t)l:O<x<l,O<t<T},such thatforanyVandWinXwith 

max IIV” - ru”II o3 < R, max II W” - ru”ll~ c R, (3.4) 
O<n<N OGPICN 

the following bound holds: 

Il~-~ll~~~ll~(~)-~(~)Il.. (3.5) 

Proof Let V and W be elements in X fulfilling (3.4) and set F = a(V), 
G = Q(W). By the definition of @ given in (3.3) 

F”+’ -G ?f+l =k-l(V”+l -Wfl+’ )-k-‘(L,N,V”- LkNkWn), O<n<N-1, 

and therefore 

IIV n+l -Wn+‘ll < llLkll llNkVn-NkWnll +k IIF”+l-G”+lII. (3.6) 

Now, by Proposition 3.2, I(LJ = 1. On the other hand, (3.4) implies that the 
components Vy, W;, 0 Q j 6 25, 0 < n < N of V and W belong to the ball D c @* 
centered at the origin and having radius R + M. If L = L(D, f) is the constant from 
Proposition 3.3 

llNkVn-NkWnll <(l +kL) I/V”-W”II. 
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Summing up, (3.6) implies that 

IIV x+1-fTn+l 11 <(I +kL) IIV”-W”I1 +k IIF”+l-G”+lII, O<n<N--1, 

and a simple recursion leads to (3.5). 1 

COROLLARY 3.5. In the hypotheses of the theorem and for any positive R, the 
scheme (2.11) is stable with thresholds R,, = Rh’j2. 

Proof The relations II V - u(I X < Rh , II W - u II X < R,, imply (3.4) and, according 
to the theorem, lead to (3.5). 1 

Consistency 

The (n + 1 )-component, 0 < n < N- 1, of the local truncation error 1 = Q(u) is 
given by 

I n+ ’ = k-‘(run+ ’ - L,N,ru”) 

=k-l{r(u”+l - dtkA$kun) + [r(P&A$u”) -Lg(&P)] 

+ [L,r(&u”) - L,N,ru”]}. (3.7) 

Thus, the local error appears as the sum of the local splitting error and the local 
errors in the integration of the fractional steps (2.4)-(2.5) (cf. [9]). 

Note that 

Lkr(.A$d’)-LkNkrun=O, (3.8) 

because, as noted before, rMk = N,r. For the local splitting error, we have the 
following result. 

PROPOSITION 3.6. Assume that the function f in (1.1) is twice continuously 
differentiable and that the solution u of (Ll), (2.1), (2.2) possesses bounded second 
derivatives in [0, l] x [0, T]. Then 

lb n+l - rL&Jl/r,u”II < CIk2, O<n<N-1, (3.9) 

where C, is a positive constant independent of n, k, and h. 

Proof The definition of Mk in (2.6) shows that J~/*-u” possesses second 
derivatives with respect to x and k, bounded uniformly in n. The method of charac- 
teristics reveals that the solution of (2.5) has second bounded derivatives if the 
initial condition has a bounded second derivative with respect to x. Then a Taylor 
expansion and (2.5a) imply that 

&-&U”(X) = J’&“(x) + kA ~,N,u”(x) -I- R,(x), 
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where R,(x) = cO(k’), uniformly in x and n. Analogously 

.&P(x) = u”(x) + kg(u”(x)) + R,(x), 

with R*(X) = @(I?‘), uniformly in x and n, and 

f3,Jlr,u”(x) = i3,u”(x) + R,(x), 

where R3(x) = Co(k) uniformly in x and n. Summing up, 

2p(&n(X) = (u”(x) + k(A a,u”(x) +g(u”(x))) + (R,(x) +&(x) +kA&(x)), 

which leads immediately to (3.9). 1 

To analyze the local error of the linear fractional step we need the Sobolev space 
H”, s > 0, whose elements are the l-periodic functions w( . ) with finite s-norm 

PROPOSITION 3.7. Zf weHStl, s > 4, then there exists a positive constant C2, 
depending on w and s but not on h and k, such that 

((r&w-LL,rw(( <C2kh” ((w((~~+,. (3.10) 

ProoJ: We need the following well-known relation [7], [23] between the 
Fourier coefficients [v],^ of a l-periodic function and the discrete Fourier coef- 
ficients [rv],^ of its grid restriction 

Crul,^ = C Cvl>+2jJY VEHS, of, IPI SJ (3.11) 

(the series converges absolutely). The identity (3.11) shows that the pth discrete 
Fourier coefficients of L,rw and rZ’w are given, respectively, by 

exp{2mpkA}[rw]; = c exp{2mpkA)[w],^,2jJ, IPI G J, 
jsi2 

and 

jIlz C% wl,^+ 2jJ =j~=exp12ni(p+2jJ)kAJCwl~+2j~, IPI GJ. 

Therefore, Parseval’s theorem yields 

Ilr&w - Lkrwl12 

= p+2jJ)kA} -exp{2nipkA})[~],^,,~~ 2. (3.12) 



416 DE FRUTOS AND SANZ-SERNA 

The application of the Cauchy-Schwarz inequality to each term in the summation 
leads to 

j;: (erp{2ni(p+2j~)~~}-enp{2nrpkd})[wl,=,12 

< 1 (l+lp+2jJI))*” 
i j#O 1 

X i j~o(l+lP+WI)2s I(exp(2~~(~+2jJ)~~}-~~p{2~ip~A))C~l~+,12). 

It is easy to show that 

llexp{2@+2jJ)kA} -exp{2@U}lI <8nk ljl J. 

and therefore (3.12) implies 

IlrPkw - L,rwl12 < ,,,.,{( C V+l~+Wl)~“) 1” 
j#O 

x jFo (1 + Ip + WI I*’ @nk IA 4’ I lIWl~+2j~12)} 

G C” 
IPIGJ K J-*” C (2 1 jl - l)-*’ 

j#O > 

x (8nk)2 C (1 + Ip+2jJI)2”+2 ICWIpA+2j-r 
i#O 

where we have taken into account that for lpl <J, 

ljlJ<l+Ip+2jJI 

5(2Ijl--l)<l+lp+2jJI. 

It is now easily concluded that (3.10) holds with 

1 
112 

(8~)~ 22” 2 2/(2j- 1)2’ . 1 
l<j<m 

Finally we can formulate the following consistency result. 

THEOREM 3.8. Assume that the hypotheses of Proposition 3.6 hold and that there 
exist constants s > 4 and C3 > 0 such that 

Il-4UnllH~+’ G c,, O<n<N-1, k>O. (3.13) 
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Then, as the mesh is refined, 

Il@(u)ll Y = Q(k + h”), (3.14) 

provided that the starting vectors q satisfy 

[Iwo - qJ( = 6(h”). 

Pro05 The theorem follows from (3.7)-(3.10). 1 

Note that according to (2.6) the hypothesis (3.13) can be enforced by demanding 
regularity in f and u. In particular, under the hypotheses of Proposition 3.6 (f, u 
twice continuously differentiable), the bound (3.13) holds with s= 1. Additional 
regularity in f and u makes it possible to increase the value of s. When f and u are 
C”, s can be choosen arbitrarily high and therefore the truncation error in space 
has bounds of the form C,h” with s arbitrarily large. The fact that the order of 
accuracy of spectral discretizations may be infinite was perhaps first pointed out by 
Fornberg [4] (cf. [23]). 

Convergence 

The abstract Theorem 3.1 leads now to: 

THEOREM 3.9. Assume that the hypotheses of the consistency theorem 3.8 are 
satisfied and that k and h are subject to the relation k = rh’, for constants r > 0 and 
v > 4. Then, there exists a positive constant C, independent of h and k, such that 

max II U” - ru” II G C( k + h”). (3.15) 
OGft<hJ 

4. STRANG'S SPLITTING 

The order of consistency/convergence in time of the simple scheme (2.11) is only 
1. A well-known modification introduced by Strang [22] leads to S(k’) errors. 
With our notation, Strang’s splitting leads to the recursion 

U ” + ’ = Nk/2 Lk Nk12Un. (4-l) 

Sheng [21] has recently proved that, for a class of initial value problems, Strang’s 
splitting is optimal. Note that in view of the relation 

(N,~,zJLN~’ = NJ~,zW,J~)“-~ LNk/2 

the cost of method (4.1) is virtually the same as that of (2.11). 
The recursion (4.1) can be analyzed along the lines of the previous section (see 

[S] ). Bounds U(k2 + h”) for the global error I/U” - ru”)I can be derived, uniformly 
in n, under the following hypotheses: (i) The starting vectors q have errors O(h”). 
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(ii) f is three times continuously differentiable and u possesses bounded third 
derivatives in [0, l]x [0, T]. (iii) IjJ$#)IHS+1<C3, O<n<N-1, k>O for 
constants C3 > 0 and s > f. (iv) The mesh refinement is performed according to a 
rule k= rh”, r>O, v> a. 

5. NUMERICAL EXPERIMENTS 

The split-step spectral schemes (2.11) and (4.1) have been implemented in 
single precision complex arithmetic on a VAX 11/780 machine with a VAX-11 
FORTRAN compiler. The Fourier transforms were carried out by the Cooley- 
Tukey algorithm [3] implemented by us, also in FORTRAN. (No doubt a better 
coding of the FFT would have increased the efficiency of the spectral schemes, but 
we preferred not to give them this advantage in the numerical tests.) 

For comparison, we also implemented, in the same environment, a leap-frog, a 
Crank-Nicolson [ 21, and a Crank-Nicolson split-step finite-difference scheme for 
(1.1 ), (2.1), (2.2). All of them used the standard centered difference approximation 
of a,. 

The Crank-Nicolson equations take the form 

(I- (k/2)L/Ju”+r = (I+ (k/2)L,)U” + kG((U”+’ + W/2), O<n<N-1, 

(5.1) 

where L, is a skew-symmetric matrix and G is a nonlinear mapping. At each time 
level (5.1) is solved by first computing a prediction 

U* = (I+ kL,)U” + kG(Un) 

and then performing a fix-point iteration [20] 

U- WWdU,,+ II= (I+ W)L)U” +kWU,r, + U’Wh r=O, 1, . . . . (5.2) 

Thus the only matrix to factorize is I- (k/2) L,,. This factorization was performed, 
prior to each time integration, by a Gaussian elimination subroutine which takes 
full advantage of the structure of L,,. Also, (5.2) was implemented in the efficient 
from [20] 

(I- (k/2)L/,)U** = U”+ (k/2) G((U,,, + U”)/2), r=O, 1, . . . 

U [,+r,=2U**-U” 

which avoids the computation of (I+ (k/2)Lh)U”. 
The Crank-Nicolson split-step scheme (cf. [20]) is similar to the spectral method 

(4.1), the only difference being that now the linear operator L, is replaced by the 
approximation of (2.5a) based on standard central differences in space along with 
a Crank-Nicolson time discretization. With this method, as with (5.2), there is only 
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one matrix to factorize per time integration. Furthermore, there are no nonlinear 
systems to be solved iteratively. 

As a theoretical solution we employ the standing wave [l, 21 

l)Jx, t) = [M(x), iN(X)IrciA’, (5.3) 

M(x)=2l’*(l -ll*y* (1 +A)“2 
ch((1 -/f*)i’* x) 

1 + n ch(2( 1 -/i*)“* x) 

N(x)=2”*(1-/1*)i’*(l-,)i’* 
sh(( 1 - /i*)i” x) 

1 + /t ch(2( 1 - /f*)l’* x) 

with frequency /i = 0.75. All schemes were implemented in - 16 <X < 16, 0 < t < 8 
with periodic boundary conditions. While $,, is obviously nonperiodic, there is 
virtually no error in assuming periodicity, since $,, is exponentially small away 
from x = 0. 

The results for the leap-frog scheme are given in Table I, where not all entries can 
be computed since, for stability, k < h. The numbers in brackets represent CPU 
times in hundredths of a second and the entries without brackets give the L*-errors. 
An O(k* + h*) behaviour is clearly seen when relining with k/h = constant. 

Table II corresponds to the Crank-Nicolson scheme. In the runs, the inner itera- 
tion (5.2) was stopped when two consecutive iterants were found whose difference 
was less than lop5 in the L*-norm. The underlined quantities represent the number 
of inner iterations per step. The comparison of the Tables I and II reveals that for 
low accuracies the leap-frog scheme, whose coding is trivial, is slightly more 
efficient than the Crank-Nicolson, because the larger time steps that can be taken 
by the implicit scheme do not make up for the larger work per step required by the 
solution of the nonlinear equations (5.1). Unfortunately, the leap-frog scheme was 
observed to lead to nonlinear blow-up (cf. [ 16, 18, 19, 261) in long run integrations 
such as those necessary in the study of wave interactions. For such problems the 
Crank-Nicolson scheme could provide a more reliable choice than the leap-frog 

TABLE I 

0.2 0.1 0.05 
(J= 160) (J= 320) (J=640) 

0.1 0.2342E - 01 

(399) 
0.05 0.2120E-01 0.577OE - 02 

(802) (1635) 

0.025 0.2073E - 01 0.5224E - 02 0.1442E - 02 
(1618) (2262) (6588) 

0.0125 0.2062E - 01 0.5107E - 02 O.l306E-02 
(3260) (6582) (13122) 
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TABLE II 

0.2 0.1 0.05 
(J= 160) (J=320) (J=640) 

0.4 0.71998-02 O.l819E-01 0.2166E - 01 
(1327) (2560) (5146) 

6 5 P 
0.2 0.1493E - 01 O.l829E-02 0.4686E-02 

(1766) (3629) (7052) 

4 4 1 
0.1 O.i910E-01 0.3691E-02 0.4809 E - 03 

(2813) (5496) (10990) 

2 2 2 
0.05 0.2021E-01 0.4673E-02 0.9737E-03 

(5501) (10925) (21947) 

3 3 3 
0.025 0.2049E- 01 0.4980E - 02 O.l099E-02 

2 2 2 

algorithm. Alternatively, the leap-frog scheme could be supplemented by filtering or 
odd-even averaging in order to avoid the occurrence of the nonlinear blow-ups. 

Table III gives the results for the split-step finite-difference method. A com- 
parison with Table II shows that, for given k and h, the effect of the splitting is a 
decrease in CPU time and an increase in the size of the error. The latter indicates 
that, in the truncation error, the negative effect of the splitting does not compensate 
for the fact that now the nonlinear term is integrated exactly in closed form. 

The results for the spectral split-step schemes are given in the Tables IV (simple 
splitting) and V (Strang’s splitting). In both tables it is apparent that reducing h 
does not lead to more accuracy, a clear indication of the fact that the error stems, 

TABLE III 

(JZ60, 0.1 0.05 
(J=320) (J=640) 

0.4 0.71888-01 0.56688-01 0.5298E-01 
(145) (275) (550) 

0.2 0.3321E - 01 O.l783E-01 O.l414E- 01 

(271) (566) (1066) 

0.1 0.2368E- 01 0.8239E-02 0.44328-02 
(517) (1019) (2165) 

0.05 0.2136E-01 0.5805E-02 0.2106E-02 
(1016) (2061) (4194) 

0.025 0.2078E- 01 0.52646-02 0.13796 - 02 
(2026) (4125) (8334) 
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TABLE IV 

h 
\ k (Jz4) 

0.25 
(J= 128) 

0.5 0.2242E + 00 
(128) 

0.25 O.l120E+OO 
(254) 

0.125 0.5614E-01 
(501) 

0.0625 0.2813E-01 
(993) 

0.2242E + 00 
(283) 

O.l120E+OO 
(561) 

0.5615E-01 
(1111) 

0.2814E - 01 
(2192) 

0.125 
(J= 256) 

0.22428 + 00 
(616) 

0.1120E+OO 
(1209) 

0.5614E-01 
(2424) 

0.28148-01 
(4796) 

almost exclusively, from the time-integration (recall that the smoothness of (5.3) 
leads to high spatial accuracy of the spectral technique). The O(k) behaviour of 
(2.11) and the O(k2) behaviour of (5.1) are clearly borne out by the tables. No 
blow-up problems were encountered when using the split-step schemes, which 
revealed themselves to be very reliable. 

In order to facilitate a comparison of the methods, we have summarized in Fig. 1 
some of the information of the Tables I-III and V. The simple splitting spectral 
method is not considered, as it is clearly less competitive than (4.1). For the leap- 
frog scheme we have depicted the runs with r = k/h = 0.5, the most favourable mesh 
ratio of those considered in Table I. For the Crank-Nicolson and split-step 
Crank-Nicolson methods we show the runs with r = k/h = 2, the most favourable 
value of those considered in Tables II and III. For the spectral scheme (4.1) we dis- 
play the runs with h = 0.5. Thus for each method we have chosen the combination 
of h and k that, for a given computational effort, results in smaller errors. 

From the figure it is clear that the performances of the leap-frog and split-step 
Crank-Nicolson schemes are virtually the same. For both methods the error is 

ERROR 

T 

10-4J., 

105 104 103 102CPU 

FIG. 1. Error against CPU time in hundredths of a second for the methods considered in the text: 
+ leap-frog; D Crank-Nicolson; T? split-step Crank-Nicolson; 0 split-step spectral. 

581/83/2-12 



422 DEFRUTOSAND SANZ-SERNA 

TABLEV 

\h 0.5 
k 

0.5 

0.25 

0.125 

0.0625 

(J=64) 

0.29178-01 
(138) 

0.7066E - 02 

(264) 
O.l767E-02 

(510) 
0.4816E-03 

(1108) 

0.25 0.125 
(J= 128) (J = 256) 

0.2917E-01 0.29178-01 
(295) (633) 

0.7067E - 02 0.7068E - 02 

(576) (1214) 
O.l770E-02 O.l772E-02 

(1127) (2410) 
0.48746 - 03 0.4927E - 03 

(2212) (4761) 

proportional to h2, i.e., to (CPU time))’ and this is borne out by the figure where 
the corresponding symbols are located on a straight line with slope 1. 

The slope of the Crank-Nicolson symbols is slightly larger than 1, due to the fact 
that for smaller values of k fewer inner iterations per step are needed. As a 
consequence, the Crank-Nicolson scheme should be preferred to the leap-frog and 
split-step finite-difference schemes except for very low accuracies. 

However, none of the finite-difference schemes is competitive with the spectral 
method (4.1), for which the error is proportional to k* and thus to (CPU time)-2. 
For an accuracy of 10m3, the split-step scheme (4.1) demands a computer time 
approximately an order of magnitude lower than that necessitated by the finite- 
difference algorithms. This advantage in efficiency would be even larger if more 
demanding accuracies were required. (However, note that (5.3) is very smooth and 
that, in the comparison above, this tends to benefit the spectral schemes more than 
the finite-difference algorithms.) We conclude that the scheme (4.1) is reliable and 
much more efficient than the finite-difference methods used for comparison. 
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