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ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA SCHEMES#*

J. M. SANZ-SERNAT AND L. ABIAt

Abstract. When numerically integrating Hamiltonian systems of differential equations, it is often
advantageous to use canonical methods, i.e., methods that preserve the symplectic structure of the phase
space, thus reproducing an important feature of the Hamiltonian flow. An s-stage Runge-Kutta (RK) method

without redundant stages is canonical if and only if, with a standard notation, ba,+ba,—bb =0,1=],

J =s. Itis shown that for canonical RK methods there are many redundancies in the standard order conditions.
For a canonical method to have order p it is sufficient that the b,’s, a,’s satisfy a system of algebraic
equations that has, roughly speaking, an equation per nonrooted tree of order =p. Furthermore, a new
methodology is presented for the investigation of the order of canonical integration methods (not necessarily
RK methods) when applied to Hamiltonian systems. In the new approach consistency is studied by Taylor
expanding a suitable scalar function in terms of so-called canonical elementary differentials.

Key words. Runge-Kutta schemes, Hamiltonian systems, trees, order conditions, simplifying assump-
tions, generating functions for canonical mappings

AMS(MOS) subject classifications. primary 65L05; secondary 05C05

1. Introduction. Hamiltonian systems of ordinary differential equations

dp”  oH dq’ . oH

(11) dt — aq’ dt op”’ T=l
arise very frequently in the applications, either in their own right or as the result of
the space discretization of Hamiltonian systems of partial differential equations. In
(1.1), the integer g =1 is the number of degrees of freedom and H is the Hamiltonian
function, a C' function of the real variables p’ (momenta) and g’ (coordinates). We
suppose that H is defined for (p',- - -, p®) in R® and (g', - -, ¢%) in an open subset
Q of R® The domain R* x ) is called the phase space of the Hamiltonian system. In
(1.1) and later in the paper, capital superscripts refer to components of a vector.

Hamiltonian systems possess many properties (preservation of volume in phase
space, Poincaré recurrence, etc.) not shared by more general systems of differential
equations. It has become increasingly clear [2] that most of those specific properties
follow from the fact that the flow of a Hamiltonian system preserves the symplectic
structure of the phase space, i.e., the differential form w =dp, A dg,+- - - +dp, A dq,.
Mappings that preserve w are called canonical. When numerically integrating (1.1)
with a one-step method of the form (p*”, ¢*")” = G(p, q, h; H), it may seem desirable
to choose the method in such a way that, for each timestep h, G is a canonical mapping.
Such a choice guarantees that the dynamics of the numerical solution possesses the
specific properties of Hamiltonian flows that have been referred to above [14]. Numeri-
cal methods for which the associated mapping G is canonical for each h and each
(smooth) Hamiltonian H are called canonical or symplectic [12], [6]. (Here and later,
“each h” means each h for which G is defined; arbitrarily long timesteps may, of
course, not be feasible with implicit methods.) The practical advantages of using
canonical methods have been illustrated in [14] and [4] and will not be discussed in
the present paper.
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T Departamento de Matemdtica Aplicada y Computacién, Facultad de Ciencias, Universidad de
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Standard numerical schemes, such as explicit Runge-Kutta (RK) methods, are
not canonical and a number of special methods have been constructed to achieve
canonicity (see the references in [14]). Some of these ad hoc methods require the
evaluation of higher derivatives of H and are not very appealing from a practical point
of view. Other canonical methods in the literature are only applicable to restricted
classes of Hamiltonian systems. These considerations led one of the present authors
to the question of whether there are canonical implicit RK methods. In [13] it was
shown that a sufficient condition for an s-stage RK method

0 ()

to be canonical is
(13) biaij + bjaj,» - b,‘bj = O, 1= i, ] =5

This result was discovered later and independently by Lasagni [9] and also by Suris
[15], [16]. Furthermore, Lasagni shows that, except for some unimportant methods
with redundant stages, condition (1.3) is also necessary for (1.2) to be canonical. In
what follows a canonical RK method means an RK method fulfilling (1.3).

The well-known RK schemes based on Gauss-Legendre quadrature are canonical
[13]. Semi-implicit methods satisfying (1.3) are easily derived. First note that, in deriving
canonical schemes (semi-implicit or not), it may be assumed that all weights are
different from zero, because if b; =0 then (1.3) implies that b,a; =0 for all i, and hence
the method is equivalent to a method with fewer stages. When b; #0, 1=i=s, the
semi-implicitness requirements a; =0, i <j, and (1.3) lead easily to the following format
for the Butcher array:

B1/2
Bi B2/2
(1.4) :Bl {32 :33/2
bl bz b3 3:/2
B B Bs - Bs

The family (1.4) has been considered by Suris [16] and Qin and Zhang [11]. In [16]
methods are derived with s =3, p =3, while [11] contains a tableau with s=4, p=4.
Cooper [5] has discussed the condition (1.3) and constructed a method of the family
(1.4) with s =3 and order 3.

When trying to find practical canonical RK methods, either of the general format
(1.2)-(1.3) or within a subfamily such as (1.4), the available free parameters would be
used, at least in part, to achieve as high an order of consistency as possible. According
to standard RK theory [3, Thm. 307B] [7, Thm. 2.13], to obtain order p=1 the
coefficients a;;, b; of the tableau (1.2) should satisfy the familiar system of polynomial
equations

ijs

(1.5) O(p1) =—1— for each rooted n-tree pr, n=1,---,p,

y(p7)
where the integer y(p7) is the density of pr and ®(p7) denotes the corresponding
elementary weight. It is known [3, Thm. 306A] that, if the number of stages and the
coefficients a;, b; are seen as free parameters, each equation in (1.5) is independent
of the others. However, for canonical methods, the coefficients a;, b; are constrained
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by the canonicity conditions (1.3) and we may ask whether the equations in (1.5)
remain independent. The goal of this paper is to answer such a question. It will be
shown that, for canonical methods, there are many redundant equations in (1.5).
Roughly speaking, in order that a canonical RK method possess order p, it is sufficient
to impose as many conditions as the number of (nonrooted) trees with p or less vertices.
Thus the canonicity conditions (1.3) operate as simplifying assumptions.

An overview of the organization and the results of the paper is as follows. Section
2 is devoted to some graph theoretical definitions that are necessary to state the main
result of the paper. This main result is given in § 3, where we provide conditions for
a canonical RK method to have order p. Actually, two sets of equivalent conditions
are given. In the first set the order equations are homogeneous. In the second set the
order equations are simply a subset of (1.5) and hence inhomogeneous. Sections 4 and
5 are devoted to proofs. We emphasize that in §§2-5 it is not assumed that the
differential system to which the method (1.2) is applied is Hamiltonian; we rather
consider a general (smooth) autonomous system

(1.6) —=F(y).

In §§6 and 7 we develop an order theory for canonical methods as applied to
Hamiltonian systems. In the standard theory RK methods, consistency is investigated
by Taylor expanding, with respect to the stepsize h, the vector-valued RK map
(p*",q*")" =G(p, q, h; F). In the present approach the function I' to be Taylor expan-
ded is scalar valued. This matches the fact that, while a general differential system
(1.6) is specified by a vector field F, a Hamiltonian system is specified by a scalar field
H. In the standard theory, the expansion involves elementary differentials, i.e., suitable
combinations of the partial derivatives of F. Here we find combinations of partial
derivatives of H that we call canonical elementary differentials. The theory of canonical
elementary differentials gives a transparent meaning to the material in § 3: the right-hand
sides of the homogeneous order conditions presented there turn out to be the coefficients
of the canonical elementary differentials in the Taylor expansion of T.

It should be mentioned that the methodology introduced here for the consistency
study or canonical integration methods is not restricted to RK methods. The application
to other families of methods will be illustrated in a forthcoming paper [1].

2. Graph theoretical definitions. This section is devoted to the presentation of a
number of graph theoretical definitions that are needed to formulate the main result
of the paper. The material in §§ 2.1-2.3 below is standard and is included here to fix
the notation. The material in §§ 2.4-2.5, however, is introduced for the first time here.

2.1. Preliminaries. Let n be a positive integer. A labeled n-graph is a pair formed
by a set V with Card (V)= n and a (possibly empty) set E of unordered pairs (v, w),
with v, we V; v# w. The elements of V and E are called, respectively, the vertices
and the edges of the labeled graph. Given a labeled n-graph, two vertices v, w are
said to be adjacent, if (v, w) € E. A (simple) path joining a vertex to a vertex w, (v # w),
is a sequence of pairwise distinct vertices v = vy, v, - - -, v,, = w with v; adjacent to
Uiy, i=0,1,---, m—1. The integer m =1 is the length of the path.

2.2. Trees. We employ four kinds of trees, whose definitions are as follows.
(i) A labeled n-tree A7 is a labeled n-graph {V, E} such that for any pair of
distinct vertices v and w there exists a unique path that joins v to w.
(ii) Two labeled n-trees {V,, E,}, {V,, E,} are said to be isomorphic if a bijection
of V, onto V, exists that transforms edges in E, into edges in E,. An n-tree 7 is an
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equivalence class that comprises a labeled n-tree and all labeled n-trees isomorphic
to it. Each of the labeled n-trees that represent 7 is called a labeling of .

(iii) A rooted labeled n-tree pA7 is a labeled n-tree in which one of the vertices r,
called the root, has been highlighted. The vertices adjacent to the root are called the
sons of the root. The sons of the remaining vertices are defined in an obvious recursive
way.

(iv) Two rooted labeled n-trees {V,, E;, r,}, {V,, E,, r»} are said to be root-
isomorphic if a bijection of V; onto V, exists that transforms edges in E; into edges
in E, and maps r, into r,. A rooted n-tree p7 is an equivalence class that comprises a
rooted labeled n-tree and all rooted labeled n-trees root-isomorphic to it.

(v) In the remainder of the paper and unless otherwise explicitly stated, it is
assumed that the set of vertices of a labeled n-graph is always {1,2,- - -, n}.

Remark 1. 1t is standard practice (see, e.g., [3, p. 79]) to use the word tree to
mean both the abstract entity defined above as an equivalence class and any of the
labeled trees that belong to the class. This practice is particularly natural when trees
are handled nonrigorously through pictorial representations rather than through their
mathematical definitions. Of course, similar remarks apply to rooted trees. Unfortu-
nately, we shall have to deal simultaneously with different labelings of the same tree
and therefore care shall be exercised throughout to distinguish between equivalence
classes and individual elements of the classes. To clarify this issue and to illustrate
the four kinds of trees, we have considered in Fig. 1 pictorial representations corre-
sponding to the case n = 3. There is only one tree, 73 ;, which comprises three different
labeled trees denoted by capital Roman numerals. Each labeled tree possesses three
rooted labeled trees denoted by lowercase letters. In turn, the rooted labeled trees
organize themselves into two rooted trees p7;,, p7s,. Finally, the tree 7;, can be
thought of as the result of the identification of pr;; with p7s,. In general, trees can
be considered to be equivalence classes of rooted trees, because a root isomorphism
is an isomorphism. Figure 2 depicts all trees and rooted trees for n up to 4.
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FI1G. 1. The 3-tree, labeled 3-trees (1)-(111), rooted labeled 3-trees (a)-(i), and rooted 3-trees.

Remark 2. The definition of rooted labeled n-tree used here differs from that in
[7]. The latter only allows so-called monotonic rooted labelings, where each vertex is
(an integer number =n) smaller than all its sons. Thus in Fig. 1, (a) and (e) would
be the only rooted labeled 4-trees according to the terminology of [7].

As is standard (see, e.g., [7], [3]), for each rooted tree pr we denote by a(p7) the
number of its monotonic rooted labeled trees.
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F1G. 2. Rooted n-trees and n-trees, n=1, 2, 3, 4.

2.3. Rooted trees and RK methods. As recalled in (1.5), the standard order condi-
tions for RK methods are written in terms of rooted trees. It is perhaps useful to review
how to form the elementary weight associated with a given rooted tree. As an illustration,
take ®(p7;,). We pick up a rooted labeled representative, say (b). To each vertex v
there corresponds a summation index i, taking values from 1 to the number s of stages;
then

(2.1) (I)(PT3,2) = Z A bizaizilai2i3~
11,12,13

In general, the summation index associated with the root appears as a subscript for
the letter b and there are n —1 coefficients a;; where [i, j] runs through all [father, son]
pairs. Even though a specific rooted labeled tree is used to write down the ®’s, the
result is independent of the chosen representative: a different choice would result in
a different notation for the involved summation but not in a different sum. A similar
remark applies to any object associated with a tree or rooted tree: a labeled representa-
tive must always be used in the construction in such a way that the end result is
representative-independent.

2.4. Superfluous trees. We now introduce a notion that is required to state the
main result of the paper. Let 7 be an n-tree and choose one of its labelings A7. This
labeling gives rise to n different rooted labeled trees pA7,, - - -, pA7,, where pAr; has
its root at the integer i, 1 =i = n. Suppose that for each edge (i, j) in Ar, it is true that
pAT; and pA7; represent different rooted trees. Then 7 is called nonsuperfluous. It is
obvious that the definition makes sense, i.e., that the particular labeling A7 chosen to
begin with is immaterial.

As an illustration, consider the only 3-tree 75 ,. When choosing the labeling (I)
in Fig. 1, we see that for the edge 1-2 the choice of root 1 leads to pry, and the choice
of root 2 leads to pr;,, while for the edge 2-3 the choice of root 2 leads to pt3, and
the choice of root 3 leads to p7; ;. Therefore 75, is nonsuperfluous. On the other hand,
the 4-tree with labeling 1-2-3-4 is superfluous: changing the root from 2 to the adjacent
3 does not result in a different rooted tree.

Figure 3 depicts all superfluous n-trees with n =8. Note that superfluous n-trees
always have an even number of vertices n =2m, and can be thought of as the result
of joining by the roots two copies of the same rooted m-tree. The validity of this
statement for general n will be established in § 4.
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F1G. 3. Superfluous n-trees, n = 8.

2.5. Parity. Let pr; and p7, be two distinct rooted trees belonging to the same
nonsuperfluous n-tree 7, n = 2. Choose a representative pAt, of pr; and a representative
pAT, of pr, in such a way that pAr; and pAr, are the same as labeled graphs and differ
only in the location of the root. There is then a well-defined path P that joins the root
of pAr, to the root of pAr,. We say that pr, and pr, are of the same (respectively,
different) parity if the length L of the path P is an even (respectively, odd) integer.
This definition is meaningful because, as shown in § 4, the parity of the integer L does
not depend on the specific choices made for pAr, and pAr,. The relation of parity
divides each nonsuperfluous n-tree with n=2 into two equivalence classes of rooted
n-trees, called the two parities of . )

An illustration can be made in Fig. 1. The rooted trees p7;, and p7;, belong to
different parities: in the labeling (I) the roots of (a) and (b) are one edge away.

We emphasize that parity only makes sense for nonsuperfluous trees: Consider
the superfluous tree 7, , in Fig. 2. The rooted trees p7,, and p7,, would belong to the
same parity if the representatives 1-2-3-4 and 1-2-3-4 were chosen (roots two edges
away) and different parities with the choices 1-2-3-4 and 1-2-3-4 (roots one edge away).

3. Order conditions. We are now in a position to write down the order conditions
for canonical methods.

THEOREM 3.1. Assume that the RK-method (1.2) is consistent and canonical (i.e.,
satisfies (1.3)). Let p be an integer p=2. The following conditions are equivalent:

(i) The method has order at least p, i.e., produces a local truncation error O(h”*")
when applied to any smooth system of differential equations (1.6), or equivalently, condition
(1.5) is satisfied.

(ii) (Homogeneous form.) For eachn=2,--- p,

(3.1) V7e{nonsuperfluous n-trees}, Y a(p7)y(pr)®(p7)—-Y a(p7)y(pr)®(pr)=0.

In (3.1) the first sum is extended to all the rooted trees in a parity of v and the second
sum comprises all the rooted trees in the other parity.
(iii) (Inhomogeneous form.) For eachn=2,--- p,

(3.2) V1 € {nonsuperfluous n-trees}, Ipre T suchthat ®(p7v)=1/y(p7).

We postpone the proof of this result until § 5 and turn to some examples of the
use of homogeneous and inhomogeneous forms.

For n=2 there is no nonsuperfluous tree. Therefore both (3.1) and (3.2) are
satisfied: all consistent canonical methods have order =2.

For n =3, there is one (nonsuperfluous) tree 7;,. We have seen above that it
includes two rooted trees p7;, and pr;, which belong to different parities. There is
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only one monotonic rooted labeled tree for each of p7;; and prs,, so that a(p7;,) =
a(p73,) =1 and therefore, with n =3, the homogeneous condition (3.1) reads

(3.3) Y(p73,1)P(p75,1) — ¥(p73,2)P(p73,) =0,
or, in full,

6 Z biaijajk -3 Z biaijaik =0.
ijk ijk

It is obvious that condition (3.3) is implied by the standard order conditions, that for
order 3 demand y(p7s,)®(p73,) =1 and y(p7;,)P(p73,) =1. If we decide to use the
nonhomogeneous form, we should impose, for a canonical method to possess order
3, either y(p751)@(p731) =1 or y(p73)P(p73,) = 1.

For n = 4 there are two trees 7,; and 7,,. The former is superfluous and does not
give rise to order equations. For the latter, there are two rooted trees (belonging to
different parities). Then (3.1) becomes

(3.4) 7(/37'4,3)(1)(P7'4,3) - ‘)’(P7'4,4)(I)(P7'4,4) =0
or

12 Y, bagaza;—4 Y. bajaza; =0.
ijkl ijkl
Here we have one equation for a method of order =3 to have order =4, instead of
the four appearing in the standard theory. When the inhomogeneous form is used,
(3.4) should be replaced by either y(p7,3)®P(p743) =1 or y(p744)P(p744) = 1.

As a final illustration the use of the theorem, we study the homogeneous condition
corresponding to the “‘straight” S-tree, i.e., 0-0-0-0-0. This tree includes three rooted
trees +-0-0-0-0, 0-0-+-0-0, 0-+-0-0-0, The first two belong to the same parity (the
roots are two edges away). The values of y are, respectively, 120, 20, and 30; the values
of « are 1, 3, and 4 and therefore the condition is

(3.5) {120 y biaijajkak,a,m} +3 {20 y b,«a,«jajka,«,a,,,,} —4{30 y bia,jaikak,a,m} =0.
ijklm yklm ijklm

The inhomogeneous form in Theorem 3.1 is likely to be easier to handle than the
homogeneous form. However, the homogeneous form is appealing in that it makes all
rooted trees in a given tree play a symmetric role. Either in their homogeneous or in
their inhomogeneous form, the new order conditions involve one equation per nonsuper-
Sfluous tree, rather than an equation per rooted tree as is necessary for general methods.
This entails an important reduction in the number of equations. It is not difficult to
derive a formula for the number of nonsuperfluous n-trees. Denote, respectively, by
a,, b,, c,, n=1, 2, ---, the number of rooted n-trees, n-trees, and nonsuperfluous
n-trees and form the generating functions

A(z)=az+az*+- -+, B(z)=biz+byz>+---, C(z)=ciz+cz>+---.

The coefficients of the power series A can be found recursively in various ways (see,
e.g., [8, § 2.3.4.4]). Series B can be obtained from A, since [8, § 2.3.4.4]

B(z) = A(z2) —3[A*(2) + A(z")].

We noted above that each superfluous n-tree can be seen as a duplication of a rooted
(n/2)-tree. Thus there are as many superfluous n-trees as rooted (n/2)-trees, and then

C(z2) = B(z) - A(z?),

which determines the ¢;’s once the a;’s are known.
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We have used these formulas to compute a,, b,,, ¢, forn=1,2, - - - | 10. The results
are presented in Table 1, where the reduction in number of conditions is clearly borne
out.

To conclude this section we give a very simple example of use of the new conditions.
For the tableau (1.4), for a consistent method to have order 3 the condition (3.3) reads,
after some straightforward cancellations,

(3.6) Y Bi=0.

With two stages, (3.6) is clearly incompatible with the condition for consistency
Y. B:=1. For three stages we have a one-parameter family of order 3 methods with

3.7 BitBot+Bs=1,  Bi+BI+B3=0.
We choose the free parameter so as to have B, = B8;. This ensures the symmetry of the

method and hence order at least 4 (the order of symmetric methods is even). Subject
to symmetry and (3.7) there is a unique method, namely,

(3.8) Bi=B:=12+w+te™), 0=2"2 B,=1-28,.

Its order is exactly 4; it cannot be 6 since the method has three stages and is not the
3-stage Gauss-Legendre method. Cooper [5] found a method identical to (3.8) except
for the ordering of the B;. (Cooper’s first/second weight is our first/third weight.)
Cooper’s nonsymmetric method has only order 3. Note that a step of the I-stable,
fourth-order method (1.4), (3.8) is essentially a sequence of three steps of the implicit
midpoint rule. This makes the method appealing to integrate in time systems of
Hamiltonian partial differential equations, e.g., linear wave equations. This issue will
be taken up in a future paper. The use of (3.4) reveals that, with three stages, (3.8) is
the only choice of coefficients in (1.4) for which order 4 is attained.

4. Proofs in graph theory. In this section we deal with some nontrivial statements
on superfluous trees and parities that were left unproved in §2. We also give a
graph-theoretic result that will be useful in proving the main theorem.

Recall that the order of a labeled graph is the cardinal of the corresponding set
of vertices. If v is a vertex of a labeled tree A7, then the weight of v is the maximal
order of the subtrees that arise when v is chopped from A7 (see [8]). A centroid of At
is a vertex with minimal weight. It can be proved [8] that a labeled tree has at most
two centroids. With these preliminaries we can identify all superfluous trees.

THEOREM 4.1. A superfluous tree possesses an even number of vertices. There is a
bijection between the set of rooted m-trees and the set of superfluous 2m-trees,m=1,2, - - - .

TABLE 1

No. rooted No. nonsuperfluous
trees trees

z

O OV 00NN A WN =
[N
(=]
H

—
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Remark. The proof below shows that, under the bijection of the theorem, the
superfluous 2m-tree that corresponds to a rooted m-tree p7 can be conceived of as the
result of joining by an edge the roots of two copies of pr (see Fig. 3).

Proof. Let 7 be asuperfluous n-tree and choose one of its labelings A7. By definition
there are, at least, two adjacent vertices i and j in A7 so that the rooted labeled trees
pAT;, pAt; obtained when setting the root at i and j, respectively, are root-isomorphic.
Denote by o a corresponding isomorphism with o (i) = and let V; (respectively, V;)
be the set consisting of i (respectively, j) and of all vertices that can be joined to i
(respectively to j) without traveling along the edge (i, j). It is clear from the definition
of labeled tree that A7 contains no edge, other than (i, j), joining a vertex in V; to an
edge in V,. Thus, the deletion of the edge (i, j) defines in an obvious way two rooted
labeled trees pA7;, pA7;; the former has V; as a set of vertices and root at i and the
latter has V; as a set of vertices and root at j. Actually pA7;, pA7; represent the same
rooted tree p7;, since o maps i into j, V, onto V;, and edges joining vertices in V; into
edges joining vertices in V;. This shows, in particular, that n =2 Card (V;) is even. Also
i and j have weight n/2 and consequently are the centroids of A7 so that the unordered
pair of vertices (i, j) in the construction above is uniquely defined. It is thus possible
to define, in'a nonambiguous way, a mapping T:7- p7; that associates with each
superfluous n-tree a rooted (n/2)-tree. Clearly, T is a bijection and the result
follows. O

We must also show that the notion of parity of a nonsuperfluous tree is well
defined. We need two lemmata.

LEMMA 4.2. Let A7 be a labeled tree, v=1v,, v,," -, v, =w a path in A1, and o
an isomorphism of At onto itself, mapping v into w. Then o(v;)=v,_; for i=1,
2,---,[m/2].

Proof. Clearly it is enough to show that o(v,) =v,,_,. Assume that, for a given
A7, there are a path P: v=1v,, v, - -, U, =w and an isomorphism o with o(v)=w
o(v,) # v,_;. We shall show that then, in A7, there are a path P* of length 2m and
an isomorphism o* that maps the first vertex of P* into the last vertex of P* but does
not map the second vertex of P* into the penultimate. Therefore A7 successively
contains paths of lengths m, 2m, 4m, - - - | which is not possible.

Let us construct P* and o*. The sets {vo, vy, * *, U1}, {0(0), a(0y), - - -, (vm)}
are disjoint. In fact, if they had v, = o(v,) in common, then vy, V441, " * *, U, and o(v;),
o(v_1), "+, 0(v) would be two different paths joining v, to w. Then P*: v,
Ui,y Omer, 0(0), 0(vy), "+, 0(Um_), 0(v,), and o* =0’ serve our purposes,
because 0°(v;) # T (Vm_1). O

LEmMMA 4.3. In the situation of Lemma 4.2, assume that m is odd. Then the rooted
labeled trees belonging to At with roots at vp,,/» and vy, >+, represent the same rooted
tree. As a consequence, the tree represented by At is superfluous.

Proof. By the previous lemma o (v(,/2) = 0(Vm/21+1), SO that o provides a root
isomorphism of the rooted labeled trees. O

The correctness of the definition of parity is a direct corollary of the following result.

THEOREM 4.4. Let pAt,, pA7,, pAT, be rooted labeled trees belonging to the same
labeled tree A7. Assume that pAt, and p\T, are root isomorphic and that the tree defined
by At is nonsuperfluous. Then, the lengths of the path joining the root of pAt, to the root
of pAT, possess the same parity as the length of the path joining the root of pAt, to the
root of pAT,.

Proof. Denote by v, w, and u the corresponding roots, v# w. Let v=1,,
Vi, "y Uy, Um=u and w=w,, w;, -, w,_,, w,=u be the paths. Let j be the
largestmteger number so that j = min (m, k) and U = Wi, U1 = Wi, ° * * 5 Uy = Wi,
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Then {vg, vy, " * *, Om—j—1} and {wy, wy, - = -, we_;_, wi_;} are disjoint (proof by contra-
diction as in Lemma 4.2). Therefore, vy, 01, * *, Om—j—1, Wk—j, Wk—j—1," * * , Wo is @ path
joining v to w, whose length is m + k —2j. If m+ k were odd, Lemma 4.3 would imply
that we were dealing with a superfluous tree. O

The next result will be crucial in the proof of the equivalence between the
homogeneous and inhomogeneous form of the order conditions in Theorem 3.1.

THEOREM 4.5. With the notation of Theorem 3.1, for each nonsuperfluous n-tree 7,
n=2,

(4.1) ;a(p’r)=§ a(pT).

Proof. Clearly each side of (4.1) is the cardinal of the set of monotonic labeled
trees belonging to a parity of 7. Denote these sets by X; and X,. Let pAt be an element
in X,. From this rooted labeled tree we construct a new rooted labeled tree pAr™*
by exchanging the labels 1 and 2. In mathematical terms: (1) The root pAr* is at 1.
(2) The edges (i,j) with i and j different from 1, 2 in pA7* are the same as in pAT.
(3) (1,) is an edge in pA7* if and only if (2, j) is an edge in pA~. (4) (2, /) is an edge
in pA7r* if and only if (1, ) is an edge in pA7. It is easy to check that pA7™* is in fact
a rooted monotonically labeled tree. Furthermore, the transformation T that maps pAt
into pAr* is one-to-one. Since we are dealing with a nonsuperfluous tree, pAr and
pA7* represent rooted trees that belong to different parities, i.e., pA7™* belongs to X,.
Thus a one-to-one mapping from X, into X, exists and Card (X;) =Card (X,). The
result flows after exchanging the roles of X, and X,. O

5. Proof of the main result. Before we prove Theorem 3.1 it is expedient to give
a preliminary result in connection with order conditions for RK schemes. Let 7 be an
n-tree, n =2, and choose one of its labelings A7. Let v and w be adjacent vertices of
A7 and consider four rooted trees as follows. Denote by pr, (respectively, p7,) the
equivalence class of the rooted labeled tree pAr, (respectively, pAt,) obtained by
highlighting the vertex v (respectively, w) in Ar. Denote by p7, and pry the rooted
trees that arise when the edge (v, w) is deleted from A7. A pictorial illustration is given
in Fig. 4. The (tedious) mathematical definition of p7y, p7y is not given here, because
of its similarity to the construction performed in the proof of Theorem 4.1.

THEOREM 5.1. With the above notation:

(1) 1/y(p7,) +1/y(p7.) = (1/ y(p1y))(1/ ¥(pTW))-
(ii) If the RK tableau satisfies (1.3), then
(5.1) ®(p7,) +P(p7,) = P(p7v)P(PTW).

OJQO I I

° o Pty

X .l +
Pty Piw Plw

F1G. 4. The construction for Theorem 5.1.
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Proof. The recursive definition of the function y given, e.g., in [3, form. (144a)]
or in [7, Chap. II, Definition 2.10] implies that
y(p7,) = ny(prw)ly(p7v)/n(p7y)],
y(p7w) = ny(pry)ly(p1w)/ n(prw)],

where n(pry), n(prw) are the orders of pry, pry, respectively. Part (i) is then a direct
consequence of the equality n = n(pry)+n(pry).
Part (ii) is proved as follows. As in (2.1), the left-hand side of (5.1) is

(5.2) Y ba,ll+ Y A ba, 11,

ip,ip, iy ig,ig, o,ip

1,0,

where II stands for a product of n—2 factors a;. Note that the same product features
in both summations, as the pairs [father, son] are the same in pA7, and pA7, with the
exception that v is the father of w in pAr, and this relation is reversed in pAr,. The
use of (1.3) in (5.2) yields (5.1). O

The next result needs no proof.

COROLLARY 5.2. Suppose that the method (1.2) is canonical and has order at least
n—1, with n=2. Then

(i) if p7, and pr, are different rooted n-trees, then the standard order condition
®(p7,) =1/ v(p7,) holds if and only if ®(pr,)=1/v(pr.,) holds.

(ii) Assume that pt, and pr,, are the same rooted tree, which happens if and only
if 7 is superfluous and v and w are the two centroids of Ar. Then the standard order
condition ®(p7,)=1/y(pt,) holds.

With all the previous preparations, it is possible to give a short proof of
Theorem 3.1.

Proof of Theorem 3.1. Consider first the inhomogeneous form. It is trivially true
that (i) implies (iii). To prove that (iii) is sufficient for (i), use induction in p. For p =2
the result is true: the only standard order condition to be considered holds by part
(ii) of Corollary 5.2 and consistency. Assume that, for p —1, (iii) implies (i). Choose
a nonsuperfluous p-tree 7. Condition (iii) states that a standard order condition
corresponding to a rooted tree p7 in 7 is satisfied. By part (i) of Corollary 5.2, we see
that the standard order conditions also hold for the rooted trees in 7 that can be
obtained by “moving the root one edge away” in pr. The iteration of this process caters
to all rooted trees in 7 since any two vertices can be joined by a path. For a superfluous
tree the argument is similar; rather than using (iii) to get a starting point, we use
part (ii) of the corollary.

Let us now turn to the homogeneous form. Theorem 4.5 shows that (i) implies
(ii). Therefore it is enough to check that (ii) implies (iii). Assume that for a canonical
method with order p—1, (ii) holds but (iii) does not. Then there is a nonsuperfluous
p-tree T and a rooted p-tree p7 belonging to 7 such that ®(p7) # 1/ y(p7). If y(p7)®(p7)
is larger (respectively, smaller) than 1, then, by Theorem 5.1, y® is smaller (respectively,
larger) than 1 for each rooted tree that can be obtained by “moving the root one edge
away” in pr. These trees belong to the parity of 7 to which pr does not belong. The
argument can be iterated to show that y® >1 for all rooted trees in one parity of =
and y® <1 for all rooted trees in the other parity of 7. In view of Theorem 4.5, (ii)
does not hold, thus contradicting an earlier assumption. O

6. A canonical order condition theory. In this section and the next, we concentrate
on the integration of (smooth) Hamiltonian systems. It is assumed that y* = G(y, h)
represents a canonical one-step integration method for (1.1), not necessarily an RK
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method. Here y and y* denote the vectors with d =2g components (p”, q*)7, (p*7, q* )"
By definition, G(y, h) is, for each fixed h, a canonical mapping and, therefore, a
well-known result in classical mechanics [2] implies the existence of a (scalar) generat-
ing function S=S(p, q*, h) such that the relations

(6.1) p* =aS/aq*, q'=0S/op’, J=1,2,---,g

provide d scalar equations that implicitly define G.

Suppose that in the extended phase space of points (y”, t)” =(p”, q", t)” a change
of variables is made so as to have (p*”, q*7, )" = (G(y, —t)7, t)" as the new coordinate
system. Let (p(#)”, q(¢)”, t)” be an integral curve C of the system (1.1). The theory of
generating functions shows that the functions p* = p*(¢), q¢* = q*(¢) that describe C in
the new variables are solutions of the nonautonomous Hamiltonian system with
Hamiltonian function

(6:2) A", = Hy + o,
where S™(p, q*, t)=S(p, q*, —t). In (6.2) the derivative with respect to ¢ should, of
course, be interpreted as derivative with p, q* constant; once 457/3¢ has been found
as a function of p, q*, and ¢, the formulas that define the change of variables must be
used to write the right-hand side of (6.2) as a function of y* and ¢t

Now, if the method G(y, h) were exact for all solutions of (1.1), then, in the new
variables, the integral curves would reduce to points, i.e., they would have the form
y*(t) =y*(0) = constant. The substitution of this in the differential system satisfied by
y* clearly reveals that the corresponding Hamiltonian function H* would be a constant.
This argument can be reversed: if H* turns out to be a constant, then the method is
exact for the solutions of (1.1). In conclusion, the Hamilton-Jacobi equation

aS
H(y) +? = K = constant
characterizes the generating function of the true solution of the system.
Likewise, order of consistency p=1 is equivalent to the requirement that
H*(y* t)=K+ O(t?), t->0.

In other words, G is consistent if and only if H*(y*, t)= K+ O(t), t>0, and, if G is
consistent, then it has order p=2 for (1.1) if and only if, at t=0,

8" 'H*
(63) at"_l =O, n =2’ SRR /3
This formula can be written more explicitly as
"' 38~
6.4 H +— :Oa :29"" > t=0’
(6.4) () ) . »

where the notation (3" '/ at"")(-)ly* means that the differentiation with respect to ¢
is carried out with constant y*. To sum up, (6.3)-(6.4) give a set of order conditions
where the function to be differentiated with respect to time is scalar. The idea behind
this derivation is essentially due to Ruth [12].

We have found it useful to rewrite (6.3)-(6.4) in an equivalent manner, given in
the next theorem.

THEOREM 6.1. Assume that y* = G(y, h) is a consistent, canonical, one-step method
for the integration of a given Hamiltonian system (1.1) and let S= S(p, q*, h) be the
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associated generating function. Then G is consistent of order p =2 with (1.1), if and only
if, at h=0,

n—1

(6.5) W

(r)|y=0’ n=2"‘.’p’
with
r=<2S(p, q* h)

oh p,q,h).

Proof. For notational simplicity take first the case n =2, for which the chain rule
yields

oH*

xJ

oH*
ot

_9H*
y ot

ay*’
Y

+
v* zf:ay
If the method is consistent then, at t=0, H*(y*, 0)= K and hence (6H*/at)|,=0
(at t=0) is equivalent to (§H*/3t)|,»=0 (at t=0). A similar argument shows that,
for any nz2, (3" 'H*/3t"™")|,=0 (at t=0) is equivalent to (3" 'H*/at"™")|yx=
(at t=0). Since S™(p, q*, t) = S(p, q*, —t) the result follows from (6.4) after setting
t=—h. O

This theorem gives a convenient way of studying the order of canonical methods
when applied to Hamiltonian systems. We shall show next that the investigation via

(6.5) of the order of a canonical RK scheme results in the homogeneous order conditions
(3.1).

y

7. Order conditions for canonical RK methods. In this section we apply Theorem
6.1 to the case of a canonical RK method. Let the RK equations be

Y,=y+hza,jF(YJ), lgi, jés,
(7.1) ’
y*=y+hY bF(Y),
where y and y* denote the vectors (p”,q")”, (p*",q*")” and F corresponds to the
right-hand side of (1.1), i.e.,
(7.2) F=ZX= grad H,
with E equal to the 2d x2d skew-symmetric matrix
L
I 0]
First the generating function can be written in the form [10]

S(p.q*, h)=p"q* —h L b;H(Y:) —h* L ba;Hy(Y:) Hy(Y))",
i ij

dH oH oH oH
Hp=(a_f,.'.5__—]‘>a Hq=<_1-a“.,_1),
P op 9q aq
where it is assumed that the internal stages Y; are functions of (p,q*, h) defined
implicitly in (7.1).

(7.3)
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Then, the function I'=(3/0h)S(p, q*, h) to be Taylor expanded is given in the
next result.
LEmMA 7.1. If the RK method (7.1) is canonical, then

(7.4) I'= —Z bH(Y;).

Proof. Differentiate (7.3) with respect to h. The result contains derivatives of the
stages Y; with respect to h. These can be expressed, via (7.1), in terms of derivatives
of F(Y;) with respect to h. The result follows after some manipulation. O

Once I" has been found, standard RK theory (see, e.g., [7, pp. 150-151] can be
used to compute the derivatives (3"~'/ah"~")(I')|, that feature in the order conditions
(6.5). First use Faa di Bruno’s formula to express (3"'/6h""")(I')|, in terms of partial
derivatives of H and of derivatives of the internal stages with respect to k. Then write
the latter derivatives in terms of the corresponding elementary differentials. The
result is

(7.5)

" T 1
—1=——2 al(pr)y(pr)P(p7)0(pT), n=2,
oh n o,

where the summation is extended to all rooted n-trees pr and 6(pr) is defined as
follows. Choose a representative pAt of p7, and denote by r its root; then

(7.6) 0(p7) = s Zl , Fih) T F:??'—l)Hs(r)F:T:h) T F:'Zn),

[ ERRAEE VS PR PSS PP )
where the indices run from 1 to d, subscripts imply differentiation, superscripts denote
components, and s(j) refers to the set of all indices I, such that k is a son of j. There
is an index I, for each vertex in pA7 other than the root. We shall say that 6(p7) is
the canonical elementary differential associated with p7.

The right-hand side of (7.5) can be simplified, by using the next lemma, whose
proof will be postponed until the end of the section.

LEMMA 7.2. (i) Canonical elementary differentials associated with the rooted trees
of a superfluous tree are zero.

(ii) 6(p7;)=6(p7,) if p7 and pr, are rooted trees belonging to the same parity of
a nonsuperfluous n-tree, n = 2.

(iii) 8(p7,)=—0(p7,) if pr, and pr, are rooted trees belonging to different parities
of a nonsuperfluous n-tree, n = 2.

As a consequence of the lemma, in the summation in (7.5), the terms corresponding
to rooted trees of superfluous trees can be left out and all contributions coming from
the same tree can be grouped together. This yields

" 'r 1

77 =,k {; a(pf)*/(pf)fb(pf)—; a(pf)y(pf)fb(pf)} 6:(7), n=z2,
where the summation is extended to all nonsuperfluous n-trees, )., and Y, are as in
(3.1), and 6,(7) represents the common value of any of the canonical elementary
differentials of the rooted trees in the parity of 7 associated with }.,. When (7.7) is
taken into (6.5), it is apparent that the homogeneous order conditions in (3.1) are
sufficient for a consistent, canonical RK method to have order p when applied to any
smooth Hamiltonian system. It is possible to show that the values of 6,(7) corresponding
to different nonsuperfluous trees are independent and hence (3.1) is also necessary for
order p for Hamiltonian systems. The proof of this independence uses separable
Hamiltonians and will be given in a forthcoming paper [1].
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It is remarkable that in the ‘“‘simplifying assumption” derivation of § 4 the order
conditions (3.1) are found after manipulation of the ®’s (which depend on the RK
tableau but not on the differential equation), while here we have grouped the 6’s
(which are independent of the tableau and depend on the differential equation).

To end the paper we prove Lemma 7.2.

Proof of Lemma 7.2. 1t is clear enough to show that if the rooted trees p7, and
p7, are as at the beginning of § 5, then 6(p7,) =—0(p7,). Let w, x1,- -+, xm be the
sons of v in pA7, and let v, y1, - - -, yk be the sons of w in pAr,. According to (7.6),
0(p,) and 8(pr,) are given by (n—1)-fold summations. Namely

0([)7'0) = Z Z H’wa’ylv"'v’ykF;:‘l"",Ime’
I,

0(pr,) =X % Hlu,lxl,~~~,1x,,,F;f,,,~~~,l}.kn,
I,

where, in both formulae, the outer summation is extended to the indices I, with k # v,
w and IT denotes a product of n —2 derivatives of components of F (the same product
features in both summations, cf. the proof of Theorem 5.1).

Derivatives of H and components of F are related in (7.2). Namely,

F' =ZJ: &uH;,

with E=(&,). Hence

o(pTv) = Z z Z HIW,I}.l,"',I,-kg’w,loHIo,les“'nymH’
I, 1,

B(P”'w) = Z Z Z HIv,I,‘l,---,Ixmglu,lwHIM.,I,,l;“,I),kH’
I, 1,

and the skew-symmetry of = reveals that 6(p7,) = —60(p7,). O
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