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We are concerned with polynomials {pr’j that are orthogonal with respect to 

the Sobolev inner product 

where i is a non-negative constant. We show that if the Bore1 measures dq and d$ 

obey a specific condition then the 1):’ ‘s can be expanded in the polynomials 

orthogonal with respect to dq in such a manner that. subject to correct normaliza- 

tion, the expansion cocllicients, cxccpt for the last. are independent of II and arc 

themselves orthogonal polynomials in i. We explore several examples and 

demonstrate how our theory can be used for efficient evaluation of Sobolev-Fourier 

coefficients. 1 1991 .Academlc I’rcs.~ Ice 

I. ISTRODUCTION 

Orthogonality in Sobolev spaces has attracted considerable attention in 
recent decades [l, 3-6, 8, 10, 17-20). In the present paper we propose to 
approach that oft-discussed problem from a different point of view. 
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Throughout, the term “Bore1 measure” is used to refer to positive Bore1 
measures cp on the real line, satisfying the conditions 

Xkdcp(X) < x, k = 0, 1, 2, . . . 
x 

(1.1) 

(finite moments) and 

I 
= P(X)&(X)>0 (1.2) 
-x 

for each polynomial p that is non-negative for all real x and not identically 
zero (positive definiteness). 

Thus, if dq and dtj are two Bore1 measures and 1 is a positive constant, 
the Sobolev space Wi[( - 30, x), dq, d$] with the inner product 

(.A g>; := j- fb) g(x)&(x) + 1. j= f’(x) g’(x) &lx) (1.3) 
-* -JY 

contains the space of all polynomials and it makes sense to study polyno- 
mials that are orthogonal with respect to ( ., . );.. Specifically, we say that 
the nth degree polynomial pc’, p:’ f 0, is Sobolev-orthogonal if 

(Xk, pj,“‘);. = 0, k=O,l,..., n-l. (1.4) 

Note that, of course, the parameter i. can be absorbed into d$. This, 
however, will defeat one of the purposes of our investigation: to examine 
the dependence of py’ upon A. Note further that the condition (1.2) is 
equivalent to the requirement that the support of dcp should contain an 
infinite number of points. In other words, we do not allow discrete 
measures of the form 

z. 

z f(X) de(x) = -i: ~kuftxk). 
k=O 

Much is already known about Sobolev-orthogonal polynomials. Some of 
the familiar properties of the “standard” orthogonal polynomials can be 
translated intact into the more general framework, with obvious 
amendments: for example, among all nth degree polynomials with a fixed 
coefficient of xn, pa’ minimizes the norm that is induced by ( ., .>i [lo]. 
Expansion of functions in { py’,,“,, with respect to the inner product (1.3) 
is also a straightforward extension of the classical theory-f. [I, 4, IS]- 
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and it has attracted recent attention [6] because of its relevance to the 
analysis of spectral methods for partial differential equations. However, 
most properties fail or need be paraphrased to a large extent: three-term 
recurrence relations are, of course, lost, as is the Christoffel-Darboux 
formula. More importantly, zeros of pi,” need not belong to the support of 
the underlying measures [I]. 

Two sets of measures have been investigated in some detail: 

i 1: - 1: .K< 1 <.r - 1: 

cp(s) = l+b(x) = ,K: - 1 6.\-6 1; 

(the Legendre case) and 

q(x) = lj(x) = 
i 

- 1: .K < 0; 
-(> ‘1 0 < s 

(the Laguerre case). This led to the derivation of explicit forms, recurrence 
relations, and localisation of zeros [ 1,4, 81. 

Another problem that has recently received some attention is that of 
Sobolcv orthogonality with atomic measures, inclusive of the case of d$ 
being supported on a finite set [17, 203. Although, strictly speaking, it 
ceases in that case to be a Bore1 measure, ( ., .); is, nonetheless, a positive 
inner product, as long as dcp is a genuine measure. 

In the present paper we study the expansion of py’ in the basis spanned 
by ~0, ~1. . . . . in, where the p,,‘s arc orthogonal (in the usual sense) with 
respect to the inner product defined by the first Bore1 measure, dqx In other 
words, p,, s D, p!,“, where D,, $ 0 is a constant. Naturally, an expansion of 
the form 

pj,“(x)= i r:,,‘(i) pk(.u), II= 1, 2, . . . 
k-l 

(it follows from (1.4) that r r’= 0 for n > 0), is always well defined. - 

However, it turns out that, subject to an ex.tra condition being imposed on 
the measures I+, dlc, ) and under correct normalization, the coefficient rp’ 
depends only on its subscript for all k = 0, 1, . . . . II - 1. In other words, 
subject to the pk’s being correctly normalized, there exist %,(I.), r2(1.), . . . 
such that 

pj,“(.u) = C xk(j.) p,.(x) + r!,“‘(i) p,,(.r) 
k=I 
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for every n = 1, 2, . . . . This leads infer alia to a recurrence relation of the 
form 

where en can be written explicitly in terms of the IQ’s The last identity can 
be employed to evaluate efficiently expansions of W: functions in Sobolev- 
orthogonal polynomials. Section 2 of the present paper is devoted to the 
formal derivation of the aforementioned results, whereas in Section 3 we 
study specific examples of {&p, d$ j that obey the required condition and 
in Section 6 we present the fast algorithm for the evaluation of Fourier- 
Sobolev coefficients. 

Section 4 is concerned with an extension of our framework, whereby p!,” 
can be expanded in p,,,‘s with m and II of the same parity and the coef- 
ficients of this expansion, except for the last, are independent of n. 

The coefficients rk (note that we can remove the superscript) turn out to 
be themselves orthogonal polynomials, and we devote Section 5 to the 
determination of underlying measures. 

2. COHERENT PAIRS 

Let dq and & be two Bore1 measures and i.20 a given constant. We 
recall the definitions (1.3) and (1.4) of a Sobolev inner product ( ., .>,. and 
a Sobolev-orthogonal polynomial pf’. Moreover, we let p,, and qn denote 
orthogonal polynomials with respect to dv, and d$, respectively: 

where 6,,,,, is the delta of Kronecker. The p,,‘s are normalized so that 
p!,” = p,. We define numbers d,,,,, = d,., by 

d = m.n 5 cc hz(x) p:,(x) 44x), m,n=O. l,.... 
-cc 

Obviously, since (po, p,, . . . . p,} span the linear space of nth degree 
polynomials, there exist rr), ry), . . . . I-:) such that 

Pktxf. (2.1) 
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Of course, the rk’s are functions of I.. In fact, it will be shown below that, 
under appropriate normalization, the rk’s are polynomials in i.. We note 
that, since (1.4) with k = 0 implies that 

necessarily rc’ = 0 for all n b I and the sum extends from k = 1. 
According to the definition (1.4) pi,‘-’ annihilates pO, . . . . p, _, in the 

Sobolev inner product. We utilize the expansion (2.1) to obtain n - 1 
homogeneous linear equations in the n unknowns r’f”, r?‘, . . . . r)tn’: 

(PI::‘7 Pm >;. 

= i 43~) {J-, Pk(-Y) P,,(-xl &(x1 + i. \xeL p#) p:,(x) d+(x)) 
k -1 

=cmt$‘(i)+i i d,.,,rp’(i.)=O, m=1,2 ,..., n-l. 
k=l 

We complement this system with the normalizing equation 

c,rj,“(j.)+i i dk,,,rjm’(i)=w(j.), 
k=l 

where 0) will be assigned a specific value in the sequel. Reverting to a 
vector form, we have the system 

(C + iD) r”” = ox,, (2.2) 

where 

C := diag{c,. c2, . . . . c’n ), D :=(dk.,)k.,=,. .>I. 

p’ .- 01’ (n’ .- [r, , r2 , . . . . rr’]‘; and e, is the nth unit vector. The formal solution 
of (2.2) by Cramer’s rule is 

r ‘“‘=o(C+i.D) ‘e,=o 
adj(C + iD) 
det(C + i.D) en’ (2.3) 

where adj B is the “adjoint” matrix of B. This motivates our choice of 
normalization, 

det(C + i.D) 
0 := 

n;.=;ci( . 
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Operating on (2.3) yields at once 

x det 

‘c, +i.d,,, id,,, ... 

idz, , c2 + id,,? ... 

. . 

j-d,.,, I PI 

id,.,, I P2 

i.d,, I. I i.4, - ,. 2 . (‘,? , + j-4, ,.,, - I P,, 1 

4 I a,,, 2 . , j-4,. ,, I P,I 

Note that our choice of (9 implies that, indeed, pj,()‘- pn. 
The last formula is, as such, neither surprising nor very interesting for 

arbitrary Bore1 measures. Things, however, change when we confine our 
attention to a subset of measures that possess an important feature: We say 
that the pair {dq, dt+b } of Bore1 measures is coherent if there exist non-zero 
constants C,, Cz, . . . such that, for all k, m = 1, 2, . . . . Ck C,,,d,,, is a function 
of min{k, m} only. Without much danger of confusion, we write 

1 (2.4) 

J 

We renormalize the underlying polynomials 

C”, Pm t-+ Pm9 C,,, Pl,:’ ++ P!f’. m=O, I, . . . . 

Hence dk.,,, H L, [ k.nr , ( and Cit.,” H c,,,. This produces the expression 

i 

c, +id, id, ... id, PI 

id, c2 +/Id, ... id? P2 

pf:)=nii:ckdet i ! ‘.. i i . 

id, id, . . c,,.. , + j-4, , P,, , 

id, Ad2 ... Ad, - 1 P, 1 
Next we subtract the bottom row from the remaining row to obtain 
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x det 

0 0 0 

id, /id, i.d, 

. . j-Cd, -4 ,I PI-P2 

. . j-id2 - 4, ,) P2- P” 

. . 44 - 4, - ,) P3 - Pn 

. . 

. 

cn I 
id,. , 1 

(2.5) 

P,, - 1 - Pt 

P, 

Except for the bottom row, we have an upper triangular matrix. To 
evaluate its determinant in a closed form, we seek Gaussian elimination 
coefftcients to induce zeros into the bottom row: These are functions 
xl(A), r,(i.), . . . . CI~ -,(A) such that 

m-- I 
i.d,,, - i c (d, - dk) rk + c,,r,,, = 0, m=1,2 ,...) n-l. (2.6) 

k=l 

Note that the a,,,? do not depend on n. 

LEMMA I. The solution of (2.6) obeys the rhree-term recurrence relation 

cn,+,(4n-4n -,)a,+, 

=(c,,(d,+I-d,,-I)+j.(d,,+l-d,)(d,-d, ,))a, 

-c m-~(4n+~-4,)~,, 1. (2.7) 

ProoJ We set 

@ :=c nrc,(dm-4, ,)a,,,+,-(c,,(d,+,-d,-,) 

+ 44, + , -d,,,)(d,-d,,-,)}a,,-~, ,(4n+~-4,)~, 1. (2.8) 

Rearranging (2.6) yields 

m-l 
c (d,,,-dk)ak-d,, 

k-l 

We replace c,x, for 1 E (m - 1, m, m + 1) in (2.8) by the above expression 
to obtain 
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WI 
@J = i. ( d,,, - d,,, , ) 2 ( d,,, + 1 - dk ) ZA - dtn + I 

k-l > 

“’ - (4, I I - 4, ,I 1’ (dn,-&Irk-4, 
k .- I > 

“’ - (4, + 1 - 4,) 1’ (4, I - dk ) r!i - 4, I 
k=l 

- (cr,,, + 1 - 4,,)(L - 4, 1) rnr = 0. I 
The proof follows. 1 

Note that, in order that (2.7) defines !I,,?- ,, it is necessary that 
d,, - d, , # 0. It can be easily seen that this is. in fact, the case: if 
d,,, = d,,- , then the nrth and (m - 1 )st rows of the matrix D coincide and 
D is singular. This is impossible. because D is a Gram matrix of linearly 
independent polynomials. An alternative proof is implicit in the statement 
of the second corollary to Theorem 2. 

The three-term recurrence relation (2.7) is accompanied by the initial 
conditions 

(2.9) 

(2.10) 

Once the 2,‘s have been determined by (2.7). (2.9) (2. lo), we evaluate 
the determinant in (2.5) by forming the product of the diagonal terms, 
except that we must replace p,, by the outcome of the elimination proce- 
dure in the (n, n)th entry of the matrix, namely p,, + xi = t a,(~, - p,). The 
result is 

,I - I 

pj”‘(x) = c c&,(i) p,,(x) + 1 - “f 
( 

x,(j.) p,,(.y). 
> 

(2.1 1) 
VI = I ,,I = I 

Comparing with (2.1), it follows at once that we can identify v:’ with zm 
for m = 1, 2, . . . . n - 1. In particular, it is a consequence of our analysis that 
r(“) is independent of n for m = 1, . . . . tz - 1. Before we formulate our results 
il a theorem, we need to take care of the coefficient of p,,. 

The identity (2.6) implies that 

,,I I ,n - I 

i. c dkzk = -o,,,cc,,, - id,,, + id,,, c ciA 
k=l k-l 

(2.12) 
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We shift the index by one in the last equation and add i.d,,, I ~I?, , to both 
sides to obtain 

)?I 1 

i C dkak= -c,, lrnr I- E.d,, , + id,, I';( Xk, (2.13) 
k I 

Next, we solve Eqs. (2.12 t( 2.13) for xr- ,’ xk and CT- ,’ dk rk. This yields 

Substitution into (2.11) linally produces the expansion of Sobolev- 
orthogonal polynomials: 

THEOREM 2. Jf {dq,d$ 

p!f’(.u) = “XI a,(i 
k-l 

jbrm u coherent pair then 

Pk(-Y) - 
c,,a,(j-1 -c,, , a,, ,(j-) 

44-4, ,) 
P,b L (2.14) 

\t*hercg aI, r2, . . . . a,, - , UheJ the three-term recurrence rclution (2.7). 
C’onseyurntl~, the coejficients rr’, k = 1, . . . . n - 1, depend onI?* on [heir 
subscript. 1 

COROLLARY. Sut~jccr to coherence, it is Irue rhar 

p!,j.J It-K) _ pj,;.)(s) = _ cfJ + I apa + I( i ) - cna’JO.) (p, t ,(-y) - p,,(,v)). 
44, + I - 4) 

(2.15 

PrwJ We subtract (2.14) from a corresponding expression for p!,‘: , 
This produces 

pi;:,(x)-pjf’(.r)= -~~t+‘:;;‘(i)-(..2~‘(1:)p,,, ,(.u)+a,,(j.)p,,(,r) 
. ,,,l-d") 

+ c,,a,,(j.) - c,, ,an- ,(j.) 
44-4, ,I 

P,,(.~). (2.16) 

It follows from (2.6) that 

ct, I 1 a,? e ,0-l - c,r,(i.) 
= ir,,( j.) + c,a,,(i) - c,, -, an.. ,(i.) 

4, , I - 4 4, - d,, - , 

and substitution in (2.16) furnishes the required expression. 1 
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The definition of coherence may seem at first sight rather strange and 
difficult to verify. Fortunately, we are able to show that it is equivalent to 
a condition that is far less technical. 

THEOREM 3. The pair ( dq, d$ } is coherent if and only if there exist non- 
zero constants C, ~ C,, ,., such that 

4&)= c,,+, PL+ If-y)- C,,A(x), n = 1, 2, . . . . (2.17) 

Proo/: Let us first assume that {dq, d$} is coherent. Hence there exist 
non-zero C, , Cz, . . . such that 

and it follows at once that 

* -L 

J , ~:,,(-~)(c,,+, pi,+ ,(.x) - C,P:,(.Y)) d+(x) =O, m = 1 , 2, . . . . n. 

But { P; 3 A, . . . . P:, ) spans all (n - 1 )th degree polynomials, hence, (2.17) is 
true. 

The opposite statement follows just as readily, be reversing our argu- 
ment: assuming that (2.17) holds, we have 

for all m = 1, 2, . . . . n, therefore, 

d nr.n I I = c, d,,,.,,, 
C 

m = 1, 2, . . . . n. 
n+l 

It follows that C,C,d,., is independent of n for all m < n and depends only 
on m = minim, n I- precisely the definition of coherence. 1 

COROLLARY. Subject to coherence and assuming, without loss of 
generality, that C, = 1, it is true that 

d fr+l- cl, = e, > 0, n=O, 1, . . . . (2.18) 

In particular, d,, _ , - d,, never vanishes. 



SOBOLEV ORTHOGONALITY 161 

Proof Subtracting 

d,, = [ ’ ;I pX.r) Id, , I(X) 44-r) 

I, 

d tl+1= ( l-c,+ 1 ?(x) dl+qs) 

- -x 

results in 

Note that we have exploited the identity 

7 J-, P;,(-u) q,,(-r) dWu) = 0 

in the derivation of the last expression. 1 

COROLLARY. Subject to coherence and assuming, without loss ?f 
generality, that C, = 1, it is true that 

(2.19) 

Proq/!f: A straightforward juxtaposition of Theorems 2 and 3. 1 

Before we conclude this section it is worthwhile to note that the three- 
term recurrence relation (2.7) can be rewritten in a simplified form 
involving e,, = c/,, + , - d,, 

(‘,n + I e,,, l x,,~ + I(j.) 

= ((.Jf’,,, + p,,, 1) + j.em , en,) z,,(J) - c,,, , f’“z~“, I(i). (2.20) 

3. COHERENT PAIRS AND CLASSKAL ORTHOGONAL POLYNOMIALS 

Given two Bore1 measures dp and dt,k, we say that dt) is a companion of 
dcp if (dq, d$ } form a coherent pair. 
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In the present section we assume that rkp is a measure that produces one 
of the classical orthogonal polynomials-Jacobi, Laguerre, or Hermite -- 
and seek its companions. According to a theorem of Hahn [ 111, classical 
orthogonal polynomials are precisely all the orthogonal polynomials whose 
derivatives are also orthogonal with respect to some Bore1 measure do. 
Let us denote the manic orthogonal polynomials with respect to do by 
Z(), 711 3 . . . . Thus, 

1 
n,,(x) = - 

n+l P:, I ,(x)9 n = 0, 1, . . . , 

where we stipulate, without loss of generality, that the pn’s are manic. The 
main tool of our analysis is the identity (2.17), which expresses the q,,‘s, 
subject to coherence, in terms of the 7~~‘s. 

Suppose that the rr,,‘s obey the recurrence relation 

We let 

=,, + I(X) = (.u - 4 n,(x) - 8,,% I(X). (3.1) 

q”(x) := 1, 
(3.2) 

4,,(-~) := n,,(-v) - a,n,, ,(x)9 n = 1, 2, . . . 

(hence the qn’s are quasi-orthogonal with respect to do [7]) and seek real 
constants (T, , 6?, . . . # 0 such that {qn}:to is an orthogonal polynomial 
system. According to the Favard theorem [7], this is the case if and only 
if the q,,‘s obey a three-term recurrence relation, which we write as 

Yn+ ,(-u) = t-r - 7,) q,,(*~u) - ~,,Y,, 1(-y). (3.3) 

Substitution of (3.2) into (3.3) yields 

n,, t l(X) = (x + a,, + 1 - 7,) %I(-~) 

-(anx-an;ln+S,,)T, ,(x)-tan ,annC,-Ax). 

We now exploit (3.1) to replace n,, + , and 7c, z in the last formula. This 
gives 
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Let us examine (3.4). Since nrr- I and II, cannot share zeros, both sides of 
the equation must necessarily vanish. Thus, we obtain 

2, + c,, + I - i’,, 
~,I - 1 ci 4 
P,, I = O3 

p,, + (T,, j’,, - h,, - on -8”” at1 ’ = 0, 
?I I 

c,- *b,, 
0”~-==o. 

The identity (3.7) yields 

(3.5 

(3.6 

(3.7 

(recall that the 0,‘s do not vanish!) and substitution in (3.5)-(3.6) results 
in 

(3.9) 

Substitution of (3.9) into (3.8) gives 

P,, P”-I c-J,,+,+%,+-==a,,+%, I+- 
c,, on I’ 

Consequently, the quantity (T,, + , + r,, + jI,!/a” is independent of n and there 
exists a real number 5 such that 

CT n+,+a +L=F PI 57 II =o, I, . . . . 
nt, 

We now set 

A, := 1, 

A, :=~,cs~...(~,, n = 1, 2, . . 

(3.10) 

Thus, (T, = A,/A,- , and substitution into (3.10) affirms that each A,, is a 
manic nth degree polynomial in r that obeys the recurrence relation 

A o , I(C) = (5 -a,,) A,,(t) - P,,A.. ,(<I. (3.11) 
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Note that the recurrence relations (3.1) and (3. I 1) are identical, although, 
of course, they are subject to different initial conditions. The general solu- 
tion of (3.11) can be expressed as ((JT,,(x) + (1 -a) n!“(x)), (), where the 
~j,“‘s are the numerator polynomials corresponding to the measure c/u [7]. 

It now follows from (3.3) that, for all II= I, 2, . . . . 

I 
q,,b) = 7 

,I- ,(s’) 
(A,,- l(5) %(.Y) - A,,(5) n,, ICY)). (3.12) 

Polynomials of this form were already investigated in [9, 12, 15, 16, 2 1, 
223, mainly because of their connection with Christoffel weights of certain 
quadrature formulae. In particular, Maroni [21] proved that, subject to C; 
being outside the (open) essential support of do and to du corresponding to 
one of the classical orthogonal polynomials, they are orthogonal with 
respect to the measure 

(1 -c)6(X-<)d,u+( 
du(x) .- ,,r-r,, (3.13) 

where O<c< 1. 
In the case of a Jacobi measure, 

&J(X)=(l-X)“(l +.r)“d*x, .Y E ( - I ) 1 ), 

where ~1, /I > - 1, it is well known that 

du(x)=(l -x)x+‘(l +x)‘+fldx, .UE(-1,l) 

[23]. Thus, letting < = - 1 and c= 1 in (3.13), we obtain 

&(.x)=(1 -x)1+1 (1 -x)“&, XE(-I, 1) 

as a particular example of a companion of dq. 
Likewise, the Laguerre measure 

dcp(x) = xX<) - ’ d.r, x > 0. 

where r > - 1, yields 

do(x) = xl+ I, .’ dx, x > 0 

[23]. Thus, an example of a measure that results in a coherent pair follows 
when we choose 5 = 0 and c = I in (3.13): in that case d@(x) = dq(x). 

Finally, it is easy to see that if 

dq(x) = e ” d.q .YE(-ZC’X), 
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the Hermite measure, there exists no companion, since the support of dq 
(and hence of dtj) is the whole real line and we cannot chose a real number 
( in (3.13). 

4. SYMMMETRICAI.I.Y COHERENT PAIRS 

If both measures dq and d$ are symmetric (i.e., invariant under the 
transformation XI--+ -x) then pi;‘, p,,, and q,, are of the same parity as n. 
Therefore, expanding p!f’ in pm’s, only terms that share the parity of n are 
present. Consequently, expansion coefficients depend on parity and the pair 
{dq, d$} cannot be coherent. (Note the lack of symmetry of the com- 
panions (1 -.x)’ + ’ (I + x)” d.x, (1 - ,T)~ (1 +.u)’ + ’ d.v found above for the 
symmetric Jacobi measure (1 -x)’ (1 +x)’ dx, z > - 1.) Fortunately, a 
relatively minor generalization of coherence caters for this situation. 

Given symmetric dq and d$, we say that {r/p, d$) is .s.~mmetricu/!,~ 
coherent if 

4.m= o: 
i 

Ck cm 4n,” ( k. “2 ) : k and m are of the same parity; 
otherwise. 

Moreover, a measure d$ is termed a symmetric companion of dq if the pair 
{ dq, d$ } is symmetrically coherent. All the results of Section 2 translate to 
this framework, with obvious amendments: 

THEOREM 4. (a) The pair { dq, d$ } of symmetric measures b .s~m- 
metrically coherent if and on@ lf there exist non-zero constunts C, , C,, . . 
such that 

qn(-~u) = C” c I Pi, * I(X) - C” I Pi, 1(-y). 

(b) Subject to symmetric coherence and assuming that, without 1o.s.s oj 
generality, C,, = 1, it is true that 

[,,:‘2] -. I 
p:‘(x) = c a,r-Zk(j;) p+ *k(X) - cAAE.) - c, 23LU l(;) p,,(x). 

k I 44, - 4, 2 1 

where the ak’s obey! the three-term recurrence relation 

c m+2ent 2a, + 2(i) = (c,(e, + en,- 2) + j-e,- ?ern) a,,(;-) - c,n ,e,,a,, 2(ih 

(c) Subject to the same conditions, it is true thut 
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und 

We need symmetric measures for symmetric coherence and our first 
example is the Hermire measure cicp(.u) = e ” d,v-. -x <.Y < x1 that 
already has been debated in Section 3 in the context of coherent pairs. 
Thus, we have 

H,,+,(.u)=2xH,,(x)-2nH,,-,(.u) 

and the polynomials qn, being themselves orthogonal with respect to a 
symmetric measure, obey a three-term recurrence relation of the form 

q,, I ,(s)=u,,.uY,,(,K)-l;,Y,, I(.K). (4.1) 

Since qn = C,,+ , HL, , - c‘, , H:, , and H:, = 2nH,. ,, substitution into 
(4.1) yields 

(n+2)C,,+,H,,,,-nC,H,, ,=u,,-K((~+~)C‘,,,H,,-(~-~)C,, ,H,-I) 

- f,,W, H,, l -([I- 2) C,, zff,, 3). 

Replacing H, + , with 2xH,, - 2nH,,. , and H,, j with (sH,,-? - !H,, , );’ 
(n - 2) leads to 

s(2(n + 2) C,, + z - (n+l)u,,C,,+,)H,, 

+ ( - nC,, + nf,, C,, + &L, C,, 2 - 2rf(n + 1) C’,, , 2) H,, I 

+x((rz- l)u,,C,,.. ,-.I,C,, 2) H,, z=O. 

Next, we substitute (xH,, , - iH,,)l(n - I ) instead of H,, I. This yields 

A,txH,,(x) + (B,* + C,*x”) H,, ,(.Y) = 0, 

where 

AT=Z(n+2)C,+,-(n+l)o,,C,,+,-Jju,C, 

B,*= -nC,+nf,C,+f.f;,C,, z-2n(n+2)C,,+.2; 
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As in Section 3, it follows that AT = B,f = C,f =O, since H,, and H,, , 
cannot share zeros. We obtain 

n C 4n+2)C,,+z+C,,. LI =-)I ,I 
n - I C,, , nC,,+iC,, ? ’ 

.I;, = n 
2(n+2)C,,,,+C’,, 

nC,, + $ C,, I ’ 
n = 2, 3, . . . . 

where 

C’,, 1. I p,, := (n + 1 ) c 
)I I 

obeys the non-linear recurrence 

01 - 1 N-b,, I + 1 ) P,, , I = P,,. (4.2) 

It is easy to see that any initial conditions p,, pz > 0 produce in (4.2) a 
positive solution sequence. In that case a,,, fn >O and the measure that 
generates {qn) is positive definite. Thus, WC have an example of a measure 
that has an infinite number of symmetric companions (and, as we have 
demonstrated in Section 3, no companions, whether symmetric or not). 

Our next example of a symmetric measure with a symmetric companion 
is the Gegenhauer measure &P(S) = (1 - sZ)’ ’ ‘, XE ( - 1, I ), where v > 0. 
Thus, p,, = C;;, the Gegenbauer polynomials [23]. Special cases include 
\a = 4, the Legendre measure, and I*= I, the Chehpher measure of the 
second kind. We do not try to find all the symmetric companions-a single 
example will suffice. Since 

d - f1.Y ( c ;,_,(s)- C;; ,(s)} =2(n+ v) C’;,(s) 

[23], it follows at once that the Gegenbauer measure is a symmetric com- 
panion of itself. 

This construction fails when v = 0, since Gegenbauer polynomials arc not 
defined. This is an important special case, since it corresponds to the 
Chebyshcc measure of the first kind. Fortunately, this measure is a com- 
panion of itself for P,~ := T,*, C,, := l/n, as can be seen at once from 

= b’,, - U,, 2 = 2 T,, . 

Note that the framework of Section 3 can be extended to symmetrically 
coherent pairs, thereby characterizing all the symmetric companions of 
Gcgenbaucr and Hermitc measures. 
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5. ORTH~G~NALITY RELATIONS OF THE EXPANSION COEFFICIENTS 

We have seen that, {dq. d$} being a coherent pair, the expansion coef- 
ficients in (2.1), except for the last, obey the recurrence relation (2.20). In 
the present section we investigate some implications of this relation. Note 
that we replace i with X, to emphasize that it is now the main variable, 
rather than a parameter. 

THEOREM 5. Let 

(-xl (‘1 rn+ I(X) R,(.y) := cx,+I = _ - ~ 
Xl(X) d, x . 

n=o. 1, . . 

Then the set { R,},zEO i.y orthogonal with respecr 10 Some Bore1 measure. 

Proof We have from (2.9)-(2.10) and from (2.18) that 

R,(x) - 1, c,d2 el R,(s)=~++x 
2 I 

(5.1) 

Moreover, the identity (2.20) is “translated” into 

C ,r+2enRn+,(.~) 

=(e,e,,+,x+c,, ,(e,,+,+e,))R,(x)-c,e,+,R, I(x). (5.2) 

The coefficients c, and em are positive for all m = 0, 1, . We now invoke 
the Favard theorem [7] to deduce that there exists a Bore1 measure d;( 
such that 

I 
* 

R,(x) R,(x) d;((x) =O, mfn. I 
e. 

The general connection between the measures dq, dtj, and & has not 
been clarified as yet. However, several special cases are amenable to 
analysis. It is convenient, first, to rewrite (5.1) (5.2) in terms of manic 
polynomials. These are A,, such that 

k”(X) = 1, R,(x) = c, 
( > 

b+’ +x, 

Ix C,,+, (t+Fl;)~~~(xl-~~~-*(I): (5.3) ~“+Ax)= + 

this can be readily verified, e.g., by using formulae from [7]. 
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We have proved in Section 3 that the Luguerre measure is a companion 
of itself. We have p,! = q,, = L!,“, x > - 1, and 

T(n+r+ 1) 
f ,1 = e,, = 

n! ’ 
n=o. I. . . . 

[23]. Writing RX(x) := R,,(2.u - 2), we act on (5.2) to obtain 

(n-t l)(n+2+x) R,:, ,(.r)=(n+2)(2(n+ I).~+%) R:(s) 

- (n + 1 )(n + 2) R,* ,(s). 

They can be converted to their manic version: 

d,*+,(x)= .r+r i > l?i,*(.u) - NSZ-1 
2(n + 1) 4(I? + 1) 

fif ,(.u). (5.4) 

We compare (5.4) with the recurrence formula for the manic Polluczrk 
polynomials 

P:; + ,(s)= 
( 

h 
s+ 

n + E. + a > 
P:,(x) - 

n(n + 2;. - 1 ) 
4(n + i + u - 1 )(n + i + u) 

P:, ,(.u). 

where u, h, i. E .ip and a + i. > 0 [7]. It readily follows that the formulae 
coincide for the choice a = -r/2, h = r/2. and i. = 1 + r/2. Consequently, 

R,,(x)=~P;+‘~‘(l+;r; -;,;) 
,I 

Orthogonality properties of Pollaczek polynomials are known when a Z (hl 
[7]. This corresponds to the case r E ( - 1, 0] and WC have 

4(2+2)=(1 -.y2)(‘J)(“2’ exp(z(cos ‘s-:)(e)“) 

~~l.(1+3(1+i(~)‘2))~2fl.~, xE(-1,l). 

The support of & is the interval ( -4, 0). If r = 0 then & reduces to a shif- 
ted Chehyshec measure of the second kind. Note that the underlying 
measure has been identified for other values of N and h in [2]. 

The next object of our attention is the Jacobi measure. We proved in 
Section 3 that a coherent choice is 

p,, = ( - 1 Y’ 
, (2 + B + 2),, I p’” .,,, 

(2+2),, I ” * 

( - 1 )” (x + /j + 2),, 
Y” = - 

2 
(r+2) (r+/j+2n+2) P!‘+‘.“‘. 

,I 
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We now exploit the identity 

J ‘-I (1 -.u)‘(l +x)“(P~.‘~)(-~))2d.r 
I 

2”+“+‘f(l +r)f(l +/I) (1 +~)?I (1 +m, = 
I-(1 +r+b) n! (1 +r+b),(l +z+/I+2n)’ 

Setting 

C’“.“’ := 2”““/‘(1 +r)I-(1 +/I) 

f(l+a+B) ’ 

we obtain 

C’” + ‘.‘I) ( 1 + /I),* (2 + x + j3),, e =- n 
4 n! (2 + z), 

and (5.3) gives 

~“*,(X)=(X+a,)~“(x)-b,,~,,. ,(x1, 

where 

(5.5) 

4, = 
(3+a+jl+2n+~~)(3+.+/l+2n-~~) 

(l+n)(2+r+p+n)(3+~+/3+2n) 
> 

b,=4 
(1 +a+n)(l +/I+n) 

(1 +n)(l +r+fl+n)(l +~+/?+2n)(3+r+/I+2n)’ 

Some combinations of u and fl yield simplified recurrences (5.5). For 
example, letting fi = 0 produces 

~.+l(n)=(x+,+t+ *) R,w(n+“)(,:+,,+ *f,, IO), 
where v := i( 1 + a). The underlying measure d;c has not been identified. 

Analysis of symmetrically coherent measures is similar to Theorem 5, 
except that now we have two different three-term recurrences, one for 
“even” polynomials E, (i.e., those that appear in the expansion of p;i) and 
one for “odd” polynomials 0,. Our last example concerns the Gegenbauer 
measures. Since 

j;, (1 -X2)’ ‘:? [c;(x)]2 dx = 
f(i) f(v + f) (2\1), 

U\*) n! (n + v) 
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[23], simple calculation leads to the manic recurrences 

E,, + , = x + 
2v2+(4n+5)vt(2n+1)(2n+3) 

8(n+l)(n+vt 1)(2n+v+1)(2n+vt3) ” 

(2n + 1)(2n + 2v + 1) 
- 64(iz + l)(n t v)(2n + \I)(2n + v + 1)' (2n + v + 2) 

E,, I 

and 

d 
i 

2v'+(4n+3)v+4n(ntl) 
n+1= x+ 

2(2n+1)(2ntv)(2ntv+2)(2nt2v+l) 1 
6, 

n(n t v) 

-4(2n+1)(2n+v-l)(2n+v)‘(2n+v+ 1)(2n+2v-1) 
6, I’ 

They remain true for the Chehj~heti measure of the first kind, i.e., when 
v = 0. 

A very special case is the Legendre measure, which is obtained for v = i. 
In that case we have 

&+,= .u+ 
i 

2 
(4nt3)(4n+7) E’1 i’ 

I ^ 

-(4n+1)(4n+3)2(4nt5)E”-” 
(5.6) 

6 
i 

2 
n+1= -‘+(4n+ 1)(4nt5) 1 

4, 

I ^ 

- (4n - 1)’ (4n + 1)2 (4n t 3) On ‘. 
(5.7) 

To identify dxcE) and dx ‘O’ the “even” and “odd” measures in the Legendre , 
case, we recall for future reference that the modified Lommel measure has 
a discrete spectrum, with jumps of l/i;‘- ,.k at &- l/i? . ,.k, k = 1,2, . . . . where 
jK,k is the kth zero of the Bessel function J, and v > 1. The underlying 
manic orthogonal polynomials posssess the three-term recurrence relation 

r; n+ l.“(-r) =&,,(-+ 
1 

4(n + v - 1 )(n + v) 6,. I.AX) (5.8) 

c71. 
Let dp be a symmetric Bore1 measure that generates manic orthogonal 

polynomials {s,} with the three-term recurrence relation 

s ,, , ,(x) = xs,,(x) - i .,,. F, ,(x). (5.9) 



172 ISERLFS ET AL. 

Since .Y,, retains the parity of n, I,(X) := s z,, + ,(,&)iVi, is a polynomial and 
it is well known that it is orthogonal with respect to the measure 
,,/i dp(&), supported by I E (0, Y,) [7]. It is quite easy to prove that the 
t,‘s obey the recurrence relation 

t ,,-. I(-~)=(.~-~2,r+l-j.2,,,2)r,,(~~)-~.2,,j.2,,,I~,, ,(.K). (5.10) 

We map x H -.Y in (5.6). It is now straightforward to verify that (5.6) and 
(5.10) coincide for the choice 

1 1 Ln = \’ = -. 
4(n + \’ - 1 )(n + V)! 2 

Thus, exploiting the connection between (5.9) and (5.10), we deduce that 
d;~(~) is a “one-sided” modified Lommel measure. Likewise, v = $ recovers 
the recurrence relation for 6,,. But 

J , 2(z)= i 
( > 

I 2 I 2 

cos 2, J,.,(z)= i 1 ) sin 2, 
L nz 

and it transpires that & cEJ is an atomic measure with jumps of l,!k4 at 
- l/(n2/r2), k = 1, 2, . . . . whereas &(“’ IS an atomic measure with jumps of 
lj(k + $)” at - l/(n’(k + i)‘), k = 1, 2. . . . . 

6. EVALUATION OF EXPANSION COEFFICIENTS 

Orthogonal polynomials can be evaluated very fast and robustly by 
using their three-term recurrence relations. This is of major importance in 
approximating the coefftcients of expansions (generalized Fourier coef- 
ficients) by quadrature. We are denied the comfort of a three-term 
recurrence relation in the case of Sobolev-orthogonal polynomials. 
However, if { &, d$ } form a coherent or a symmetrically coherent pair, 
calculation of Sobolev-orthogonal polynomials and of Sobolev -Fourier 
coefficients can be accomplished efficiently. In the present section we 
present an algorithm for that purpose. Another technique, as well as a 
discussion of few examples and approximation-theoretical aspects, appears 
in [14]. 

Any f E W:[( - CC, r;)), dcp, d$] can be expanded in Sobolev-orthogonal 
polynomials, 
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where 

.t,(j.)= (.1: pif'>j.; 

p’“‘= ( pl”’ p’“‘) 
,I ?I 3 ,I I . 

We assume that {&I, d$} is coherent (the case of symmetric coherence 
is similar) and adopt the terminology of Section 2. Furthermore, we 
stipulate that the polynomials were normalized so that C,, = 1. We define 

a,(i) := - 
c ,,+,rn+,(/l)-~,,~(,(j.) 

44,, , -4,) 

Thus, it follows from Theorem 2 and its corollary and from the second 
corollary to Theorem 3 that 

P!2 I - Pi:-’ = fl,,(Pn L I - P,,h (6.1) 

p,$‘; - py = a,y,,. (6.2) 

This are the key formulae that enable us to evaluate Fourier coefficients 
efficiently. 

Let 

I-T 
(&?,3 Rr), :=I 7 RI(-u) gdx) &(x)9 Ih,, hzh := i L h,(x) h,(x) d$(.u), 

J 

where g, and h, belong to appropriate Hilbert spaces. It follows from the 
definition (1.3) of the Sobolev inner product that 

rn = (A pff’), + i.(f’, ~!f,‘)~; 

jj(j.) = tpy), p,fl), + j.(p!;)‘, pj*)‘)2. 

Multiplication of identity (6.1) by j’ and integration yield 

CL P!$ ,)I = (A P?), +a,,Icu-9 Pn+ ,), - (1: Pn), 1 

and (6.2) similarity leads to 

(.I-‘, P!%h = (.f’, P!::“h + flu9 s,,h. 

Equations (6.3) and (6.4) combine into the recurrence 

(6.3) 

(6.4) 

h+ ,(j.)=.~~(j.)+a,,(j.)((l; P,,+,), -(L P,), +W’, q,,h}. (6.5 1 

Thus, to evaluate the f”‘s it is enough to calculate first the standard 
generalized Fourier coefficients {(f, p,), } and {(f’, Y,,)~} and then use the 
recursion (6.5)-there is absolutely no need whatsoever to form Sobolev- 
orthogonal polynomials py’ explicitly! 
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To evaluate CT,, with ease we either use its definition and the recursion 
(2.20) or comhlne that recursion with the identity 

5, = *,I I - xtr, 

that can be easily derived from the theory in Section 2, and the initial 
condition o. = 1. 

Another sequence that needs to be evaluated is {fi!,“}, and also this task 
can be performed efficiently by expioiting coherence. We multiply both 
sides of (6.1) by pj,” and evaluate the Sobolev inner product. Since 
<l-t: ,’ pjf’) j, = 0, we have 

li$‘= -O,r(P,,+,-P,,3 Pj::‘), 

= -5,,i(P,, , I, P::‘h - (P,,7 P!:‘li f  i(q,,* di”)7) 

and 

(Ptrt,. pj:‘), = (q,, p!Q = 0 

gives 

p = a,,h, Pf’f,. II (6.6) 

Multiplying (6.1) by p,, + , and evaluating the ( ., L ), inner product yield the 
identity 

(P II + 11 PI’! ,)I =fln I!Pn c JIL (6.7 1 

since orthogonality implies that (,D,,+ , , p,,), = (p,) , , , p!,“), = 0. Shift of the 
index in (6.7) and substitution in (6.6) give 

(6.8) 

To sum up, we managed to reduce the evaluation of Fourier-Sobolev 
coeflicients to the evaluation of standard expansion coefficients with respect 
to & and d$ -a task that is easy and safe to accomplish by virtue of 
orthogonality-and a simple recursion. 

The authors thank Walter Gautschi (Perdue) and Andri Ronveaux (Namur), who kindly 
provided them with many references on orthogonality in Sobolev spaces. Richard Askey 
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(Cambridge) and with Markus Hegland (Zurich). 
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