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Abstract 

Sanz-Serna, J.M. and S. Larsson, Shadows, chaos, and saddles, Applied Numerical Mathematics 13 (1993) 
181-190. 

Shadowing provides a means for studying the behaviour of numerical methods in long-time integrations. We 
review the use of shadowing in the simulation of chaos and in the analysis of numerical methods near 
hyperbolic equilibrium points, such as saddles. 
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1. Introduction 

Numerical methods are often used to investigate the long-time behaviour of solutions of 
ordinary or partial differential equations. Similarly mappings such as the well-known logistic 
map (see e.g. [ll, Chapter 51) 

U n+l =puu,(l -u,), o<u,,< 1, WI) 

with p a parameter in the range 0 < p G 4, are often iterated many times in the computer in 
order to find the long-time behaviour of the corresponding orbits uO, ul, u2,. . . . In both 
instances, i.e. both for continuous and for discrete dynamical systems, situations where the 
solutions of the system diverge exponentially from each other imply a catastrophic propagation 
of truncation and/or roundoff errors. As a consequence the global error (the distance between 
the computed and the true result of the initial value problem being simulated) may be 
enormous. Shadowing provides a means for the analysis of such situations. In this expository 
paper we review the use of shadowing in the study of chaotic iterations such as (1.1) (Section 4) 
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and in the analysis of numerical integrators in the neighbourhood of hyperbolic equilibrium 
points, such as saddles (Section 5). Sections 2 and 3 are respectively devoted to the presenta- 
tion of the idea of shadowing and to the shadowing lemma. The final Section 6 contains some 
concluding remarks. 

2. Shadowing: the basic idea 

Let us begin with a very simple example. Consider the scalar initial value problem 

dx/dt= -x, O<t<T,,,, x(0) = 1, (2.1) 

that we integrate by Euler’s method 

X n+1= $x,:=(1-At)x,, O<n<[T,,,/At], x0= 1. 

Figure 1 depicts the exact trajectory (solid line) and the computed points (stars) when T,, = 5 
and At = 0.1. The largest absolute value of the errors e, := x(nAt> -x, is 0.019 and occurs at 
it = 10 (i.e. at t = 1). Note that ) e, I does not grow larger and larger as it increases. The reason 
for this is quite simple, see e.g. the venerable textbook by Isaacson and Keller [16, Chapter 8, 
Section 1, Corollary 21. The error e, can be written as 

e, =x(nAt) -x, 

= [x(nAt) - $x((n - l)At)] + $x((n - 1)At) -$x,-r, 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

TIME 
Fig. 1. 
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so that with 1, :=x(nAt) - I,!Jx((~ - l>At> we have 

e, = Jle,_, +l,. P-2) 
The truncation error 1, represents the error in X, had the approximation x,_ 1 at the previous 
time-level coincided with the exact x((n - 1)At); the term $e,_, = (1 - At>e,_, reflects the 
effect on e, of the preceding error e,*_ r. Since 1 I,/J 1 < 1, there is a damping mechanism in the 
propagation of errors. From (2.2) we can write 

where 1 is an upper bound for I I, I. Iteration of this bound down to IZ = 0 results in 

Now 1, = iAt d2X([,>/dt2, with 5, an intermediate point, so that, for (2.11, 11, I can be 
bounded independently of n a 0 by iA t 2 I x(O) I. Hence we finally conclude 

(e,l < iAtlx(O)l, ~2 a 0. (2.3) 

For the case in Fig. 1 the bound in (2.3) is 0.050 and the maximum actual error 0.019. 
We have thus obtained an error bound that holds uniformly for positive times t; this has 

been possible because of two factors. First, the solutions of the equation dx/dt = --x approach 
each other as t +- ~0; this contractive behaviour causes I $ I to be less than 1 for At small. 
Secondly, the local truncation error can be bounded uniformly for all positive t. Such long-time 
error estimates are studied in Stetter’s book [24, Chapters 3.5 and 4.61 for ordinary differential 
equations. For partial differential equations, Sanz-Serna and Stuart [22] discuss the situation 
for smooth solutions and Larsson [17] the more difficult case of nonsmooth solutions. 

Let us now move to the unstable problem 

dy/dt=y, O,<t<T,,, Y(O) = 1, (2.4) 

again integrated with Euler’s method. Figure 2 shows the exact trajectory (solid line) and 
computed points (stars) when, as in Fig. 1, T,,, = 5 and At = 0.1. Now errors grow monotoni- 
cally with n. The largest error 31.0 occurs at T’,,, where y(5) = 148.4 and y,, = 117.4. This is 
an accuracy of only 21%. Again this is easily explained. The errors e, still satisfy the error 
recursion (2.21, but now Cc, = 1 + At, leading to an exponential growth with n. 

Shadowing provides a means to put to good use the bad numerical results in Fig. 2. Consider 
the solution F(t) of dy/dt =y that at t = T,,, takes the same value as the computed numerical 
solution y,, = 117.4. In Fig. 2, j(t) is given by a dashed line. The agreement between the 
computed points and y’(t) is quite good; now the maximum value I jXn At) - y, I is 2.1, more 
than an order of magnitude better that the maximum error I y(nA t) - y, ) which is 31.0. We 
say that the trajectory y’(t) shadows the numerical solution with an accuracy of 2.1. The 
conclusion is that the computed points y, are poor approximations to the solution of the 
problem (2.4) which we integrated numerically; however they are good approximations to the 
shadowing solution: a solution of the correct differential equation with a “wrong” initial 
condition. 
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In the scenario studied in numerical analysis textbooks it is assumed that when integrating 
problems such as (2.4) the goal is to accurately compute the value of y(t), 0 < t G T,,. Due to 
the exponential growth of the errors, this goal is not realistic when T’,, is not small. The idea 
of shadowing does not help in this scenario. On the other hand, a more realistic scenario may 
be envisaged. We could consider that the interest lies in finding the behaviour of the 
trajectories of the differential system being integrated. In this alternative scenario shadowing is 
certainly of use: in Fig. 2 we know that the computed points represent, except for a small error 
of 2.1, a suitable trajectory of the differential equation. 

Before proceeding any further, let us examine why in Fig. 2 the errors e”,, := jXnAt> - y, turn 
out to be small. Instead of (2.2) we now have the error recursion 

TIME 
Fig. 2. 

where in := y”(nAt) - I,!JI~;((, - l>At> and + = 1 + At. This formula is now used iteratively for PZ 
increasing up to N = [T,,/A t]. The result is 

(;,I ~l~-ll(i~+,I +I) &-il*(l~+~1 +q +1+-V 

< .** < (~+qk(l+At)i,At. 

After estimating i we conclude 

le’,l < +At(l + At)lY’(T,,)(, n <N. (2.5) 
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Note that now the error bound holds even for n negative and of arbitrarily large modulus. For 
Fig. 2 the bound in (2.5) equals 6.5; the maximum actual error (with respect to the shadowing 
trajectory) turned out to be 2.1. The main issue is that when estimating the errors e, with 
respect to the true trajectory it is necessary to work with [$,I > 1, while when estimating Z,, it is 
the factor It,-’ I < 1 that appears. On the other hand note that the analyses leading to (2.3) 
and to (2.5) are very similar. In fact by changing the arrow of time we can obviously interpret 
the stars in Fig. 2 as numerical approximations to the stable initial value problem 

dy/dT= -y, 0~7~5, y(0) = 117.4 

and then apply the error bounds corresponding to the stable case. The point to note is that in 
this interpretation the numerical method for which error bounds have to be derived is really the 
backward Euler method: moving forward in T with the backward Euler formula is moving 
forward in t with the explicit Euler formula, see e.g. [12, p. 2151. 

The examples above suggest that there are good shadowing trajectories when the solutions of 
the differential system either converge exponentially as in (2.1) or diverge exponentially as in 
(2.4). In the first case the shadowing trajectory is the trajectory that has the same initial value 
as the numerical solution, in the second case the shadowing trajectory has the same final value 
as the numerical solution. Of course, (2.1) and (2.4) can be put together into a system 
du/dt = Du, with u = [x, yIT and D = diag(1, - 1). Numerical solutions to this system by 
one-step numerical methods can be shadowed by prescribing x(0) and y(T,,,). For a linear 
system du/dt =Au with A a d x d matrix with no eigenvalue on the imaginary axis (i.e. A 
hyperbolic), the normal modes are either exponentially growing or exponentially decreasing; 
shadowing of numerical solution is possible by prescribing the initial value of the decreasing 
modes and the final value of the growing modes. This follows the spirit of the use of 
exponential dichotomies in the derivation of good error bounds in two-point boundary value 
problems, see [3, Section 3.41. 

3. The shadowing lemma 

We now look at processes of the form 

u n+l =.mJ> (3-l) 
where f is a mapping in Rd. A simple example is given by the logistic map (1.1). The case of 
autonomous systems of differential systems in [Wd is also included by considering f to be the At 
flow of the system, i.e. the mapping in [Wd that advances the numerical solution by At units of 
time; for instance, for (2.1), f(x) = exp(-At)x. 

Let us give some definitions. A true orbit is a sequence {u,}~Z~ that satisfies (3.1) for 
Y G II G N. In practical computation (3.1) is not satisfied exactly. Rather, the computed points 
1 P,l,“Z,N satisfy P~+~ =.OP,) + 5,, where 5, accounts for roundoff and/or other sources of 
error. For instance, if f is the flow of a differential system being integrated numerically, then 
5, include roundoff and the local errors defined as in [12, Chapter II, Fig. 3.11. The sequence 
{p,},“Zy is called a pseudo-orbit. Assume that there is a maximum noise 6 such that 

15J ‘l&+1 -f(p,)l~6, v<nnN. 
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We then say that {p,},“:: is a &pseudo-orbit. Finally we say that a true orbit {6,),“1: r-shadows 
the pseudo-orbit {p,),“:: if ( ii, -p, 1 G E, v c II G N. 

If the dynamics of f includes exponential divergence of orbits, for instance if it is chaotic, 
then very small perturbations 5, can have a big impact on the computed points. In (1.1) with 
p = 3.8 the orbit that starts at u0 = 0.4 has u3a = 0.1936; when the initial datum is perturbed to 
0.400001, the value of u at n = 30 changes to 0.9335, i.e. when the initial data are known with 
an uncertainty of one part in a million, the result at II = 30 is completely undetermined, 
because the size of the underlying errors is comparable to the size of the dynamic variable u. In 
such situations shadowing would be of much use; at least we could ensure that the computed 
points closely represent some true orbit. We have the following result due to Anosov [2] and 
Bowen [5,6] and usually known as the shadowing lemma. 

Theorem 3.1. Zf f is a hyperbolic diffeomorphism, then for every E > 0 there is a S > 0 such that 
every S-pseudo-orbit can be &-shadowed. 

Note that the length N - v of the pseudo-orbit may be arbitrarily large. Hyperbolicity means 
that at each point u the Jacobian matrix of f has eigenvalues that are in modulus either < 1 
(damping) or > 1 (growth). Furthermore the angle between the stable and unstable directions 
should be bounded away from zero uniformly in u and the rates of damping and growth should 
be bounded away from 1 uniformly in u. Unfortunately, hyperbolicity is a very restrictive 
condition; for instance the logistic map (1.1) does not satisfy it. Shadowing results for 
nonhyperbolic situations can be seen in [7,19]. 

4. Checking shadowing with the computer 

The results quoted at the end of the previous section are mainly of theoretical interest. 
Hammel, Yorke and Grebogi [14] devised a method whereby practical shadowing results can be 
obtained. In their approach once a numerical orbit has been generated by the computer, the 
same computer is used to calculate rigorously how long a true trajectory exists near the 
numerical orbit. In [14] it is assumed that f in (3.1) is one-dimensional, d = 1. Once a 
numerical orbit { p,},":," has been found, the computer is used to successively find for 
n=N ,...,vintervalsZ,insuchawaythatZ,=[p,,p,]andf(Z,_,)~Z,,v~n~N.Thelast 
condition guarantees that an exact orbit {fi,),“1: exists such that ii, E Z,, v <II <N. Finally by 
measuring the distance between p, and the endpoints of the interval Z, a bound for the 
distances 1 ii, -pn I is obtained. Note that the Z,, are found in a recursion with y1 decreasing, in 
agreement with our treatment of the unstable problem (2.4). When working in single precision 
with a Cray X-MP computer, Hammel, Yorke and Grebogi find that for (1.1) with p = 3.8, 
p0 = 0.4, Y = 0, N = lo7 the computed pseudo-orbit is &-shadowed by a true orbit with 
e = lo-‘. It is conjectured that with a noise amplitude 6, &-shadowing with F = fi holds for 
orbits of length N - v = l/ 6. 

In [9,15] similar results are derived for two-dimensional problems. Further developments 
may be seen in [23]. Chow and Palmer have considered a similar approach; this work is 
reported in [13]. 
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5. Equilibrium points in differential equations 

Another situation where the idea of shadowing is useful concerns the numerical solution of 
systems of differential equations in lRd, 

du/dt =F(u), (5-l) 

in the neighbourhood of a hyperbolic equilibrium point. Without loss of generality we assume 
that the equilibrium is at u = 0 so that F(O) = (0). The hypothesis that the equilibrium is 
hyperbolic means that the Jacobian matrix A of F at 0 has no eigenvalue on the imaginary axis. 
Hence the modes of the linearized system 

du/dt =Au, w 

are either exponentially growing or exponentially decreasing. Each vector u in Rd may be 
uniquely decomposed as u =x + y where x belongs to the subspace X c Rd associated with the 
decreasing modes and y belongs to the subspace Y c Rd associated with the increasing modes 
(see Fig. 3). If X= (01 and Y = Rd, th en the equilibrium is a sink; if Y = (0) and X= Rd, then 
the equilibrium is a source; in any other case the equilibrium is a saddle [ll]. The subspaces X 
and Y are invariant by the flow of (5.2); when going back to the original (5.1) we find, in a small 
neighbourhood W of 0 a local stable manifold MS tangent to X at 0 and consisting of solutions 
that tend to the equilibrium as t + 00, along with a local unstable manifold M, tangent to Y at 
0 and consisting of solutions that tend to the equilibrium as t + --. Any solution of (5.1) not 
in M, or M, stays in W during a finite time interval. The length of this interval depends on the 
individual solution and may be arbitrarily large. By considering initial conditions on opposite 
sides of MS it is easily seen that the distance between two trajectories may grow exponentially 
with t, even if they are initially very close. Therefore numerical methods cannot be expected to 
approximate individual trajectories very well over long time intervals and the idea of shadowing 

Y 

Fig. 3. 
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becomes useful as shown by Beyn [4]. In [4] both one-step and multi-step methods are 
considered, but for simplicity we only consider here the one-step case 

U ntl = u, + A@&,). (5.3) 
The two following reasonable consistency hypotheses are made: 

(Hl) FAt(u> converges to F(u) as At + 0, uniformly in U, u E IV. Furthermore the Jacobian 
matrix FL:,(u) of F,t(u) with respect to u converges to the Jacobian matrix F’(u) as 
At -+ 0, uniformly in U, u E IV. 

(H2) The truncation errors fht(u) - [U + AtFAr( are O(AtP+‘) uniformly in U, u E IV. 
Here fA, represents the At flow of (5.1) and p is the order of the numerical method. 

Beyn shows that there are a neighbourhood W of the equilibrium and positive constants C 
and 77 such that, for At < 7, to each numerical orbit {u},“:,” in W there corresponds a solution 
zXt) of (5.1) such that 

Iz-+At)-u,] <CAtp, v<n<N. 

Note that N may be Z+ 1 while v may be K - 1. The cases v = - ot, and N = ~0 are allowed 
and respectively correspond to numerical orbits in the unstable and stable manifold of the 
mapping (5.3). The conclusion is that the numerical method faithfully reproduces the phase 
portrait of (5.1) near the equilibrium point. 

As in Section 2, the shadowing solution fi( t) is found by imposing that the stable X-compo- 
nent of $vAt) coincides with the X-component of u,, while the unstable Y-component of 
6( NAt) coincides with the Y-component of uN. To bound the errors Z, := ii(nAt> - u,, note 
that, as in Section 2, they satisfy 

&+1 =k, + At[F,,(fi(nAt)) -&(u,)] +I-,, 

where in denote the O(At .+l> truncation errors (see (H2) above). Hence 

&+1 =&+ AtAc?, +i, + At[F&+zAt)) -&(un) -A(ii(nAt) -un)]. 

Without the term in square brackets, this would be a linear recursion that is easily analyzed as 
in Section 2 by working forward in the X-component and backward in the Y-component. The 
term in brackets introduces a small perturbation because, due to (Hl), it possesses a bound 
L IZ,,I with a Lipschitz constant that may be rendered arbitrarily small by suitably reducing the 
size of the neighbourhood IV. 

The results in [4] have been extended to partial differential equations by Alouges and 
Debussche [l] and by Larsson and Sanz-Serna [18]. The paper [l] works in an abstract 
framework and only considers discretization of the time variable. The analysis provided is a 
direct extension of that in [4] and the error bounds obtained are not of optimal order. The 
paper [18] considers the piecewise linear Galerkin space discretization of the reaction-diffusion 
problem 

u, - Au =f(u), x E a, 

U = 0, xEan, 
where 0 is a bounded convex polygonal domain in lRd, d = 1,2, or 3 and f~ C’(R). If d = 2 or 
3, then f is also supposed to satisfy a growth condition 

f”‘(U) < c(1 + ]ujS-j), j = 0, 1, 2, 
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where 6 = 3 if d = 3 and 2 < 6 < 00 if d = 2. It is shown that there are positive numbers pO, h,, 
and C such that, for partitions of diameter h <h,, any Galerkin solution uh(t> that for 
r < t < T stays in the H’-ball of radius p0 around a hyperbolic equilibrium can be shadowed by 
a true solution ii(t) in such a way that 

/d(t) -fi(t)llL, < C(1 + (t - +1’2)h2, 7 <t < T, 

IluYt) -wII ,4(1+(t-+“‘)h, r<t<T. 

Note that the exponents of h are optimal. The bounds deteriorate for t near r, as we would 
expect in a situation where the solutions considered are not necessarily smooth. 

6. Concluding remarks 

For a survey of the use of numerical methods in long-time integrations see [20]. The idea of 
shadowing is related to the notion of backward error analysis; the numerical results are seen as 
approximations to perturbed problems. References on the backward error analysis of numerical 
integrators are [8,21]. A related idea is the method of modified equations [lo], where the 
equation rather than the initial value is changed in order to shadow the numerical solution. 
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