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Abstract - -  Zusammenfassung 

The Spectral Accuracy of a Fully-Discrete Scheme for a Nonlinear Third Order Equation. A time-discrete 
pseudospectral algorithm is suggested for the numerical solution of a nonlinear third order equation 
arising in fluidization. The nonlinear stability and convergence of the new scheme are analyzed. Numer- 
ical comparisons with available finite-difference methods are also reported which clearly indicate the 
superiority of the new scheme. 
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Die spektrale Genauigkeit eines rob diskreten Schemas fdr eine niehtlineare Gieichung dritter Ordnung. 
Zur numerischen Lfsung einer nichtlinearen Differentialgleichung dritter Ordnung, herriihrend aus 
einem Str6mungsproblem bei Gasteilchen, wird ein zeitdiskreter Pseudo-spektral-Algorithmus vorge- 
schlagen. Stabilitfit und Konvergenz des neuen Differenzenverfahrens werden aualysiert. Numerische 
Vergleiche mit bestehenden Differenzenschemata sprechen klar zugunsten des neuen Verfahrens. 

1. Introduct ion 

We are concerned with the nonlinear,  periodic initial-value problem 

ut + ux~,x + fl(u2),, + (7/2)(u2),.: + eu,= - 6ut~, = O, 
(1.1) 

- -oo < x <  or,  0 < t _ _ _ T < o o ,  

(1.2) u ( x , t ) = u ( x  + 2~,t),  - -or  < x < oo, O <_t <_.T, 

(1.3) u(x, 0) = q(x), 

where r ,  7, ~, 6 are given real constants  with e, & > 0, the unknown  u is real-valued 
and the given function q is 2~-periodic. The problem (1.1)-(1.3) arises in the theory 
of flow in a gas-particle fluidized bed [6]  with u representing the value of  a spatially 
periodic small per turbat ion  of  the concent ra t ion  of  particles. Christie & Ganser  [3] 
have numerical ly studied (1.1)-(1.3) by means of  finite-difference and modified- 
Galerkin methods.  These authors  discovered that  the numerical  integration of  
(1.1)-(1.3) is a difficult task, due to the delicate balance between the various terms 
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in (1.1); a balance which is likely to be destroyed by the discretization procedure, 
resulting in an unstable scheme. In fact many 'reasonable' time-implicit schemes 
perform in an unexpectedly unstable manner, while the application of other implicit 
schemes leads to stable computations only if the time step is large enough relative 
to the mesh-size in space. In [1] Christie and the present authors have analyzed 
the numerical difficulties encountered in [-3] and suggested a well-behaved finite- 
difference scheme. Since the problem (1.1)-(1.3) is periodic, it is only natural to ask 
whether Fourier spectral and pseudospectral techniques can be successfully applied. 
In this paper we suggest a fully discrete pseudospectral scheme for (1)1)-(1.3) and 
prove that it produces spectrally small spatial errors. 

Our analysis uses the general framework of [8], [9], whose key feature is a definition 
of stability for nonlinear problems that employs the notion of h-dependent stability 
thresholds. The idea of stability threshold goes back to Stetter. In his 1966 paper 
[-10], Stetter, after referring as "stable" to situations where "the global effect e of a 
local perturbation 6 remains bounded in terms of 6", noticed that "we cannot expect 
a nonlinear discretization to remain well behaved for large perturbations" and thus 
was led to the concept of stability threshold. A stability threshold for a nonlinear 
discretization is an upper bound such that the discretization is well behaved for 
perturbations whose size is below the threshold. Furthermore, Stetter pointed out 
[ 10] that "the stability thresholds may decrease with a power of h", the discretization 
parameter. However, for the discretizations that arise in the numerical study of 
ordinary differential equations (ODEs), the thresholds do not actually decrease with 
h so that they may be chosen to be independent of h. For this reason, the general 
framework considered in Stetter's ODE book [,11] does not allow the h-dependence 
of the thresholds. Similarly, H. B. Keller's theory of ODE discretizations 1-7], which 
also uses thresholds, does not cater for the dependence of the thresholds on h. 
Nevertheless, h-dependent stability thresholds are essential in the study of numerical 
partial differential equations (PDEs) 1-10], 1-5] and therefore were included in the 
theory of discretizations developed in [,8], 1-9] by J. C. L6pez-Marcos and one of 
the present authors. In a sense, the material in [8], 1-9] can be seen as a generalization 
of the frameworks of [-7], [,11] so as to also cover the PDE case (see 1-8]). 

It is also appropriate to note that, as shown in l-5], the consideration of h-dependent 
stability thresholds avoids the need for a priori estimates in convergence proofs of 
nonlinear algorithms. This simplification is possible by using the main theorem in 
[-8], [-9] which is based on a deep result due to Stetter [,11]. 

An outline of the present paper is as follows. The new scheme is presented in 
section 2 and analyzed in section 3. The final section is devoted to some numerical 
illustrations. 

The article [-4] also presents a convergence proof of a spectral algorithm within the 
framework of [,8], [9]. 

2. Numerical Method 

We first need some notation. I f J  is a positive integer, we set h = 2~/(2J) and consider 
the grid-points x~ = jh, j = 0, + 1, + 2, . . .  We denote by Z h the space of 2~z-periodic 
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real functions defined on the grid. Thus, each element V E Z h is a real sequence 
{Vj}j=0,• .... such that Vj = Vj+zj, j = 0, • 1, . . . .  The notation [V]~ refers to the 
p-th discrete Fourier coefficient of the sequence V, i.e. 

[ V ] ;  = (1/2n) ~ "  hV~exp(- ip jh) ,  - J  <~ p <_ J ,  O<_j<2J 
where the double prime in the summation means that the first and last termed are 
halved. To recover V from its Fourier coefficients it is enough to evaluate at the 
grid points the trigonometric interpolant V*(x) of V given by 

V*(x) = ~"  [V]~' exp(ipx),  -- ~ < x < ~ .  -d<p<J 
On differentiating this identity and evaluating the result at the grid points we obtain 
the following definition of the spectral difference operator D, mapping Z h into itself 

(2.1) (DV)j = ~"  [V]~' (ip)exp(ipjh), V ~ Zh, j = O, 1 . . . .  --J <p~J 
The relation (2.1) is of course equivalent to the following simple formula for the 
Fourier coefficients 

(2.2) [DV]~ = (ip)[V]~', - J  < p <_ J .  

The powers D 2, D 3 . . . .  of D are, by definition, the composite operators DD, DDD, 
... The product VW of elements of Zh is to be interpreted componentwise. 

With this notation, we discretize in space the problem (1.1)-(1.3) and look for a 
mapping U: [0, T]  ~ ~h such that U(0) is an approximation to the (grid restriction 
of the) initial datum q and, for 0 < t < T, 

(2.3) 
(d/dt)U(t) + D3U(t) + flDU2(t) + (7/2)D2U2(t) + cD2U(t) -- c~D(d/dt)U(t) = O. 

Here, U(t) approximates the grid restriction of the solution u(., t). The time- 
continuous scheme (2.3) has been considered in [2]. 

For  the discretization in time of (2.3), we denote by k the time-step 0 < k < T and 
consider the time-levels t, = nk, n = O, 1 . . . .  , N = [T/k]. The approximations U n 
to u n, grid restriction of u(-, t,), are then computed by using the three-level scheme 

(2.4) k + 2 + flD (U") 2 - (U"-a) z 

--[-2O2(~(Un)2 -~(un-1)2) -3v~O2(~Un-~O n-l) 
U "+1 - U" 

- - 6 D  k = 0 ,  l < _ n < _ N - 1 ,  

which can be seen as a blend between the standard trapezoidal and two-step 
Adams-Bashforth methods. The nonlinear terms and the term with ~ are treated 
explicitly, while the stiffest term arising from uxx:~ is dealt with in an implicit manner. 
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Fo r  implementa t ion  purposes  it is best to t rans form (2.4) to obtain,  on taking into 
account  (2.2), 

- (3 . 1 
yp.+l YP + (ip) 3 ~- fl(ip) -- (2.5) k 2 , ~ Z P  ~Z~,- ) 

2 3 n -- ~Z~- ) + e(ip)2 \2 " -- 2 yp.-1) + ~(ip) 
% 

y~+ l 
--6(ip) -- Y~ = 0 ,  - J<<_p<J ,  l < n < _ g - 1 ,  

k 

where Yp", Z~ respectively denote  the p-th Four ier  coefficients [ U " ] ~ ' y [ ( U " ) 2 ] 2 .  
No te  tha t  in (2.5) there is no coupl ing between different wave-numbers  p. Therefore  
there are no systems of l inear equat ions to be solved. The  step n ~ n + 1 in (2.5), 
once Yp", Yp"-i and  Z~ -1, - J  < p _< J, are known,  requires an inverse Four ier  
t ransform (to obta in  U" f rom Yp", - J  < p < J)  and  a Four ier  t ransform (to obta in  
Zp, - J  < p _< J, f rom (U")2). 

3. Analysis 

We first construct  the energy n o r m  which will be used later in the stability and 
convergence analysis of  (2.4). 

Let  D -1 represent  the ope ra to r  in Z h defined by the relat ions 

D(D-1V) = V - ( V > I ,  (D-1V>  = (V> ,  

where <'  > denotes  mean  value (i.e. (V> = I-V]~ ) and  1 represents the grid function 
which takes the value 1 at each grid point.  In  terms of Four ier  coefficients, D -1 is 
defined by  the formulas  

[D-~V]~ ' = ( ip)-~EV]2, p = + 1  . . . .  , +_d, [ D - W ] 6 '  = E v ] ; ' .  

No te  that  D and D -~ c o m m u t e  so tha t  

D-~(DV) = V - <V>I .  

The  energy n o r m  I1" lli~ in 2s  is then  defined by 

(3.1) IIVIIE= = IID-XVll 2 + 6 2 IIVII 2, 

where [1"II is the s tandard  discrete L2-norm 

IIvLI2= h(b) 2. 
0<j~2J 

No te  that  for each fixed 6 the energy n o r m  is equivalent  to the discrete L2-norm 
uniformly in h. 

Nonlinear stability 
If  V ~ V 1, . . . ,  V N and W ~ W 1 . . . .  , W N are sequences of elements  in 7/h, we define 
the elements 
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(3.2) F "+l 

and 

(3.3) 

Vn+l-vnvn+lv~rn(~~)k "~- 03 Jr- 
2 + f l D  (V") z -  (V"-i)  2 

1,v._.,.)+ _ 0 

V "+l --  V" 
-- 6 D k , l _ < n _ < N - - 1 ,  

w+'+w iI ) - k + 0 3  2 + flD (W" )  2 - ( W " - I )  2 

'921/3 n 2__~(wn-1)2)_~_BO2(~wn ~W n-l) + [ , ~ ( w  ) 

W "+i - W" 
- - 6 D  l < n < N - 1 .  

k 

Thus  {V"}, {W"} can be viewed as solutions of  (2.4) after per turbat ions ,  with {F"} 
and  {G"} being the per turbat ions .  The  stability analysis a t tempts  to est imate the 
distance between V" and W" in terms of  the distance between F" and G". The  
following result holds (note the stabili ty thresholds  in (3.4)-(3.5)): 

Theorem 3.1 (Stability). Assume that the solution u o f  (1.1)-(1.3) is a bounded function 
for  0 <_ x < 2re, 0 <_ t <_ T, and set M = max{lu(x , t ) l :  0 < x <_ 2~,0 < t <_ T}. Let  
I z be an arbitrary positive number. There exist  positive constants ko and C, depending 
only on #, M,  T and on the parameters ~, 6, fl, ? o f  the problem, such that i f  {V"}, 
{W"}, {V"}, {G"} are as above and 

(3.4) max I[V n -- IlnllE ~ ~h i/2, 
O<n<N 
max  }lW" - u"])~ _< ~h i/2, 

O<n<_N 

IV" - WnlI= 

----- C{ll v ~  -- W~ + II v l  -- W'll~ + Z kllF" - G"IIE} 2<n<N 
Proof. Set E" = V" -- W", 0 < n <_ N, L" = F" -- G ", 2 < n < N, and subtrac t  (3.3) 
f rom (3.2) to arrive at  

E "+l - -  E" E "+l E" 
(3.7) k t- D 3 - + 

2 

+~O2[3 ((vn)2--(wn)2)--~((v~n-1)2--(wn-1)2)l 

(3.5) 

then, for  k < ko 

(3.6) max  
O<n'<N 
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+ s D 2 ( 2 E " - ~ E " - * ) - - a D E " + * - - E " - L  "+a n =  1, , N - 1  
k , . . . .  

We now apply the operator D -1 to (3.7). Before doing so, it should be observed that 
on taking mean values in (3.7), ((E "+1 - E")/k) = (L  "+* ), while D2((E "+* + s 
D[3/2((V") 2 -- (W") 2) -- 1/2((V"-*) 2 -- (W"-*)2)] and D(3/2s - 1/2E "-1) have 
zero mean. Thus (3.7) implies 

(3.8) 

2 +/~  ((v")~ - ( w " ) ~ )  - ( ( v " - ' ) ~  - ( w " - * ) ~ )  

~/9 I ~ ( ( v  ) - (w") ~) - 

k + ) 1 =  n =  1 , . . . , N -  1. 

On taking the inner product of this formula with D-*((E "+1 + E")/2) - 6(E "+1 + 
E")/2 and manipulating, we arrive at 

(3.9) ( D - ~ E " + ~  E" 6 E " + ~ -  E",D-~E"+I + E " k  2 c5E'+1 + E " ) 2  

E"+*2 + E") D E n+l + E" , E "+1 + E" 
+ 2 ,D-  2 

= --f l (~((vn) 2 -- (wn)2) - 2((vn--1)2 

E "+1 + E" 6 E"+* + E") 
-- (W"-*)2)'D-1 2 2 

x 6 2 - ~ 1, D-* :2 E" 

1 ] E n + * + E " 6 E " + * + E  n) 
:2 ((V"-l)z - (W"-*)2) ' 0 -1  2 2 

+ D-*L"+I -- 8 ( L " + l ) l ' D - 1  2 ~ 2 ' 

n = l  . . . . .  N - - 1 .  
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The definition in (3.1) shows that the first term in the left hand side of (3.9) equals 
(1/2k)(]lE"+llt~ - HE"]I~). The second term equals (6/4) IID(E "+1 + En)][ 2, since the 
operator D is skew-symmetric. We shall bound the inner products in the right hand 
side of (3.9). It is convenient to note first that, from the threshold conditions 
(3.4)-(3.5), 

2# 
(3.10) IIV" + wn[[oo ~< [] vn  --  Iln[[cr + [I w n  --  unll~ + 2llu"ll| < 2 M  + ~ -  = :  R 

We bound simultaneously the first two terms in the right of (3.9). The Cauchy- 
Schwartz inequality leads to the bound 

( ( w - l )  2 - (w~- l )  2) 1 2 ~ E  2 ' 

Parseval's identity and (3.10) yield the new bounds 

1 

• (I[D-1E"+lll + [ID-~E~II +f61[E~+Xi{ + r 

< [/~[RIIE"+~IIg+ IBIRIIE"I[e2+ IflIRIIE"[12+glfllRIIE~-~[I e. 
We next turn to the term with y. This is split as follows 

(3.11) ~(D[~((vn,2--(W")2,--I((vn-1)2-(Wn-~)2,],D-~En+I-2+E~ ) 

The first term in (3.11) can be bounded with the technique used for the/~ terms. 
For the second inner product in (3.11), we can write 

= ~ g  I(3((V") 2 - (W~) 2) - ((V~-I) 2 - (Wn-a)2), D(E "+1 + E"))I 

31~'1 
< 6 [IV" + W=[I~ [[Enl[ [[D(E "+~ + E~)]I 

8 
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+ ~ l l V  "-~ + W"-~ll~ liE~-Xll l i D ( E "  + E=)II 

< 8 r/liE"l[ 2 + I[D(E n+l + E")II 2 

}7}R o// + ~ IID(E~+X + E~)[I 2) 

Iv [VIR6 + [?[R6 = 381R@IIE'ii2 + ~- r/IIE"-II[ = ~ [IO(E"+X + E~)II z, 

where t/is an arbitrary positive constant. 

Finally, the last two terms in the right of (3.9) may be bounded by means of 
the techniques employed for the/~ and ? terms. In this way, after recalling the 
equivalence between the L 2 and energy norms, (3.9) can be transformed into 

(liE,+II[~ - liE=II~) + ~  IID(E "+t + En)l[ 2 < C(HE"+~IIg + IIE"ll~ 2 + liEn-t[l~) 

+ e~  IID(E "+~ + E")[I 2 + ~ [ID(E "+1 + E")l[ 2 + IlL "+~ [11, 

where C is a constant depending only on the allowed parameters. On choosing r/ 
so that t />  (2~ + ITIR), we obtain 

l(IIE=+llI2 - IIE"ll~) < C([IE"+Xll~ + IIE"II~ + [IE=-llI~) + liL"+~Ii~, 

l < n < _ N - 1 ,  

and Gronwall's lemma leads to (3.6). 

Consistency and converoence 
By definition, the truncation errors 3", n = 2, . . . ,  N are the residuals associated 
with the grid restrictions u n of the theoretical solution. Namely (cf. (3.4)-(3.5)) 

- k 2 ( r  _ 

+ ~ [ u )  - -  (u~- ' )  z + ~ O  2 - ) - 6 D  , 

n =  1 , . . . , N - -  1. 

Taylor expansion with respect to t along with standard bounds for the spatial error 
arising from pseudospectral differencing (see e.g. 1-12, lemma 2.2]) yield a bound 

(3.12) max II3"IIE = O(k = + h~), k, h ~ 0, 
2<n<<_N 

provided that u ~ C3([0, T ] , H  3) c~ C1([0, T ] , H  ~+1) c~ C([0, T-],H "+3) and u 2 
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C([0, T], HS+Z). It  is important  to note that the exponent s in (3.12) (i.e. the order 
of consistency in space) depends only on the smoothness of u. In particular, if u is 
indefinitely differentiable, the truncation error tends to 0 faster than any power of 
h. Fur thermore the truncation error may even be exponentially small [12]. We can 
now prove: 

Theorem 3.2 (Convergence). Assume that: (i) The problem (1.1)-(1.3) possesses a 
unique classical solution u for which (3.12) holds with s > 1/2. (ii) The starting vectors 
satisfy IIU ~ - u~  = O ( k  2 + hS), IIU x - uXlt~ = O ( k  2 + h~), k, h ~ O. (iii) The grids 
are refined in such a way that k = o(hl/4), h ~ O. Then 

max I[U" - u"llE = O(k 2 + hS), k, h ~ O. 
O<n<N 

Proof. We apply the stability bound (3.6) with V" = U", W" = u n, n > 2. The fact 
that U" satisfies the threshold condition (3.4) for h, k small enough is a consequence 
of the main theorem of [8], [9], because the order O(k 2 + h') of consistency is larger 
than the order O(h 1/2) of the thresholds. 

4. Numerical Example 

As in [3] and [1], we consider the parameter  values fl = -0.45000, 7 = 0.37947, 
6 = 0.04216, ~ = 0.09487 and the initial condition q(x) = 0.1 sin(x). 

The missing starting level n = I in (2.4)-(2.5) was computed by a step of the standard 
forward Euler scheme applied to (2.3), so that the overall algorithm is second order 
accurate in time. Table 1 gives the absolute errors at x = re, t = 20 (the true solution 
is u (n ,20)=  -0.258126). Note  that the errors in the first column are roughly 
independent of k. This shows that for 2J  = 4 the spatial errors dominate. For  
2J  = 8, the picture is reversed and the errors show an O(k z) behaviour, so that the 
spatial error is negligible. Such a drastic error reduction when doubling the number 
of grid points is typical of pseudospectral methods and cannot be found when using 
finite differences or finite elements. 

Table 1 

2 J = 4  2 J = 8  
k = 0.1 0 .005827 0 .000794 
k = 0.05 0 .006215 0 .000183 
k = 0.025 0 .006295 0 .000047 
k = 0 .0125 0 .006315 0 .000012 

As a comparison we have implemented the method suggested in [1], with the 
Adams-Bashforth/trapezoidal rule time-stepping used in (2.4). The errors are shown 
in Table 2. Errors corresponding to smaller values of k are not given, as a decrease 
in k increases the computat ional  costs without reducing the error. It  is clear that 
the pseudospectral scheme is much more accurate. As far as computat ional  costs 



196 L. Abia and J. M. Sanz-Serna 

Table 2 

2J = 32 2 J = 6 4  2J = 128 
k=0.1  0.030588 0.006865 0.001118 

go, the most expensive run in Table 1 (2J = 8, k = 0.0125) took 7 seconds CPU 
time in a VAX 11/760 with the Fast Fourier Transform coded by us in FORTRAN. 
The most expensive run in Table 2 took 13 seconds. (The CPU time of the remaining 
runs can be found from those we have just given, as the cost increases linearly with 
J and i/k.) When both accuracy and cost are taken into account the superiority of 
the pseudospectral method is perfectly dear. 

Acknowledgement 

This work is part of the Project PB-86-0313 supported by "Fondo Nacional para el Desarrollo dela 
Investigaci6n Cientifica y T6eniea". 

References 

[1] Abia, L., Christie I., Sanz-Serna J. M.: Stability of schemes for the numerical treatment of an 
equation modelling fluidized beds, RAIRO M2AN 23, 125-138 (1989). 

[2] Abia, L., Sanz-Serna J. M.: A spectral method for a nonlinear equation arising in fiuidized bed 
modelling. In: Numerical Treatment of Differential Equations, Proceedings of the Fifth Seminar 
"NUMDIFF-5" held in Halle, 1989, Karl Strehmel (editor). Leipzig: Teubner (to appear). 

[3] Christie, I., Ganser G. H.: A numerical study of nonlinear waves arising in a one-dimensional model 
ofa fiuidized bed', J. Comput. Phys. 81,300-318 (1989). 

[4] de Frutos, J., Sanz-Serna J. M.: Split-step spectral schemes for nonlinear Dirac systems, J. Comput. 
Phys. 83, 407-423 (1989). 

[5] de Frutos, J., Sanz-Serna, J. M.: h-dependent stability thresholds avoid the need for a priori bounds 
in nonlinear convergence proofs. In Computational Mathematics III, Proceedings of the Third 
International Conference on Numerical Analysis and its Applications, Benin City, Nigeria, 1988, 
Simeon Ola Fatunla (editor) (to appear). 

[6] Ganser, G. H., Drew, D. A.: Nonlinear periodic waves in a two-phase flow model, SIAM J. Appl. 
Math. 47, 726-736 (1987). 

[7] Keller, H. B.: Approximation methods for nonlinear problems with application to two-point 
boundary value problems. Math. Comput. 29, 464-474 (1975). 

[8] L6pez-Marcos, J. C., Sanz-Serna, J. M.: A definition of stability for nonlinear problems. In: 
Numerical Treatment of Differential Equations, Proceedings of the Fourth Seminar "NUMDIFF- 
4" held in Halle, 1987, K. Strehmel (editor). Leipzig: Teubner 1988, 216-226. 

[9] L6pez-Marcos, J. C., Sanz-Serna, J. M.: Stability and convergence in numerical analysis III, linear 
investigation of nonlinear stability, IMA J. Numer. Anal. 7, 71-84 (1988). 

[10] Stetter, H. J.: Stability of nonlineal' diseretization algorithms. In: Numerical Solution of Partial 
Differential Equations, L H. Bramble (editor). New York: Academic Press 1966, 111-123. 

[11] Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. Berlin: 
Springer, 1973. 

[12] Tadmor, E.: The exponential accuracy of Fourier and Chebyshev schemes, SIAM J. Numer. Anal. 
23, 1-10 (1986). 

L. Abia, J. M. Sanz-Serna 
Departamento de Matematica Aplicada y Computaci6n 
Facultad de Ciencias 
Universidad de Valladolid 
Valladolid 
Spain 


