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Numerical Ordinary Differential Equations vs.
Dynamical Systems

J.M. Sanz-Serna
Universidad de Valladolid, Spain

Abstract. In this expository paper we are concerned with the fol-
lowing question: A given system of ordinary differential equations
S'is integrated by means of a given numerical method M. To what
extent is the dynamics of the approximate solutions generated by
M a faithful description of the dynamics of S?

1 Introduction

The present paper is devoted to the study of the relations between two
mathematical fields: time-continuous dynamical systems and numerical
methods for ordinary differential equations. In more concrete terms, we
are concerned with the following question.

(Q): A given system of ordinary differential equations S is integrated by
means of a given numerical method M. To what extent is the dynamics
of the approzimate solutions generated by M a faithful description of the
dynamics of S ?

The paper is mostly expository. Little background on numerical meth-
ods or dynamical systems is assumed on the reader. It is therefore hoped

experts on dynamical systems.

We begin with the bresentation, in Section 2, of the numerical methods
referred to later in the paper. In Sections 3 and 4 we provide a necessarily
very sketchy review of the main developments on the analysis of numerical
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ODE methods in the last thirty-five years. It turns out that most of the
available results are not directly relevant in connection with question (Q).
In Section 5 we reconsider (@) in the light of a concrete example. Sections
6-8 are devoted to answering (Q). The final Section 9 briefly refers to
aspects of the dynamical systems/numerical methods interface not covered
elsewhere in the paper.

2 Numerical methods

2.1 Preliminaries

We consider initial-value problems of the form
Y =1(y,t), tel, y0)=aecRr? (2.1)

where [ denotes either a compact interval E“i“ or the half-line [0, o0).
Often, (2.1) may be the result of the space-discretization of an initial
boundary-value problem in partial differential equations. In such a case
the dimension d is typically very high. The restriction to real unknowns
is not essential: the methods described below are easily adapted to the
complex case or, alternatively, complex d dimensional systems can be nu-
merically integrated as real 2d-dimensional systems.
All numerical methods for (2.1) generate approximations

%Ou%Hu...v%Z‘.

to the ‘true’ values
y(to), y(t), ..., y(tn), ...,

where 0 = t) <ty < ... < th < --isagridinl. If ] is bounded, the grid is
assumed to have a finite number of grid-points t,. If [ = [0, 00) we suppose
that n takes all positive Integer values and ¢, 1 oo: while it is clearly
not feasible to actually compute infinitely many y,, it is convenient to
conceive of numerical integrations that cover arbitrarily long time-intervals.
The increments hn :=1t,41 —t, are called the step-sizes. We will almost
exclusively refer to constant step-size situations (i.e. tuy1 —tn = h for all
n), in spite of the fact that, in practice, variable step-sizes should always
be used (more on this later).

The (explicit) Euler rule recursively defines the numerical solution by

Ynt1 ' =Y¥Yan + \&.Au\:_“;v Aw.wv

(Yo = a) and provides the canonical example of an Integration method. If
the solution y( -) of (2.1) exists, then we can define the associated trunca-
tion error

H,HJ:TTH = VAN:.#HV - VAN:v - \NWA%Q:Y N:v Awwv
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which clearly has a Taylor expansion
1
HH:.TH = Mbm%\\ﬁu:v + ... AMAU

provided that y(-) is smooth. Since (2.4) starts with h?, we say that (2.2)
is consistent of the first order with (2.1). The truncation error possesses
a nice interpretation: TE, 4, is the difference between the true solution
¥(tnt1) and the result y(t,) + hf(y(t,),t,) of an Euler step taken from
y(tn).

Another useful example is given by the implicit Euler rule

%:+H =Y +\~m.ﬁv~:+?x;+wv4 Ammv

For each n (2.5) provides d real equations to be solved for the d real compo-
nents of y,, . ;. Usually some iterative procedure must be employed to find
Yn+1 numerically and as a result the cost of a step ¢t,, — tay1 with (2.5)
1s considerably higher than that of a step with (2.2). Since the truncation
crror of (2.5),

H,H.u:.rH = VANS(:V - %Q:v - \;.A%QB.:V‘ “:+Hv‘ Ammv

satisfies

Hmw:+~ = I.Wbmv\\ﬁzv +-- ) Awﬂv
comparison with (2.4) makes it clear that, in general, there is no reason
why (2.2) should not be preferred to (2.5) (see, however, Section 4 below).

It is perhaps useful to point out that for the implicit method TE, 41
cannot be interpreted as the difference between ‘true’ %Q:tv and the nu-
merical solution, integrating from y{ts).

In spite of their simplicity, both (2.2) and (2.5) are still ‘state of the
art’ methods e.g. in cases where the dimension d is so high as to preclude
the use of more sophisticated schemes. However for most problems (2.2)
and (2.5) are too naive and some of the methods in the next subsections
should definitely be preferred.

2.2 Linear multistep methods

A linear multistep method (LM) is specified by a positive integer k (the

number of steps) and constants @;, 8%, i =0,1,... k with a; = 1. Once
Yo,¥1,- -, ¥n4k—1,n > 0, have been found, y,,; is defined through
k k
M)\S%:t = }MFQ%E&A:?@. (2.8)
i=0 i=0

(See e.g. Lambert (1973), Sections 2.1-4)
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If B = 0 the method is explicit. Otherwise the method is implicit
and at each step a d-dimensional system must be solved. In either case,
Y1,...,¥%—1 should be suitably chosen before the application of (2.8) can
begin. It is customary to associate with (2.8) the polynomials

EANVHQwNw+...+Q9 QANVHQ»NNQ.T....TQO. (2.9)

These specify the method and are referred to as characteristic polynomials.
The truncation error is defined by

k k
TEnyk i= 3" tiy(tng:) - \yMEwQQ:ty?tv. (2.10)
=0 i=0

For explicit methods TE.4; is the difference between the true Y(tay1)
and the approximation that (2.8) would yield if Yndk—-1,...,¥n Were ‘ex-
act’, Le. Yniko1 = y(tyroy),. ... Yn=y(t,).

The method is said to be consistent of order p if

H‘m:.fa ”Qﬁ+~\~3+wv~23v+...« in.w wmo AMHHV

whenever the solution y of (2.1) is sufficienty smooth. Consistent means
consistent of order p for some p 2 0. In (2.11) Cp41 represents a constant
depending only on {a;, B} (See e.g. Lambert (1973), Section 2.6). Itis a
simple matter to see that the requirement ‘order > p’imposes p+1 indepen-

dent linear constraints on the 2k + 1 parameters Ak—1,. .. 00,0%,...,8.

Hence order of consistency 2k is possible with k-step formulae. The con-
straints for order at least | (le. consistency) are

X+ o+ 4o =0, art etk ~fo—Bi - -8, = (2.12)

The best known LM formulae are the so-called Adams methods. These
have a; = Lap_, = ~lar_y = .. = @y = 0 and the 8; chosen SO as
to maximize the order of consistency. With & steps, the explicit Adams
(or >mm5m!meEo§€ method is of order k and its implicit counterpart
(Adams—Moulton method) is of order k + 1. In practice implicit Adams

called a predictor-corrector pair (Lambert (1973), Section 3.9).

The sophisticated ‘state of the art’ software is written around Adams
predictor-corrector pairs and, as the integration proceeds, changes both
the step-lengths and the number of steps of the formula so as to increase
efficiency (see e.g. Hairer et al. (1987), Section II1.7 and Shamphine and
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2.3 Runge-Kutta methods

A Runge-Kutta (RK) method is specified by an integer s (the number of
stages) and constants a;;, 1 <4, <s,b;,1<i<s. When Y has been

found, auxiliary vectors Yni, 1 <i<s, are defined through

s
<:L. =Y¥Yn +\~MUQQWA<:QJ&=+&.\~V' Awwwv
i=1
with
=3 j,1<i<s. (2.14)
J
Then one sets
Ynt1 =Y +h D Bif (Yo, tn + cih). (2.15)

i=1
If a;; = 0 for i < j, the vectors
<:L =Yn, <:b H%:+\NQSWA<:L;:+QNDV etc.

can be easily computed. Then the method is called ezplicit. Note ?.uéo‘.dw
that to find Yn+1, with an explicit RK method demands s evaluations of
the function f, whereas the cost of an explicit linear k-step formula (2.8)
is of one evaluation per grid point, regardless of the value of k. .
For implicit RK methods (2.13) provides a system of ds real equations
for the ds real components of the vectors Y, ;. This should be compared
with the situation for (2.8) where the system is only d-dimensional, regard-

less of the value of k.
To analyze the consistency of (2.13-14) it is customary to observe that,

for smooth f, the system

Yi=y+h) aif(Y;,t+eh), 1<i<s (2.16)
i=1

mmplicitly defines, for small h, functions Y; = Yi(y,t, k) with Yi(y,t,0) =
¥- On setting

O(y,t,h) = M@:S“:QS‘ (2.17)
i=1

the step ¢, = t,, 4 in (2.14) can be written as
Yn+1 ”%:LﬁbeA%:;:‘}v“ AMH%V

an extension of (2.2)
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Both for explicit and implicit RK methods the truncation error is de-
fined by

TEny4, H%Q:+LIV~QJVIJGA%Q:YN:,\&. Aw.ﬁcv
and possesses the interpretation ‘true ¥(tn41) minus numerical ify, =
y(t.).

The method is said to have order of consistency p if the Taylor expan-
sion of TE as a function of A (h — 0) begins with pr+! terms whenever f
and y are smooth. Even though this is analogous to (2.11), there are two
important differences. (i) While in (2.11) the Taylor expansion involves
only derivatives of the solution y, in the RK case one also finds partial
derivatives of f. (ii) While the conditions for (2.8) to have order p are very
easy to derive, it is a major task to systematically obtain conditions on a;;,
b; that guarantee that (2.13-14) possess order p- This was first achieved by
J. Butcher (1963). See Hairer ef al. (1987), Section I1.2 for a simple pre-
sentation and Butcher (1987) for a more comprehensive treatment. With
s stages, order 2s can be achjeved (Gauss-Legendre methods).

Standard codes employ variable step-sizes. The actual value of h, to be
used at ¢,, is determined by comparing the approximations at ¢,, obtained by
the method being employed and an auxiliar RK method (embedded pairs,
see Hairer ef al. (1987), Section 11.4). A pair due to Prince and Dormand
(1981) m:oogogzzm a 13 stages, order 8 formula is very popular.

granted: If s is not defined i the whole of R? I, (2.8) or (2.13) may
require that f be evaluated outside its domain of definition. Due to lack
of space, these issues cannot be discussed here (see Sanz-Serna Gwmmmvv
Lopez-Marcos and Sanz-Serna (1988)) and we will always assume that (2.8)
or (2.13-14) uniquely define the numerical approximation.

3 Classical error bounds

rived in the fifties, mainly by Dahlquist (1959). 1t is assumed that, in (2.1),
I'is compact (I=]o, T]) and f is globally Lipschitz continuous with respect
toy in R x [0, T]. (Extensions to cases where f is Lipschitz only in a tube
around the solution ¥(t) are feasible
(1975) and Lépez-Marcos and Sanz-Serna (1988)). The boundedness of 7
however cannot be dispensed with.)

Consider first Euler’s formula (2.2). Along with {y,} we take a per-
tubed Euler solution {vn} satisfying

Vatlr = v, + \;.T\:,u:v + Q3+T Awﬁv
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where &, represents any pertubation. Subtraction of (3.1) from (2.2)
yields (L > 0 denotes the Lipschitz constant)

Vat1 = Yniill S (14 LBY||ve = yall + 16,41, (3.2)
and recursion leads to
Vi = yull S L+ LR Ivo - yoll + (1 + LR HI61] + ...+ [|6a]l- (3.3)

Now, since nh = t, < T and (14 Lh)™ < exp(Lmh) for m >0, we
obtain N
Vo = yull < exp(LT){lIvo = yoll + 37 1I6mil}, (3:4)
m=1
a stability estimate that hbounds the change in Euler solution in terms of
the perturbations. The key fact is that the factor exp(LT') does not depend
on h. If we let the theoretical vectors {¥(t.)} play the role of {v,}, then
(2.3) shows that the corresponding pertubations are §, = HU: and (3.3)
reads .
1¥(t2) = yall < exp(LT) 3" ITE,, (3.5)
m=1
which, according to (2.5) implies, for any grid point t, < T and if y(t) is
smooth,

ly(tn) ~yall = O(nh?) = O(h), h—o. (3.6)

This shows first order of convergence, i.e. an O(h) behaviour for the
errors in the approximate solution {¥n}. To sum up, (3.5) (convergence)
results from (2.5) (consistency) and (3.3) (stability).

The stability estimate (3.3) is a discrete counterpart of the Gronwall
bound

T
V() =y ()]l < exp(LT){[Iv(0)]] +\o l6(7)lldr}, (3.7)

0 <t < T, for the difference between the solution y of (2.1) and the
solution of a perturbed problem

V(L) = f(v(t), 1) + 6(t), v(0) given. (3.8)

In ODE circles (3.6) would be referred to as a ‘well-posedness’ esti-
mate rather than as a stability estimate, the word stability being used in
connection with ¢t — oo situations. Thus, when a numerical analyst says
‘Fuler’s rule is stable , @ person with an ODE background should interpret
it as meaning ‘the Euler recursion is well posed (uniformly in h) in any
compact inlerval’.
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Turning now to the implicit Euler rule, convergence of the first order
as in (3.5) is easily proved from (2.7) and a stability estimate. The latter
is derived by considering along with (2.5) a perturbed solution.

Vn41 =V, + \;.A<:+TN:+H + %a.z“ Awwv
Now, instead of (3.2), we have, from (2.5) and (3.7)
Vg ~ Ynprll < (1 - Lh)™ {|v, — Yall + 16,4411}, (3.10)

provided that Lh < w“ say. Recursion in (3.8) easily leads to an estimate
like (3.3), with exp(LT) replaced by exp(2LT).

All RK methods possess a stability estimate similar to (3.3). This is
derived very much as in (3.1-2), starting from the format (2.15). (® inherits
its Lipschitz character from f). Consequently all RK methods consistent,
of the p-th order satisfy (ly(tn) — yal| = O(h?), i.e. they are convergent of
order p.

For LM methods the situation is more complex. The stability anal-
ysis is best performed by rewriting (2.8) as a one-step recursion. To do
so, 1t is of course enough to consider the kd-dimensional vectors Z,, 41 =
N ¥ie1)T that satisfy

Nz+~ ”§N3+\~H.JAN:+H‘N:‘«ZM\~V AwHHv

where M is the companion matrix of the characteristic polynomial p(z) in
(2.9) and F is a Lipschitz function of its first and second arguments. The
stability of the recursion (3.9) depends on the spectrum of M (Hairer et al.
(1987), Section II1.4), i.e. on the roots of P. It turns out that a stability
bound for (3.9) (or equivalently (2.8)) exists if and only if p satisfies the
so-called root condition, namely if all its roots are in the closed unit circle
and roots with unit modulus are simple. (Note that (2.12) shows that,
for the consistent methods, 1 is always a root.) Dahlquist (1959) proved
that high order of consistency is not compatible with the root condition.
Although, as we saw, there are k-step methods or orders of consistency up
to 2k, the order of a stable method is at most k + 1 if k is odd and k + 2
if £ is even. For stable methods of order of consistency p, convergence or
order p holds provided that the missing starting values Yi,...,Yk—1 are
sufficiently accurate. This is easily established by an argument like that
leading to (3.4-5).

4 Absolute stability

It is a remarkable fact that most information on numerical methods has
traditionally been obtained by looking at their performance on the simple
scalar equation

¥ =Xy, X acomplex constant. (4.1)
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This performance is in principle easily analyzed because for (4.1) the nu-
merical solution y, can be found in closed form in terms of h and A. Rather
than studying arbitrary LM or RK methods (see e.g. rmavmwﬁ. Cw.ﬂw.vy we
will present some illuminating particular cases. Also, for m_Ev__QQ.im
restrict our attention here to the case where A in (4.1) is real and negative.

4.1 Always wrong

As a first example consider the explicit mid-point rule, i.e. the m-m.ﬁ%
method with p(z) = 22 — 1, 0(z) = 2z. The order of consistency is 2
and the root condition is ‘just’ satisfied: the roots of p, namely +1, are
on the boundary to the unit disk. The application to (4.1) reads, when
written as a one-step recursion,

=2hX 1
N:+~ = ﬁ 1 0 N: AAMV

Since A has been assumed to be negative, solutions of (4.1) wvvwo.wor
each other exponentially and the Gronwall estimate (3.6), that predicts
exponential growth of pertubations, is far too pessimistic. By analogy, one
would expect that the corresponding classical error bound for the mid-
point rule would also be a gross overestimation. However this is not the
case, as the matrix in (4.2) possesses an eigenvalue with modulus > 1, so
that the numerical solution, and hence the error, do grow exponentially
with n. Obviously, this shows that the mid-point rule in general 8:::.;
be recommended as a good numerical method. From our point of view is
important to emphasize that convergent methods may well generate, for any
chosen value of the step-length, sequences {y,} with the wrong qualitative
behaviour. There is no contradiction: convergence refers to compact time
intervals and h — 0, qualitative behaviour refers to fixed h, t, growing
unboundedly. This phenomenon has been known, at least, since Dahlquist
(1959).

Note that as h tends to 0, the eigenvalues of the matrix in (4.2) tend
to +1, the roots of p. It is easy to see that ‘always wrong’ behaviour
like this studied here cannot take place either for RK methods or for LM
methods that satisfy the so-called strong root condition: the roots of p are
1 (simple) and & — 1 complex numbers with moduli < 1 (Stetter (1973),
Theorem 4.6.4, Lambert (1973) p.67). For such methods the magnitude
of the numerical approximation to (4.1), Re A < 0, decreases exponentially
for h sufficiently small.

4.2 Always right

We now take the implicit Euler method (2.5). Its application to (4.1), A<
0, results in the recurrence y,4; = (1 —hA)"y,. Since 0 < (1-hA)~! < 1,
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the numerical solution tends monotically to 0, thus exhibiting the right
qualitative behaviour for all values of h.

The good behaviour of (4.5) shown here for the model problem (4.1)
holds for any dissipative problem (2.1) where f satisfies (angular brackets
denote an inner product)

(v, 1)~ £(w, 1), v~ w} < 0, (4.3)
in its domain of definition (Dekker and Verwer (1984), Sections 2.4, 2.5).
Clearly, (4.3) implies that solutions of the system in (2.1) become closer to
each other as ¢ increases. Numerical solutions computed by the backward
Euler method also become closer to each other and it is possible to improve
substantially the classical error bounds (which grow exponentially with T").

4.3 Sometimes right. Stiffness

Our final example is given by Euler’s rule (2.2). The application to (4.1),
A < 0, leads to the recusion Ynt1 = (1 + hA)y, and the numerical solution
grows exponentially unless A is taken < 2/IAl. If X < —1, this is a severe
restriction on A. However, it is less severe than the restriction on A deriving
from the requirement that the local truncation error should be reasonably
small, i.e. the requirement that A should be in line with the time scale in
which the solution itself varies. For instance, we would roughly require,
according to (2.4), h < 0.3/|A] to have local truncation errors of about 5%.
Therefore the e> * tence of a so-called absolute stability restriction h < 2/|A]
1s not a serious Irawback of the method, as applied to (4.1). However
let us know consider the slightly more complicated nonhomogeneous stiff
problem

YV =2dy+g(), A= —10°%  g(t) = cost — Asint, y(0) =1, (4.4)

with the solution
y(t) =sint + exp(—10°¢). (4.5)

After a short transient, (4.5) is virtually identical to the sin ¢ function, and
steps of length h = 0.1, say, would be reasonable to keep the truncation
error small. Nevertheless, subtraction of (2.2) and (2.3) yields

N\Q:IIV —Yny1 = Aw - \:Om:w\ﬁu:v - W\‘L + Ndm.:.:“ AAQV

and accordingly the errors Y(tn) — yn will grow exponentially with n unless
h satisfies the absolute stability restriction h < 2/IA] = 2 x 10-5. This
renders Euler’s rule unsuitable for (4.4). Many other numerical methods,
including all explicit RK and LM formulae, cannot accurately integrate
stiff problems unless the time step 1s chosen unreasonably small. Unfortu-
nately, so-called stiff problems like (4.4) occur frequently in many areas of
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application, including time-integration of evolutionary partial differential
equations, see e.g. Sanz-Serna and Verwer (1989). As a consequence the
nunierical treatment of stiff problems requires special RK or LM formulae
and has attracted enormously the interest of numerical analysts, starting
with the important 1963 paper by Dahlquist. A complete bibliography on
numerical stiff problems would certainly include many hundreds of ;o:.um.
Initially, only the scalar model problem (4.1) was considered along with
constant coefficient linear systems that reduce to (4.1) after diagonaliza-
tion. Nevertheless, extensions to dissipative nonlinear problems like AA__ML
have recently received much attention starting from the work of Dahlquist
in the mid-seventies, Dahlquist (1978). See Dekker and Verwer (1984) for
a sumrnary.

[t is important to bear in mind that in the developments just surveyed
the term stability has a different meaning than in Section 3. There it re-
ferred to A — 0 in connection with the idea of convergence. Here absolute
stability refers to behaviour for fixed h, as t, increases unboundedly. I
would also like to emphasize that the analysis of the performance of nu-
merical methods on the simple model (4.1) is mathematically deeper than
the material in this section may suggest. See e.g. the theory of order stars
(Wanner et al., 1978).

5 The main question

The theory described so far has focused on the quantitative approxima-
tion of the solution of an initial value problem (2.1), mostly in a compact
time interval. While it is true that numerical analysts have studied the
qualitative behaviour (of families) of numerical solutions, such studies have
traditionally been centred around dissipative problems (4.3) and have been
considered relevant in as much as they helped to identify the behaviour of
methods when applied to stiff problems. It is only in the last decade that
the question (@) posed in the introduction has attracted some attention in
the numerical analysis community. Early works in that direction include
Brezzie et al. (1984), Sanz-Serna (1985b), Mitchell and Griffiths (1986),
Sanz-Serna and Vadillo (1986).

It is expedient to review here the example studied by Brezzi ef al.
(1984). They consider the complex equation

dz . 9
.Q|NH?+.mI_N_vN, (5.1)

where s is a real parameter. Due to the rotational symmetry of (5.1), it
is possible to derive a scalar real equation for the evolution of the variable
¢ = |z|?, namely

dg

il 2(s — gq)q. (5.2)
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Figure 1.

The dynamics of (5.2) is easily described (7 below stands for true):

(T1) For s < 0, ¢ = 0 is the only equilibrium; all other solutions decrease
towards 0. In terms of the original equation (5.1), all the solutions spiral
towards the origin in the complex plane.

(T2) For 5 > 0 there are two equilibria given by qo = 0 and gy = s. All
trajectories, other than the equilibria, tend toward gg. In terms of (5.1),
we have an equilibrium at the origin and an invariant curve with equation
|z| = s3. The latter attracts all trajectories other than z = 0. Clearly the
orbitally stable invariant curves originate from a Hopf bifurcation at s = 0
(Chow and Hale (1982), p.8, Guckenheimer and Holmes (1986), p.150).

Figure 1 depicts the dynamics of (5.1) in the plane (s, |z|).

Let us study the application of Euler’s method (2.2) to (5.1). The
rotational symmetry of (5.1) is retained by the discretization and easy
algebra shows that the Euler formula implies the following recursion for
the approximations ¢, to g(t,):

Gn+1 = 9(qn) = [(1+ h(s — Q:vvm + JMF: (5.3)

The dynamics of (5.3) with h fized, h < w and s varying is as follows (N
stands for numerical):

(N1) For s < sy = —(14++/T=h?) /h one finds ¢’ > 0 and ¢g” > 0.
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Therefore the origin is a repellor and the nontrivial numerical solutions
increase monotonically towards co. This is just the opposite to the true
(T1).

(N2)Forsy < s <s_:=—(1-+/1=h?%) /h(5.3) possesses fixed points at
the origin and at ¢4 = s+ (14 /1 — A2) /h. The latter has no counterpart
in (5.2). An initial point larger than ¢, generates a solution that increases
to co. Initial points below g, give rise to the right qualitative behaviour:
attraction towards the origin.

(N3) For s_ < s there are three equilibria of (5.3). These are the origin,
q+ (the spurious equilibrium found above) and ¢_ = s+ (1 — V1 — AZ) /h.
The latter is an O(h) approximation to the true equilibrium gy of (5.2).
There are two subcases to be considered.

(N3a) s <'s < sy :=(—2+h?)/ (hvV/1=hZ) —1/h. Here q_ is stable (Gust
as its true counterpart gg). Its basin of attraction is the interval (0, ¢, ).

(N3b) s, < s. Here g_ is unstable. The dynamics can be very complicated
including chaos and the reader is referred to Brezzi et al. (1984) for more
information.

Figure 2 corresponds to the Euler dynamics with A = 0.1 and should be
compared with Figure 1. The branch corresponding to the Hopf equilibrium
g— is only presented for s < s,.



94 Numerical Ordinary Differential Equations vs. Dynamical Systems

The following conclusions may be drawn, depending on whether you
are a pessimist (P) or an optimist (0).
(P) Whatever the value of s and whatever the value of h, no matter how
small, the z-plane dynamics of the Euler discretization of (5.1) is widely
different form the true dynamics.

(O) If the attention is restricted to a bounded region |z] < R, [s| < S,
then for A small enough (how small would of course depend on R and S},
the Euler discretization of the parameterized equation (5.1) approximates
the true dynamics. In fact, as h decreases, s — —oo and Sy — 00. As a
result, for h small, only the regimes (N2} and (N3a) are found in [s] < S.
Furthermore ¢, — o0 as h — 0, so that the spurious ¢4+ eventually leaves
|z] < R. For example, the value A = 0.1 in Figure 2 is small enough for the
true and numerical dynamics to coincide for, say [z] < 2.5, |s| < 10. Note
in particular that the Hopf bifurcation at s = 0 is faithfully inherited by
the discretization.

The next two sections are devoted to exploring the optimistic and pes-
simistic points of view respectively.

6 Optimism

For simplicity, in the remainder of the paper we only consider autonomous

systems
y = f(y). (6.1)

We organize the presentation around the invariant objects of (6.1).

6.1 Equilibria

Equilibria are duly inherited by both RK and LM methods. If y* is an
equilibrium of (6.1) f(y*) = 0, then for any method and any step-length A,
¥™ is also a zero of the function ¢ in (2.15) (which for (6.1) does not depend
on t) and hence an equilibrium of the RK dynamics. This is trivial to check.
For LM methods, the kd-dimensional vector Z+ = [y*T .. «%*J% is also
easily seen to be an equilibrium of the associated recursion (3.9).

Assume furthermore that ¥* is a hyperbolic sink of (6.1). The stability
of y* or Z* as equilibria of the numerical recursions (2.6) or (3.9) is of
course studied by linearizing (2.6) or (3.9) around the equilibrium. Such
linearizations turn out to coincide with the result of the application of the
numerical method to the linearization around y" of the system (6.1), i.e.
the processes of linearization and discretization commute. In this way we
are led to the analysis of the qualitative behaviour of numerical solutions of
asymptotically stable, linear, constant coefficient problems, a task which,
as we saw, is familiar to numerical analysts. According to the discussion
in Section 4, y* and Z* are hyperbolic sinks of (2.6), (3.9) respectively,
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provided that A is small enough and, for LM methods, that the strong root
condition is satisfied. It should also be pointed out that in this case it is
possible to derive error estimates for the difference ¥(tn) — y, that hold
uniformly for 0 < ¢ < oo, cf. Stetter (1973), Section 3.5. To sum up, near
sinks, (sensible) numerical methods have the right dynamics, provided that
the step-length is rightly chosen.

If y* is not a sink of (6.1), the situation is more subtle and has been
studied by Beyn (1987a). For simplicity we only review here the results for
RK methods. If y* is hyperbolic and the RK method (2.13-14) is consistent
of order p, the local stable and unstable manifolds of y* as an equilibrium of
the numerical recursion (2.15) approximate their counterparts in the QDE
system (6.1) with errors O(hP). Furthermore, in a neighbourhood Q of
¥* the numerical dynamics reproduces the trye dynamics in the following
sense. There exist constants C' and ho such that if Yo, Y1,..., Y~ arein
and satisfy (2.15) with h < hg, then there is a suitable initial condition x,
such that if x,, denotes the value at { = nh of the solution of (6.1) starting
at xg, then, for 0 < n < N, X, 1s well defined and [1Xn —y,|| < ChP. Thus,
each numerical orbit 0, is uniformly close to an orbit O (of the h-flow)
of the system of ODEs. However, the ‘true’ orbit O being approximated
will possess an initial value xo different from the starting vector y,. This
is analogous to what in dynamical systems is known as shadowing (Bowen
(1975), Chapter 3B).

If the equilibrium ¥y of (6.1) is not hyperbolic there is a centre man-
ifold (Guckenheimer and Holmes (1983), Section 3.2), a situation whose
discretization has been studied by Beyn and Lorenz (1987).

6.2 Hyperbolic periodic orbits

The behaviour of numerical methods near a periodic orbit P of (6.1) was
first investigated by Braun and Hershenov (1977), who only considered
one-step methods like (2.15) and stable orbits. They showed that, for A
small, there is a closed curve Py in the y-space which is close to P and
invariant for the numerical iteration. A similar result was given by Doan
(1985) for multistep methods satisfying the strong root condition and
general hyperbolic periodic orbits P. For k-step methods like (2.8) the
invariance of P, must be understood in the following sense: for any point
Yr~1 on Py there exist Yo,-..¥k-20n Py such that the numerical solution
of (2.8) with starting vectors yg, . . - Yk-1 stays on P,. Doan’s results have
in turn been improved by Beyn (1987b), Eirola (1988), (1989) and Eirola

denotes the order of the method).
It is clear that in the result Jjust quoted the hypothesis that P is hyper-
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bolic is essential. When P is not hyperbolic, systems in the neighbourhood
of (6.1) may or may not have a periodic orbit near P and accordingly P
is likely to disappear in the process of discretization. An example is pro-
vided by the (non-hyperbolic) closed orbits of the linear centre y' = iy,
(y complex). Working as in Section 4, 1t is easily seen that most methods
generate orbits that spiral either towards the origin or towards infinity.

When (6.1) depends on a parameter s, periodic oribts are often born
from a branch Y*(s) of equilibria via Hopf bifurcation at a critical value
sc of the parameter. In the case of Euler’s method Brezzi et al. (1984)
showed that for h sufficiently small there is a critical value s.(h) of the
parameter so that the numerical recursion undergoes a Hopf bifurcation
(in the sense of mappings) at s.(h). Furthermore sc(h) — s, = O(h). This
situation has been illustrated in Figure 2, where the Euler dynamics has a
Hopf bifurcation at s.(h) = s_ = s_ (h). Hofbauer and Iooss (1984) study
general RK methods applied to systems with a Hopf bifurcation, but their
investigation is limited to the behaviour of the numerical method at s = s, .
Eirola and Nevanlinna in a paper presented at the 1989 Numerical ODE
meeting in London analyzed the behaviour of general numerical methods
near s,.

Other useful references in this connection are Mahar (1982a), (1982b).

6.3 Other invariant objects

Kloeden and Lorenz (1986), (1990) have shown that, if A is a compact
attracting set of arbitrary shape for (6.1), then numerical discretization
possesses a nearby attracting set A,. Beyn (1987¢) studies the effect of
discretization on homoclinic orbits.

7 Pessimism

As mentioned in Section 4, it is now a long time since the literature first
presented cases where a convergent numerical method generates the wrong
qualitative behaviour, either for a given time-step or for all choices of time-
step. However such misbehaviour had traditionally been studied in linear
problems, such as (4.1), where the trouble used to be that the method would
approximate an exponentially decreasing true solution by an exponentially
increasing numerical solution. As expected, the class of possible patholo-
gies grows dramatically when moving to nonlinear problems. Yamaguti
and Ushiki (1980), (1981) and Ushiki (1982) proved that even for simple
equations such as y = —y(1 — y) and simple methods such as Euler’s rule
(2.2) or the m" -point rule (cf. Section 4.1), the numerical solution could
exhibit chaos. in the case of Euler’s rule, chaotic orbits appear for values
of h too large to be considered meaningful from a numerical analysis point
of view (see below). However for the mid-point rule, chaos may appear
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for any choice of h. The general study of the dynamics of the mid-point
rule was taken up by Sanz-Serna (1985b), Sanz-Serna and Vadillo (1986),
(1987). Priifer (1985) considers the logistic equation ¥ = y(1 — y) and
shows the chaoticity of some orbits generated by Adams-Bashforth LM
methods. See also Sleeman ef al. (1988).

A more systematic analysis is performed by Iserles (1987), (1990) who
undertakes a study of the equilibria of numerical methods. Among other
things, Iserles notes that for RK methods the function ® in (2.15) usually
has spurious zeros y*, i.e. vectors y* such that, for a given A, S(y*, h) =0,
while f(y*) # 0. Such a y* would represent an equilibrium (possibly
asymptotically stable) of the RK dynamics which does not approximate an
equilibrium of the true dynamics. Iserles emphasizes that the pathology
consisting of a numerical solution being attracted by a spurious equilibrium
may not be easily discovered by some numerical analysts. In fact many
numerical analysts have been brought up with the linear theory, where the
only pathology to be feared is spurious growth. Such individuals are not
likely to suspect that a numerical orbit nicely setting into a equilibrium
may be completely spurious. It is of some interest to note that there are
certain implicit RK methods for which spurious equilibria cannot occur.
These methods are called regular and have been characterized by Hairer et
al. (1989).

Spurious dynamics arise not only from spurious equilibria, but also from
spurious periodic orbits, spurious invariant curves efc. Further references
are Stuart (1989), Stuart and Peplow (1989), Iserles et al. (1990), Iserles
and Stuart (1990).

It may be useful to present a simple example to illustrate the foregoing

ideas. Consider the equation y' = —~y(1 — y) integrated by Euler’s rule.
The equilibria y = 0,1 are duly inherited by the Euler map
Ynt1 = :lvﬁlw\zzw\:. (7.1)

Linearization of (7.1) around 0 yields Yn+1 = (1 = h)y,. Clearly, 0 is a
stable equilibrium of (7.1) if 0 < h < 2 (see Section 4.3). At the critical
value h = 2, the relevant eigenvalue of (7.1) leaves the unit disk through —1
and thus y = 0 suffers a flip bifurcation (Guckenheimer and Holmes (1983),
Section 3.5), whereby the stability of the origin is transferred to a spurious
period 2 solution of (7.1). In turn this period 2 solution becomes unstable at
a higher value of h to give rise to a period 4 solution, etc. In fact, on setting
n = —(1+h)z,/h+1, (7.1) becomes the familiar Znt1 = (14h)z,(1-2,),
one of the most often quoted examples in nonlinear dynamics.
If the 2-stage RK discretization Y, = Yn = (B/2)yn(1 = yn), yny1 =
Yn — hY2(1 = Y3), is used, the origin at 0 again becomes unstable at h = 2.
The relevant eigenvalue now leaves the unit circle through 1 and a stable
spurious equilibrium is present for A near 2, h > 2 (transcritical bifurcation,
Guckenheimer and Holmes (1983), Section 5.3).




98  Numerical Ordinary Differential Equations vs. Dynamical Systems

In more general terms the situation is as follows. Given a sensible
numerical method (e.g. an RK method or a LM method satisfying the
strong root condition), if y* is a sink of (6.1) then, for h small enough, say
h < h., y* is also an asymptotically stable equilibrium of the numerical
recursion. At the critical value b =— h. the point y* loses stability because
one or more of the relevant eigenvalues # cross the unit disk. The value
h. is easily determined from the linear theory of numerical methods as
in Section 4. Generically, if 4 crossed through 1, a spurious equilibrium
is born that inherits the stability previously enjoyed by y*. A crossing
through —1 results in a bifurcation to a stable spurious period 2 solution.
Two complex conjugate eigenvalues leaving together the unit disk lead to
a spurious Hopf bifurcation. In practice, and as mentioned before, the
critical value h. obtained wvia linear absolute stability theory is in general
larger than the value of A one would use with a view to having an accurate
integration. It is nevertheless possible that the branches of stable spurious
objects born at h = h. turn back and exist for values of h < h,.

8 Discussion

The material above shows that it is only recently that numerical ODE re-
searchers have turned their attention to the question (Q) posed in the intro-
duction. One of the reasons why most classical analysis of ODE numerical
methods is not useful in connection with (Q) is the following. Tradition-
ally, numerical ODE researchers perform forward error analysis, i.e. they
see the result y,, of a numerical computation as an approximation to the
.::m solution ¥(t,). In other branches of numerical mathematics, notably
In numerical linear algebra, error analysis is done in a backward manner,
whereby the numerical solution of a problem P is seen as the ezact solu-
tion of an approximate problem P,. In an ODE context a backward error
analysis would interpret numerical orbits {y,} as true orbits of a system
of ODEs close to that being solved. If a complete backward error analysis
of numerical ODE methods were avallable, then (Q) would be equivalent
to the standard question of whether the dynamics of given system of differ-
ential equations is the same as the dynamics of its neighbouring systems.
The advantages of a backward error analysis over the forward error analysis
sketched in Section 3 would not be confined to the question being addressed
so far. In fact, in most instances the system S being integrated is only a
model of complex real world situation, so that the true solution y(t,) itself
may be suspected to be only an approximation. In such a situation seeing
Yn as a true solution of a nearby model Sh is clearly advantageous.

The results reported in Section 6 may endorse the optimistic view that
the answer to (Q) is affirmative, at least locally, under the assumption that
the step-length A is chosen to be sufficiently small. Pessimists argue that,
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in practice, it may be difficult to decide when the value of h being used is
‘sufficiently small’. The obvious idea would be to use smaller and smaller
values of h until things appear to converge. However, pessimists point out
that, in many practical situations, one works at the limit of the capacity of
the machine, so that a reduction in A may not be feasible (see e.g. Stuart
and Peplow (1989)).

In my opinion, the pessimistic school may well have overstated their
case. Many of the pathologies studied by them occur in situations where the
environment of the experiment is not really a bona fide numerical simula-
tion set-up. I shall try to illustrate this with an experiment to be presented
later. There is another reason why I would rather answer (@) affirmatively:
Whilst it is a fact that numerical methods may exhibit wild spurious dy-
namics if h is not chosen judiciously, there is also factual evidence that a
significant part of our knowledge of nonlinear dynamics has been (rightly)
derived by observing the dynamics of numerical methods.

On the other hand, it is fair to say that articles of the pessiistic school
are likely to have a positive impact on numerical analysts. Traditionally
numerical analysts have been brought up in a linear world and efforts tend-
ing to make people aware of truly nonlinear phenomena should be welcome.
Numerical analysts should also be made aware of the fact that the dynam-
ics of a mapping is, in general, very different from ODE dynamics (see e.g.
Guckenheimer and Holmes (1983), Sections 1.4, 3.5).

To end the section, let us take up again the Euler discretization of (5.1).
For any fixed value of s, we saw that, regardless of the choice of A, Euler’s
rule leads to the wrong dynamics if |z| is large. This is hardly surprising.
In the Euler formula

Zn4l = Zp + ? Q+ml _Na_mv N:_ (8.1)

the term is square brackets should represent a small correction being added
to z, to obtain z,4;. If h and s are fixed, then for |zn| large, the term
in brackets is actually much larger than z, and accordingly the numerical
method is not used in the set-up it was meant to work. Equivalently, h
should be chosen in line with the rate of change in z, and this rate is
strongly dependent on s and |z|. Even if a numerical analyst decided, for
some strange reason, to use Euler’s rule to discretize (5.1), he would realize
that a fixed value of h will simply not do for all values of 5 and |z| and that
some form of adaptive step-length should be used.

For the sake of the argment, assume that our numerical analyst imple-
ments the following variable step-size strategy. He choses a small number
¢ > 0 and sets

Zngl = 2z + ?: T + 5 — _N:_Mv NL , (8.2)

with

_ H
Sl ey e} (85
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Note Q:&. now the magnitude term in brackets in (8.1) is a fraction uoof
the magnitude of z,. Formulae (8.1-2) may be interpreted as an imbedded
RK pair based on Euler’s rule and on the 0-th order method z,,, = Zn

The dynami £(8.1-9) ; . .
where Hv\ow%wwom of (8.1-2) is easily found to be as follows (see Figure 3,

\%Q.MOH 8 < se(h) = —p/\ /4= 7 = O(p) all solutions spiral towards
the origin.

(N*2) .m,o~ 5 > s:(h), the origin is unstable and so is the point at infinity.
There is a Eovm. branch of invariant curves with |22 = s 4 4/ /4= 12 e,
an O(u) approximation to the Hopf orbits of (5.1). There are two subcases:

@5 a)0 < 5 < 8%, S&o.am s* satisfies s* = 51 +O(u). Here the Hopf branch
of (8.1-2) is asymptotically stable, just as its continuous counterpart.

(N"b) s* < s. Here the Hopf branch of (8.1-2) is unstable.

Oogwwlm.o: of Figures 2 and 3 shows that the variable time-step strat-
egy is a big improvement. Now the numerical dynamics is ‘almost’ right:
only in the case (N*2) there is a discrepancy in the stability of the Hopf
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orbits. However this is not too serious. First of all this only happens in a
regime s > s* = p~! 4+ O(p) that will not be seen if # is small and large
values of s are not of interest. Secondly even for large s the numerical
dynamics is to some extent right. In fact consider, for s > 0, the scaled
variable r := |z|%/s. For all s > 0, the value r = 1 corresponds to the
invariant circle of (5.1). Now (8.1-2) imply for the approximations r, to
r(t,) a recursion 1,4, = ¥, (r,) with

1—7r
Ga HHM
T,v +t ﬁllw.fmlu

In the limit s — oo, ¥, tends to the piecewise linear function ¥, given by

+u, >0 (8.4)

1= 2p+ p2)r > 1,

Voo(r) = MIM:J{M: S (8.5)
The dynamics of the iteration Tn+1 = Woo(rn) is as follows. Initial points
near the origin increase monotonically until they enter the interval [l —
2p+p? 14+ 2u+ #2]; initial points near infinity decrease until they enter
this interval. Hence, in the r variable, instead of the attractor r=1of
(5.1), we find an interval around r = 1, with width O(p), that is eventually
entered by all solutions (other than the trivial equilibrium). Returning to
the z-plane, we find that the dynamics of (8.1-2) is correct, with the only
proviso that, in the regime (N*b), the stable invariant curve of (5.1) at
|z| = s% is approximated by an invariant annulus of width mw@?&.

In conclusion, the pathologies of Euler’s rule studied in Section 5 dis-
appear (almost) completely as soon as the step-lengths are chosen judi-
cisously. Variable time-step strategies do provide a sensible way of chosing
hy,.. Therefore the advantages of using hibrary software packages with vari-
able step-lengths rather than writing our own’s fixed h software cannot be
overemphasized. Many people working with PDEs must deal with very
large problems which unfortunately cannot be directly plugged to a pack-
age. Even in such cases, I believe, it is always feasible to implement some
sort of simple variable step strategy, a course of action which enhances the
efficiency of the computation and the reliability of the results.

9 Other questions

(i) Following Beyn (1987c¢), it may be said that the long time behaviour
of systems of ODEs can be numerically investigated via two different ap-
proaches. In the indirect approach the system of ODEs is integrated with
several initial conditions and the long time behaviour of the numerical tra-
Jectories is observed. It is in this set-up that question (Q) is relevant. In
the direct approach one numerically solves the defining equations for limit
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sets of the system (such as steady states or periodic orbits), determines
their stability properties, etc. This approach is out of our scope here.

(i) In the important particular of Hamiltonian systems, many features
of the dynamics are determined by the symplectic or canonical character of
the flow (see e.g. Arnold (1989)). Recently, there has been much interest in
producing numerical methods that induce, for all values of the step-length,
a canonical transformation in phase space. Such so-called symplectic or
canonical methods automatically inherit some qualitative properties of the
ODE flow. Some references are Ruth (1983), Feng (1986), Sanz-Serna
(1988), Lasagni (1988), Suris (1989), Sanz-Serna (1990), Sanz-Serna and
Abia (1990). When a completely integrable Hamiltonian system (Arnold,
1989) is integrated by means of a canonical method, KAM theory can be
used to show that the numerical dynamics preserve most invariant tori
(Sanz-Serna and Vadillo, 1986, 1987).

(iii) The procedure of time-step selection in numerical methods has been
analyzed from a dynamical system point of view by Hall (1985), (1986),
Griffiths (1988), Higham and Hall (1990).

(iv) Other useful papers are Kirchgraber (1986), Kirchgraber and Pos-
piech (1986), Kirchgraber (1988).
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Sensitivity of Bifurcations to Discretization

D.R. Moore and N.O. Weiss
Imperial College London and University of Cambridge, England

Abstract Bifurcations and transitions to chaos found in numer-
ical studies of nonlinear PDEs may be artifacts introduced by
discretization. A systematic procedure is developed which makes
it possible to determine whether the bifurcation structure persists
as truncation errors are consistently reduced. In particular, the
presence of chaos can be established by precise tracking of narrow
periodic windows within the chaotic regime. This procedure is ap-
plied to numerical experiments on two-dimensional thermosolutal
convection.

1 Introduction

This review is slanted towards applied mathematicians. We shall only con-
sider dissipative systems, with the aim of providing a bridge between the
discussions of dynamical systems (Broomhead, 1991; Stewart, 1991) and of
numerical analysis (Sanz-Serna, 1991) elsewhere in these Proceedings. The
general problem arises if we wish to investigate a continuous macroscopic
system governed by nonlinear partial differential equations (PDEs). Then
we usually have to rely on numerical experiments, so we construct some
discrete approximation to the PDEs, which is a related (but different) non-
linear system. If chaos appears, is it a property of the original PDEs or
Just a consequence of discretization?

The classic example is two-dimensional Rayleigh-Bénard convection,
where a minimal Galerkin expansion reduces the PDEs to the well-known
Lorenz (1963) system of ordinary differential equations (ODEs). This third-
order system correctly describes the pitchfork bifurcation at the onset of
convection but the nontrivial steady solutions undergo a suberitical Hopf
bifurcation which is followed by a wealth of chaotic behaviour (Sparrow,
1982). Accurate numerical solutions of the PDEs show that the Hopf bifur-
cation is indeed there but it is superecritical and there is no chaos (Moore
& Weiss, 1973; Curry et al., 1984). In this instance, the approximation



