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We construct an explicit pseudo-spectral method for the numerical solution of the so~ton-pr~ucing 
‘good’ Boussinesq system w, = u,,, + u, + (u’)~, u, = w, . The new scheme preserves a discrete Poisson 
structure similar to that of the continuous system. The scheme is shown to converge with spectral 
spatial accuracy. A numerical illustration is given. 

1. Introduction 

Physical systems are often described by a set of ordinary or partial differential equations in 
Hamiltonian form. The discretization of such systems by algorithms that preserve the 
Hamiltonian structure has recently been the subject of several contributions, see e.g. [l-7]. 
The Leit Motiv associated with such discretizations is that they automatically inherit many 
qualitative features of the continuous system. In this paper we suggest a H~tonian, 
time-discrete, pseudo-spectral scheme for the soliton producing ‘good’ Boussinesq system {8]: 

w, = -u,, + u, + (u2)x , u, = wx . (1.1) 

The new scheme is derived in Section 2. Its nonlinear stability and convergence are proved 
in Section 3. 

A different time-discrete pseudo-spectral scheme has been analysed by the present authors 
in f9]. That paper and [8] contain further references concerning (1.1) and its numerical 
solution. 

We study the l-periodic problem for (1.1) on 0 s t =s T C 00, with initial conditions 

w(Ic, 0) = w”(x) , u(x, 0) = u”(x) * (2-l) 
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We start by rewriting (1.1) as 

If the letter z refers to the vector [w, u]‘, m denotes the matrix operator on the right-hand side 
of (2.2) and 6 denotes the variational derivative, then (2.2) becomes 

2, = m Sh(z) ) (2.3) 

where 

(2.4) 

is the Hamiltonian. The system (2.3) is in the so-called Poisson form [S, 6, lo], a generaliza- 
tion of the form of the familiar Hamilton equations. The operator m is skew-symmetric and 
defines the Poisson bracket {F, G} of pairs of functionals F(z), G(z) via {F, G} = (W, m M), 
where (-, a) denotes the L2-inner product. In turn, the Poisson bracket defines a Poisson 
structure [5,6, lo] which is preserved by the flow of (2.3). Furthermore (2.4) is a constant of 
motion because 

dhldt = (Sh, dzldt) = (Sh, m 6h) = 0. (2.5) 

Of importance is that (2.5) holds in view of the structure of (2.3) and the skew-symmetry of 
m; the actual form of m is of no consequence. 

We now describe the Hamiltonian space-discretization of (1.1). If J is a positive integer, we 
set h = 1 l(2J) and consider the mesh {xi = jh 1 j an integer}. We denote by Z, the space of 
real l-periodic functions defined on the mesh. Thus each element V E Z, is a sequence 
{r/;.}j=,, k1,, with 5 = y+2J, j = 0, +l, . . . We denote by D the standard pseudo-spectral [ll] 
discretization of a, and by (a, *) and ]I - 11 the L2-inner product and norm in Z,. Then we can 
construct the following discrete Hamiltonian, cf. (2.4), 

H=$(w,w)+~(Du,Du)++(u,U)+$(~~,U), w,u~h,, (2.6) 

and the skew-symmetric operator in Z,, x Z, given by 

0 D 
M= D o . 

[ 1 (2.7) 

With 2 = [W, U]’ the suggested space-discretization of (2.3) is 

2, = A4 SH(Z) . (2.8) 

Just as m in (2.3), A4 in (2.7) defines a Poisson structure, which is preserved by the flow of 
(2.8). Furthermore His a constant of motion. The proof in (2.5) is still valid replacing h, z, m 
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by H, 2, A4 and understanding 6 as meaning gradient. When written in full, (2.8) becomes, cf. 

(1.10, 

W,=-D3U+DU+DU2, U,=DW. (2.9) 

Now (2.9) is discretized in time by the following staggered, explicit algorithm: 

P “+*‘* - W”-“*)/At = -D3U” + DU” + D(U”)* , 

@J n+l _ U”)/At = _DWn+1i2 . (2.10) 

By using the characterization in formula (5) of [6], it is an exercise to show that the map 
[w”-l/2, u”I+ [Wn+1/2, Un+‘] is a Poisson map, i.e. (2.10) preserves the Poisson structure 
associated with (2.7). However (2.10) does not conserve the energy (2.6) and in fact a general 
result by Zhong and Marsden [7] shows that, in the time-integration, it is not possible to 
conserve both the Hamiltonian and the Poisson structure. See also the discussion in [4, Section 

31. 
The scheme (2.10) is supplemented by the initial conditions 

uozcu, wl’Lp, (2.11) 

with (Y, /3 approximations to the grid restrictions rhuo, thwl’* of u(., 0), w(., 4 At). 
For implementation purposes (2.10) is Fourier transformed, so that the time-stepping is 

performed in Fourier space. Then, the method requires, per step, an inverse Fourier 
transform to recover U from 9U before forming U * and a Fourier transform to compute 9U *. 
Furthermore an extra inverse transform is needed whenever one wishes to get output W. 

3. Nonlinear stability and convergence 

In what follows h and At are varied according to At/h* = r, r a constant <2/1r*. For pairs 
[W, U] E Z, x E, we use the energy norm 

IlPK Ul11.2 = iID-1Wii2 - rh*(W U> + llUl(* , (3.1) 

where D-’ is the operator such that D-‘DV= V- (V); (e) denotes the mean value. The 
existence and uniqueness of D-’ 
has eigenvalues 2nij, I jl s J, 

is easily established by means of Fourier analysis. Since D 

rh*(DW, U) s rh*(IDW(] llUl[ s rh24~*J2~(D-‘W~~ IlUll = ~T*]]D-‘W]] llUl[ 

and, since we have assumed r~* < 2 (3.1) defines in fact a norm. Furthermore, for each fixed 
r<2/rr*, the norm ]][W, U]]], is equivalent, uniformly in h, to the Sobolev norm 

(I/D-‘W]]” + IlU1(2)1’2. (3.2) 
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To study the nonlinear stability of (2.10), let {W”-1’2}I_GN, {Un}lGnGN, N= [T/At] be 
sequences of elements of Z,, not necessarily satisfying (2.10), and define the residuals 

R n+112 = (Wn+1/2 _ 
W”-“2)lAt+D3U”-DU”-D(U”)2, n=l,2,...,N-1, 

S n+l = (Un+’ - U”)lAt-DW”“‘2, n-1,2,. . . ,N-1. 

Furthermore let {W*n-1’2}lGnGN, {U*n}IGn4N, be another couple of sequences with corre- 
sponding residuals {R*n+1’2}lsnsN_l, {S*n+l}lGnsN-l. We then have Theorem 1. 

THEOREM 1. Assume that Atl(h2) = r <~/IT~ and that (l.l), (2.1) possesses a bounded 
solution (w, u). Set M = max {]u] IO G x < 1, 0 s t s T} and let p be an arbitrary positive 
number. Then there exists a constant C depending only on r, M, p, T, such that 
if 

max,,,,, ]]U” - rhun(I s $r1’2, 

maxI_GN ]]U*” - r&I] 6 ph1’2, 

then 

max,,,,, ]l[W”-“2 - W*n-1’2, U” - U*“]llE 

<c{IJ[w1’2 - w*“2, u’ - u*‘1JJ, 

+lan;N_L At(]]D-‘(R”+“2 - R*n+1’2)j) + IIS”” - S*“+‘jl)} . 

(3.3) 

(3.4) 

(3.5) 

PROOF. Set the abbreviations En+lt2 = Wn+1’2 - W*n+1’2, F”+’ = Un+’ - U*“+‘, n = 

0 N - 1. Lni112 = Rni1’2 - R*n+1’2, Mnil = Sntl - S*n+l, n = 1,2, . . . , N - 1. Subtract 

the demritioni of Rnt1’2 and R*nt1’2 to get, for n = 0, 1, . . . , N - 1, 

(E n+lf2 _ E”-lf2)/At = _ D3F” + DF” + D{(U”)2 - (U*“)“} + L”+1’2, 

which leads to 

(D-1En+1’2 - D-‘E”-“2)/At = -D2F” + F” - (F”) 

+{(U”)’ - (U*“)‘} - (((47”)’ - (U*“)‘}) + D-1Ln+1’2. (3.6) 

On the other hand, the subtraction of the definitions of Sntl, S*“+’ yields for n = 1, 
2 ,***, N- 1, 

(F r~+l _ F”)/At = JJEnt112 + Mn+’ . (3.7) 

Take the inner product of (3.6) with D-1E”t1’2 + D-1En-1’2 and that of (3.7) and Fn+’ + F,” 
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and add to obtain after manipulation (cf. (3.1)) 

w n+1’2, F”+l]((; - I([E"-"2, F”]]];)lAt 

=(F” _ (F”), I,-1E”+1/2 + D-‘E”-‘/2) 

+((u”)2 _ (u*“)’ _ ({(u”)’ _ (u*“)‘}), D-lEn+l12 + D-1E”-“2) 

+(D-1Ln+1/2, ,,-1En+1/2 + D-9342) + (M”+1, F”+1 + F”) . 

Note that the nonlinear term in (3.8) can be bounded: 

II( - (u*“)‘- ((U”)’ - (u*“)2)]]2 s ]]U” - u*“]12 c ]]u” + u*“]lm]]F”]] 

with 

]]U” + U*n]]m < ]]u” - r#“l], + ]]u*” - ‘#]lrn + 2]]rhU71m 

s2M + h-l12 IIU” - rp”II + h-*‘211U*n - r,$Ij 

~2M+2p, 

in view of (3.3)) (3.4). Therefore the proof is easily concluded by applying the Cauchy- 
Schwarz inequality to each inner product in (3.8) and using the discrete Gronwall lemma. 0 

To study the convergence of the method we apply Theorem 1 with {W”-L’2}l~nsN, 
{Un}lcn~N, a solution of the recurrence (2.10) and {W*“-1’2}lsn4N, {U*n}lsncN, equal to 
the grid restrictions {~~MJ”-~‘~}~~~~~, {r,,~~}~~~~~. With this choice, the residuals 
{R n+112 }14n4N_l, {Sn+l}l~n~N_l are zero, while the residuals {R*n+1’2}l~n4N_l, 
{S*n+l}lsnsN_l are truncation errors. For a smooth solution (w, U) of (l.l), these truncation 
errors are easily seen to be O(At’ + q(h)), w h ere the function cp(h) bounds the spatial part of 
the truncation error and is spectrally small, i.e., it has bounds of the form [q(h)/ s C,h”, for 
each s > 0, or even decreases exponentially with h [ll, 121. Therefore, (3.5) implies 

pi>. JI[w”-“2 - rhWn-1’2, U” - rhu”]IIE 

= o{IJ[w”2 - rhw1’2, u’ - rhul]IIE + At2 + cp(h)} . (3.9) 

It is a simple matter (cf. Section 4) to choose the starting data (Y, fi in (2.11) to ensure 
]](w1’2 - rhw1’2, U’ - r,,ul)IIE = O(At2 + $(h)) with r(l spectrally small, and then (3.9) shows 
the convergence, in the norms (3.1) or (3.2), of the scheme with spectral accuracy in space 
and second order accuracy in time. Note that before { Wn-1’2}lc,,sN, { Un}l_,sN can be 
substituted into (3.5), condition (3.3) should be checked. However the validity of (3.3) for the 
numerical {W”-“*} lsn4N, {U”} lsn__N when h, At are small can be ensured as in [9,13] by the 
application of an abstract theorem due to Lopez-Marcos and Sanz-Sema [14,15]. 
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Table 1 
Soliton error 

2.I h At = 0.1 At = 0.05 At = 0.025 

32 3.75 0.24E + 0 0.26E + 0 0.26E + 0 
64 1.875 0.62E - 2 0.62E - 2 0.62E - 4 

128 0.9375 0.38E - 3 0.95E - 4 0.23E - 4 

4. Numerical results 

Lack of space prevents us from presenting numerical comparisons between (2.10) and other 
available schemes. The following experiment illustrates the convergence properties discussed 
in the previous section. 

We took T = 40 and an intial condition corresponding to a soliton [8] with amplitude 
A = 0.5 located at x = 0. Thus the theoretical solution is given by 

u = OS sech’ ($*(.x - itit)) , 

I 

x 

W= _-m u,( 4, t) dS . 

(44 

The spatial domain was chosen to be -60 s x 6 60 and periodicity conditions were 
imposed. The functions in (4.1) satisfy these boundary conditions up to a negligible remain- 
der. The starting datum W”2 at t = 4 At was computed from u, w at t = 0, by using the first two 
terms of the corresponding Taylor expansion. 

Table 1 provides the L2-errors in the u component of the solution (w, U) at the final time. 
Note that for 2J = 32,64 a reduction in At does not change the error. Thus, for these values of 
J the errors originate, almost entirely, from the space-discretization, i.e., the errors given by 
(2.10) coincide with those of the semidiscretization (2.9). However when 25 = 128, halving At 
results in a division by 4 of the error, showing that then the spatial discretization is far more 
accurate than the integration in time. A compa~son between the rows of the table nicely 
shows the spectral spatial accuracy of the scheme. 
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