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A STABILIZED GALERKIN METHOD

FOR A THIRD-ORDER EVOLUTIONARY PROBLEM

G. FAIRWEATHER, J. M. SANZ-SERNA, AND I. CHRISTIE

Abstract. The periodic initial value problem for the partial differential equa-

tion ut + uxxx + ß(u )x + 2{u )xx + euxx - ôutx = 0, e , ô > 0, arises

in fluidization models. The numerical integration of the problem is a difficult

task in that many "reasonable" finite difference and finite element methods give

rise to unstable discretizations. We show how to modify the standard Galerkin

technique in order to stabilize it. Optimal-order error estimates are derived and

the results of numerical experiments are presented. The stabilization technique

suggested in the paper can be interpreted as rewriting the problem in Sobolev

form and would also be useful for other equations involving terms of the form

u, - Sulx .

1. Introduction

The periodic initial value problem for the real-valued function u(x, t) given

by

ilA)     ul + Uxxx + ßiu2)X + liu2)xx+EUxx-OUtx = ()> XGR,tG[0,T],

(1.2) u(x + 2K,t) = u(x,t),        xGR,tG[0,T],

(1.3) u(x,0) = q(x),        xgR,

where ß , y, e , S are real constants, e , S > 0, arises in the modelling of flow

in a fluidized bed (Ganser and Drew [7, 8]). The unknown u represents the

value of a spatially periodic small perturbation of the concentration of parti-

cles. Christie and Ganser [3] found that the numerical integration of ( 1.1 )-( 1.3)

presents unexpected difficulties. In fact, several "reasonable" time-implicit, fi-

nite difference and Galerkin schemes are unconditionally unstable, while other
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498 G. FAIRWEATHER, J. M. SANZ-SERNA, AND I. CHRISTIE

schemes cannot be used with small values of the time step. The origin of these

strange phenomena has been studied by Abia et al. [1]. It is expedient to

summarize briefly their findings. First of all, the instabilities are invariably

due to the space discretization. This implies that the difficulties encountered

by Christie and Ganser cannot be circumvented by using a more sophisticated

time integrator such as an automatic package. Second, the instabilities essen-

tially arise from the terms ut + £UXX- Sutx , so that to gain some understanding

of the situation it is sufficient to consider the equation

(1.4) ul + euxx-Sutx = 0,        e,3>0.

Fourier analysis shows that, at low wave numbers, the backward heat equation

combination ut + euxx dominates, and therefore the corresponding Fourier

modes grow exponentially. This growth is linked to the development of slugs

in the fluidization process. However, at high wave numbers, the term involving

utx offsets the importance of the term ut and introduces a stabilizing mecha-

nism which results in the L -well-posedness of ( 1.2)-( 1.4). Unfortunately, most

standard spatial discretizations of (1.4) are unable to deal with the utx term

in such a way that the stabilizing properties are not lost in the discretization

procedure. For example, the standard Galerkin technique based on piecewise

linear test/trial functions on a uniform grid leads to the system of ordinary

differential equations

1 . 2 •       1 • UM - 2(7,. + U¡ ,       17,., - Û, ,(15)        LtJ       _i_ ±77   -4- — Í7        +£    J+l_I_J~l       S    J+_J—=0
V-*>     6  J+l + 3  J    6   J~l h2 2h '

where a dot denotes differentiation with respect to t. When saw-tooth mode

solutions of the form UAt) = (-l)Jf(t) are sought, substitution in (1.5) yields

3dt J      '

that is,

/(t) = exp[12eA 2t]f(0).

Thus, as h —> 0, ( 1.5) possesses solutions which grow exponentially at arbitrarily

fast rates and, therefore, (1.5) is unstable.

The situation just described contradicts an apparently widely-held belief that

Galerkin discretizations of well-posed evolutionary problems are automatically

stable. The purpose of this paper is to show how to modify the standard

Galerkin approach so as to discretize (1.1) and related equations in a stable

manner. The new method suggested in this paper is, in some respects, similar

to Galerkin methods for first-order hyperbolic problems proposed by Dendy

[5] and Wahlbin [10, 11], and the Galerkin method for the Korteweg-de Vries

equation discussed by Wahlbin [11]. Note, however, that these authors were mo-

tivated by the suboptimality of the convergence rate of the standard Galerkin

approach in the problem that they were considering, while here the standard
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A STABILIZED GALERKIN METHOD 499

Galerkin procedure has to be modified in the first place to obtain a convergent

method.

A brief outline of this paper is as follows. Section 2 contains a description of

the new technique. In §3, we prove that the proposed procedure is, in fact, con-

vergent. Furthermore, the rate of convergence is optimal. Section 4 is devoted

to numerical experiments and the final section, §5, contains some concluding

remarks.

2. A modified Galerkin method

We first introduce some notation. The functions considered are real-valued.

On the space L (I), I = (0, 2k), let (•, •) and || • || denote the standard

inner product and norm, respectively. For any integer m > 0, Hm denotes the

Sobolev space of 2k-periodic functions on E with m derivatives in Lloc(K),

where the associated norm is given by

\nm =
dJv

dxJ

1/2

Note that, for ugH ,

(2.1)
i-2n r2n

'n2 I '   ' j / " j     ^ II    II m   "n
u y  = /    u u dx = - I    uu dx < \\u\\ \\u \\,

Jo Jo

where the prime denotes differentiation with respect to x . Clearly, (2.1) shows

that
-'|.2   _  ,

U <5< i   ii2 ,  ii  "nz\Ml +11" II );

hence V IM2 + || u" ||2 is a norm on H   equivalent to 12-

Let L   (I) denote the space of functions » on / such that

Hvll, esssup|u(x)| < oo.

If X is a normed space with norm ||

-i i/2

\nL\x) [   \\v{t)\\\
Jo

dt

and v: [0, T]^ X, then

and   IM|r°°m = esssup||u(r)|L.
r€[0,T]

The piecewise polynomial spaces used in the treatment of ( 1.1 ) are defined in

the following way. Let A = {x0, xx, ... , xN) denote a partition of 7, where

0 = xQ < x, < < xN = 2k .   Let Ik [x._x,xk],  h. x.
Kk-\ '

k = 1,2, ... , N, and h = ma\khk. For a closed interval E, let Pr(E)

denote the set of polynomials on E of degree at most r. Then the piecewise

polynomial spaces we shall use are

(2.2) Sà = {v\vGH2, vGPr(Ik), k = l,2,...,N),
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500 G. FAIRWEATHER, J. M. SANZ-SERNA, AND I. CHRISTIE

where r > 3 is a fixed integer.   It is well known that such spaces have the

property that there exists a constant C, independent of A, such that, for u G
Hr+X,

(2.3) inf ||w - u||„, < ChJ~'\\u\\„j,\     i ue5ji n// - ii  ii//

with i = 0, 1,2 and i < j < r + 1. In fact, in what follows, the spaces SA in

(2.2) may be replaced by any other subspace of H   for which (2.3) holds.

The weak form of the initial value problem (1.1) on which the new semidis-

crete Galerkin method is based is derived in the following way. We first take the

inner product of ( 1.1 ) and the test functions v - Svx , with v G H2 arbitrary,

to obtain

(u, + uxxx + ß(u)x + \(u)xx + euxx - ôutx , v - Svx) = 0,

or

(ut, v) - S(ut, vx) + (uxxx, v - <5vx) + 2ß(uux, v - Svx)

+ 7((uux)x, v - Svx) + e(uxx, v - Svx) - ô(utx , v) + ô2(utx , vx) = 0.

Then we integrate the second, third, fifth, and sixth terms by parts and simplify

to obtain the required weak form of (1.1), namely

(ut, v) - (uxx, vx - 6vxx) + 2ß(uux , v - Svx)

- y(uux, vx - Svxx) - e(ux , vx - ôvxx) + ô (utx ,vx) = 0,    for all v G H .

Note that all inner products appearing make sense if, for t G [0, T], u(t) G H2

and ut(t) G Hx .

The semidiscrete method for ( 1.1)—( 1.3) consists in seeking U: [0, T] —► SA

such that {7(0) is an approximation to the initial datum q and

iVt,v)-{Uxx,vx-ovxx) + 2ß(UUx,v-ovx)-y(UUx,vx-6vxx)

- e(Ux , vx - 6vxx) + S2(Utx ,vx) = 0,    for all v G SA.

Note that if {0;}  is a basis for SA and  U(t) = £7ay(f)<Pj, then (2.4) is

equivalent to a system of ordinary differential equations,

Mà = ¥(a),

where a is the vector of unknown coefficients {a }, F is a nonlinear function,

and M is the matrix with entries (0/5 <P ) + ¿2(í>', <p').   Since M is the

Gram matrix of the basis {<l>j} with respect to the inner product [tj>, y/] =

((f), ip) + ô ((/>', ip'), it follows that M is nonsingular. Thus (2.4) possesses a

unique solution defined, at least, for ; e [0, rmax), ?max = imax(/z).

3. Error estimates

In order to estimate the accuracy of the semidiscrete approximation U, it

is necessary to introduce a suitable elliptic projection W of the solution u of
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(1.1 )—( 1.3). To define W, we require additional notation. Let B = Br
2 2

denote the bilinear form on H x H   defined by
.u     u.     ,    ,i     n,     .    ,i     i.

P(<P, V) = à(4> ,¥ ) + (cyi> ,¥ ) + ic2<? , ¥ )

+ (cx(f>', i//) + K(4>, y/),    for all <p, ip G H2,

where cx, c2, c} are bounded 27t-periodic functions of x, and K is a suffi-

ciently large positive constant whose choice will be discussed momentarily.

Clearly, B is continuous; that is, there exists a constant C such that, for all

<t>, yen2,

(3.2) \B(^,ip)\<C\mH2\\ip\\H2.

Furthermore, note that C only depends on ô , K, and \\Cj\\Loo, i = 1, 2, 3 .

On the other hand, since (2.1) implies

II    'n2   ^      1    II    "ll2    ,     ^11     II2||« ||    < 2T,||w  ||   + ¿IMI   •

where b is an arbitrarily large positive constant, it is easy to show that K can

be chosen sufficiently large that

(3.3) ß(0,0)>^{||/||2 + ||0||2},        4>GH2;

that is, B is coercive in H . The size of K depends only on ô and ||c,||Loo,

/=1,2,3.
We now define W: [0, T] — SA by

(3.4) B(W(t),v) = B(u(t),v),        vgSa,  tG[0,T],

where, for each t G [0, T], the functions c¡, i = 1, 2, 3, in (3.1 ) are chosen

as

c3(-, t) = 1 +eô + yôu(-, t),

(3.5) c2(- ,t)= - 2ßSu(-, t) - yu(-, t) - e,

cx(-,t) = 2ßu(-,t).

Under the assumption that u(-, t) G H for r e [0, T] (necessary for u

to be a weak solution), the functions ci■, i = 1, 2, 3, in (3.5) are in L°°(I).

Therefore, (3.2) and (3.3) hold, and the Lax-Milgram theorem (Ciarlet [4])

implies that W is uniquely defined.

Theorem 3.1. Assume u, ut G L°°(Hr+ ), r > 3. Then there exists a constant

C, depending on u, ß, y, ô, e, T, r but independent of t and of the partition

A, such that

-,/

(3.6) ~tiu-W)(t) <Chr+x  ',       1 = 0, 1, / = 0, 1,2, tG[0, T].

\ ti-

lt i

embedding theorem. Therefore, the bilinear form B defined by (3.1) and (3.5)

Proof. We first note that u G L°°(Hr+x) implies u G L00^00), via the Sobolev
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502 G. FAIRWEATHER, J. M. SANZ-SERNA, AND I. CHRISTIE

is continuous and coercive uniformly in t g [0, T], and the estimate (3.6),

with / = 0, / = 2 follows from the approximation property (2.3) in a standard

way.

Next we address the case / = 0,  i = 0 by a Nitsche argument.  For t G

[0, T], we set n(t) = u(t) - W(t) g H2 and define 4>(t) G H2 by

(3.7) B(v , tp(t)) = (v , n(t))   for alive//2.

By applying the Lax-Milgram theorem to B*, where B"((f>, tp) = B(y/ ,<f>),

\p, 4> G H , it follows that <fi is uniquely defined. Integration by parts in (3.7)

reveals that <p satisfies, in the sense of distributions,

^xxxx - iC^xx)X - iC2<t>X)X - iCl<t>)x +K4> = n.

Since ux G L°°(L°°) and therefore c, G L00^00), i = 1, 2, 3, it follows by

standard techniques that n G L   implies that <p G H   and

(3.8) 10(011^4 <C||i7(i)||L2,        tG[0, T],

where C depends on S, \\c¡\\L^,Loo,, and ||(í'i)x||/.°°(¿°°) • Then, for x € SA,

we have, from (3.7), (3.4), and (3.2),

(3.9) IMI2 = B(n, n) = B(n ,<j>) = B(r1,<j)-x)< C\\n\\H2 • u - x\\H2.

From (2.3), x £ SA can be chosen such that

(3.10) u-x\\H2<ch2u\\H..

On combining (3.8), (3.9), (3.10), it follows that

IMI < ca2||i/||wj,

which implies (3.6) with / = 0, / = 0. The case 1 = 0, i = 1 follows from

interpolation between the cases 1 = 0, i = 0, and / = 0, i = 2.

To prove (3.6) for / = 1, we must differentiate (3.7) to obtain, for ^ e 5A,

(3.11) B(n,, x) = (¿3nx, xxx) + (c2t]x , Xx) + (cxnx,X),

where

c3 = -you,,       c2 = (2ßo+ y)u,,       cx = -2ßu,.

Since u, G L00^00), it follows that cx, c2, c3 G ¿"(L"). Then, using (3.3)

and (3.2), we can write, for x € SA,

\ i\\r\xxtt + H\\2) < B(t1,, n,) = B(n, ,u,-X) + B(n, ,X-W,)

< c{hxx,\\ + \\n,\\)\\ut - x\\H* + (c,nx, (x - wt)xx)

+ (a2r]x,(X-W,)x) + (cxr¡x,(x-Wt))

< C[{\\nxx,\\ + \\nt\\}\\u, - x\W + Nil//' • II* - WtÏÏH>]

< ' KxtW2 + ̂ Hf) +C[\\u,-xÙ + \\r,\\U-
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In view of the approximation properties of SA, these estimates prove the case

/ = 1, i = 2 in (3.6). To prove (3.6) with 1=1, 7 = 0, techniques similar

to those developed by Dupont et al. [6] can be used. Finally, the case 1=1,

i = 1 follows from interpolation.   G

We are now in a position to provide error bounds for the solution U of (2.4).

Theorem 3.2. Assume that u, u, G L°°(Hr+ ), r> 3, and that U(0) is chosen

to be the projection W(0) of u(0). Then, for h sufficiently small, the solution

U o/(2.4) exists for tG[0, T] and

(3.12) ||m-l/||¿oc(L2) + a||m-í7||loo(/íi) + /!2||m-í7||L2(//2) = 0(hr+x)   ash^O.

Proof. Since L°°(HX) c L00^00) with continuous imbedding, standard argu-

ments (see, for example, Wahlbin [11]) can be invoked to show that we need

only prove that (3.12) holds under the assumptions that U exists up to t = T

and that U G L00^00). As before, we set n = u-W. In view of the estimate

(3.6) for r], it is sufficient to show that Ç = U - W satisfies

(3.13) llfll^j + IICIL-,*.) + llill/^) = 0(hr+x).

A simple calculation establishes that, if v G SA ,

iCt^)-(Cxx,vx-ovxx) + 2ß(UCx + WxC,v-Svx)

-yivrx + wxr.,vx-ôvxx)-e(cx,vx-ôvxx) + ô2(rtx,vx)

= (r,l,v) + 2ß(Wxn,v-ovx)

-y(rVxn,vx-ôvxx) + ô2(t1,x,vx)-K(n,v).

On setting v = Ç, in this equality, we obtain

537HCII2 + í||C„ll2-(C„,Cx) + y¿BCJ2

(3.14) =eKj2 + eS(Cx,Cxx) + y(UCx + Wxi:,Cx-ÔCxx)

-2ß(UCx + WxC,C-OCx)-y(lVxn,Cx-OCxx)

+ S2(n,x,Cx)-K(n,C).

Now, by periodicity,

(3-15) (C„,Cx)-0.

The boundedness of U assumed a priori, and the boundedness of Wx implied

by (3.6), enable us to write

(3.16) y(ucx + wxC, Cx - sçxx) < CdlCII2 + liyi2) + IlliJI2,

(3.17) 2ß(UCx + wxr,t;-örx)< c(||Ç||2 + ||CJ|2),

and

(3.18) y(Wxn, Çx - âÇxx) < C(\\n\\2 + \\ÇX\\2) + ||KJ|2.
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Moreover,

(3-19) i»tx>tx) = -i»,>U<cH\\2 + l\\U\2

and

(3.20) -K(r,,í)<C(||>/||2 + ||C||2).

On substituting (3.15)—(3.20) in (3.14) and simplifying, we obtain

^(IKII2 + IICJI2) + \UXX\\  < C[\\Q\2 + Hi/ + \\n\\2 + \\nfl

Now Gronwall's lemma leads to (3.13) and the proof is complete.   G

Finally, we show that the Galerkin technique discussed in this paper does

in fact overcome the stability problems described in the introduction. As was

pointed out there, the instabilities stem from the terms present in the linear

model (1.4), so that it is sufficient to analyze our technique when applied to this

model, or equivalently to consider (1.1) with ß = y = 0.

Theorem 3.3. When ß = y = 0, the Galerkin solution defined in (2.4) satisfies

'he H   Lax-stability estimate

||c/(i)||2 + i2||c/x(i)||2<exp(2ei/J2){||f7(0)||2 + a2||c/x(0)||2},        t > 0.

Proof. The proof follows easily by choosing v = U in (2.4) and applying the

energy method as in the proof of Theorem 3.2.   a

4. Numerical results

Problem (1.1)-(1.3) was solved numerically by selecting SA in (2.4) to be the

space of periodic piecewise Hermite cubic polynomials on a uniform partition

of /. As in Abia et al. [1], the parameter values in (1.1) were taken to be

ß = -0.45 , y = 0.37947 , S = 0.04216 , e = 0.09487 , and the initial condition

was q(x) = 0.1 sin*.

Numerical experiments showed that the constant K in (3.1) could be chosen

such that the nodal values of the projection 1^(0) in Theorem 3.2 and its

derivative W'(0) were essentially identical to the nodal values of q and its

derivative q , respectively. It was decided therefore to take the interpolant of

q(x) as the initial condition for the system of ordinary differential equations

resulting from (2.4). This system was then integrated in time by means of the

trapezoidal rule with a small fixed time step. Newton's method was used to solve

the system of nonlinear equations arising at each time step. The initial estimate

of the solution was taken to be that computed at the previous time level, and

the Jacobian, which is periodic block tridiagonal, was updated at each iteration.

The iterative process was continued until the maximum norm of the difference

between successive iterates was less than 10~

As a comparison, we ran the second-order finite difference method suggested

by Abia et al.   [1], also using the trapezoidal rule to advance the solution in
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time. While this scheme only computes nodal approximations to u, second-

order approximations to u at the nodes are easily determined by standard

central differencing (see [1, Theorem 3.1]).

In Table 1, we present approximations to u and u at the point x = 0,

t = 1 computed using (a) the new Galerkin method with Hermite cubics, and

(b) the method of Abia et al., with At = 0.001 in each case. The Hermite cubic

approximations to u'(0, 1) display an 0(h ) behavior, while the approxima-

tions to w(0, 1) and u(0, 1) computed with the method of Abia et al. exhibit

0(h ) convergence. Note that the Hermite approximation to u(0, 1) is highly

accurate even on the coarsest partitions. Since each method requires a similar

amount of computational effort, namely, the solution of periodic pentadiago-

nal linear systems in the method of Abia et al., and periodic block tridiagonal

systems with 2x2 blocks in the case of the Galerkin method, the Galerkin

method should clearly be preferred.

Table 1

Approximations to u(0, 1) and u(0, 1) computed using (a) the

new Galerkin method; (b) the method of Abia et al. [1]

(a)

u(0, I) u(0, I]

(b)

u(0, 1) u(0, I)

0.1

0.05
0.025
0.0125
0.00625

8.863513E-2 5.572576E-2

8.864256E-2 5.585955E-2
8.864264E-2 5.588262E-2
8.864264E-2 5.588423E-2
8.864264E-2 5.588433E-2

8.2864E-2 5.7047E-2
8.6747E-2 5.6228E-2
8.8146E-2 5.6049E-2
8.8517£-2 5.5729E-2
8.8611E-2 5.5896E-2

It should be mentioned that we also conducted numerical experiments with

fixed values of h and decreasing sequences of Ai. As predicted, no instability

was encountered.

5. Concluding remarks

Equation (1.1) is of the form

(5.1) u,-ôu,x = L(u),

with L a nonlinear differential operator which does not involve derivatives with

respect to /. The method suggested in this paper is based on the weak form

(5.2) (ut - Su,x, v - Svx) = (L(u), v - ôvx).

A formal integration by parts in (5.2) yields

(5.3) (u, - Sutx + ôulx - S2ulxx , v) = (L(u) + ô(L(u))x, v),

a weak form of the equation

(5.4) u,~s u,xx = Liu) + ôiLiu))x-
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In turn, (5.4) can be obtained by differentiating (5.1) to get

(5.5) u,x - ôu,xx = (L(u))x

and then eliminating u,x between (5.1) and (5.5). Therefore, the novel weak

form (5.2) of (5.1), based on the use of the somewhat artificial test functions

v - Svx , could have been obtained alternatively by (i) manipulating the strong

form (5.1) to eliminate u,x and arrive at (5.4), (ii) forming the familiar weak

form (5.3) of (5.4), and (iii) integrating by parts to obtain (5.2).

The observation which we have just made may be useful in other contexts.

For instance, suppose we wish to discretize (1.1) by finite differences, and for

simplicity let us suppose that we are dealing with the linear case ß = y = 0. The

discretization of (1.1) based on the standard centered replacements of d/dx,

d2/dx2 , d3/dx3 is unstable (Abia et al. [1]). On the other hand, if we first go

to the form (5.4), which in the linear case becomes

U, - ô2utxx + £Uxx + il+ EÔKxx + ÓUxxxx = ° >

and then perform standard central differencing, we obtain a stable semidiscrete

scheme. An alternative way of constructing stable finite difference schemes for

(1.1) has been suggested by Abia et al., but their construction is perhaps of a

more ad hoc nature than the one we have just presented.

It appears that the combination u, -S u,xx in (5.4) is more easily discretized

than the combination u, - Su,x in the original form (5.1). It is perhaps useful

to emphasize that the combination u, - ô u,xx appears in the so-called Sobolev

equations [2, 9].
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